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ABSTRACT. Significance: Over the past decade, machine learning (ML) algorithms have rapidly
becomemuch more widespread for numerous biomedical applications, including the
diagnosis and categorization of disease and injury.

Aim: Here, we seek to characterize the recent growth of ML techniques that use
imaging data to classify burn wound severity and report on the accuracies of different
approaches.

Approach: To this end, we present a comprehensive literature review of preclinical
and clinical studies using ML techniques to classify the severity of burn wounds.

Results: The majority of these reports used digital color photographs as input data
to the classification algorithms, but recently there has been an increasing prevalence
of the use of ML approaches using input data from more advanced optical imaging
modalities (e.g., multispectral and hyperspectral imaging, optical coherence tomog-
raphy), in addition to multimodal techniques. The classification accuracy of the
different methods is reported; it typically ranges from ∼70% to 90% relative to the
current gold standard of clinical judgment.

Conclusions: The field would benefit from systematic analysis of the effects of dif-
ferent input data modalities, training/testing sets, and ML classifiers on the reported
accuracy. Despite this current limitation, ML-based algorithms show significant
promise for assisting in objectively classifying burn wound severity.
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1 Introduction
Incorporating emerging technologies into the clinical workflow for the early staging of burn
severity may provide a crucial inroad toward improved diagnostic accuracy and personalized
treatment.1 Early knowledge of the severity of the burn gives the clinician the ability to discuss
treatment options and prognostication for hospital stays, healing, and scarring. Within the spec-
trum of burn severity, superficial partial thickness burns often do not require skin grafting but can
be managed with daily wound care or covered with various synthetic or biologic dressings. Full
thickness burns typically require skin grafting because they will take >3 weeks to heal and can
result in symptomatic and constricting scars. Deep partial thickness burns can act like full thick-
ness burns and require skin grafting. Distinguishing the burn severity along the spectrum can be
difficult early after injury and is subjective when based on previous clinical experience.
Modalities that allow for additional objective data promptly after injury helps the clinician to
manage the wound properly to enable healing of the damaged tissue and reduce infection, con-
tracture, and other unfavorable outcomes.2 In many cases, some portions of a burn wound need
grafting but other portions do not, so it is vital to develop imaging techniques that can spatially-
segment tissue regions with deeper burns from locations where the burn is more superficial. For
the above reasons, burn wound assessment is a prime example of an application for which the
combination of optical imaging devices and machine learning (ML) algorithms has recently
made notable progress toward translation to clinical care.

ML algorithms are becoming ubiquitous in a wide variety of disciplines. In the medical field,
ML is attractive due to its potential for objective classification of disease and injury, categori-
zation of stage of disease and severity of injury, informing treatment, and prognosticating clinical
outcomes. ML can conveniently manage and interpret high-dimensional multimodal clinical
datasets to facilitate the translation of these data into powerful tools to help inform clinical deci-
sion making.3–5 Over the past decade, numerous research groups have begun to test the efficacy
of merging ML algorithms with imaging technologies for classifying burn wounds.6–12 The input
data in these studies is frequently obtained from standard red, green, and blue (RGB) color
images. However, other emerging techniques (e.g., multispectral imaging, optical coherence
tomography, spatial frequency domain imaging, and terahertz imaging) are being developed for
this application as well. This literature is growing at a rapid rate, both in terms of the number of
new reported studies and the range of different technologies used for obtaining input data to train
ML classifiers (Fig. 1). The “ground-truth” categorization of burn severity used for training the

Fig. 1 Over the past decade, there has been a rapid increase in the number of studies developing
machine learning approaches for burn wound classification using imaging data. (a) Cumulative
number of published studies on ML burn classification methods using imaging data as a function
of time over the past two decades. A progressively steeper increase in the cumulative number of
publications is observed, especially over the past decade. (b) Cumulative number of different im-
aging modalities employed to train ML-based burn wound classification algorithms in published
studies, plotted as a function of time over the past two decades. As with the cumulative number
of published studies, the cumulative number of imaging modalities used in these applications has
increased sharply over the past decade.
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algorithms is typically the clinical impression, which is regarded as the diagnostic/prognostic
“gold standard” but can be incorrect in ∼20% to 50% of cases.13–16 The outputs of the algorithm
are typically (1) the segmentation of burned versus unburned tissue and (2) the classification of
depth or severity of the burn. The literature encompasses studies both in preclinical animal mod-
els and in clinical settings.

The purpose of this review article is to provide an overview of the progress thus far in the
combination of ML algorithms with different optical imaging modalities to assist with burn
wound assessment. The review is organized according to the type of imaging modality used
as input data for different ML studies, which are summarized in Table 1. Section 2 focuses
on ML techniques using data from conventional color photography. Section 3 discusses the use
of ML algorithms for analyzing multispectral (and hyperspectral) imaging data. Section 4 ana-
lyzes the use of other modalities of imaging data (optical coherence tomography, ultrasound,
thermal imaging, laser speckle and laser Doppler imaging, and terahertz imaging) with ML

Table 1 Summary of different ML-based burn classification studies using imaging data as inputs
to the ML algorithms. Modality, data processing techniques, ML classifiers, validation procedures,
and reported accuracy values are shown in the columns of the table.

Data modality Studies Pre-processing ML classifier
Validation
methods Accuracy

Digital color 17–52 E.g., L, a, b;
texture analysis

E.g., SVM, LDA,
KNN, deep CNN

E.g., k-fold CV;
separate test set

80.9% +/− 6.4%
without deep
learning; 86.2%
+/− 9.8% with deep
learning (see Fig. 7)

Multispectral 53 Outlier detection SVM, KNN tenfold CV 76%

54 LDA, QDA, KNN 68%–71%

55 CNN Sensitivity = 81%;
PPV = 97%

Hyperspectral 56 Denoising Unsupervised
segmentation

Comparison
between
segmentation
and histology

Not reported

Multispectral
SFDI

57 Calibrated
reflectance

SVM tenfold CV 92.5%

Digital color +
multispectral

58,59 Texture analysis,
mode filtering

QDA twelvefold CV
(in Ref. 59)

78%

60 QDA + k-means
clustering

34-fold CV 24% better than
QDA alone for
identifying non-
viable tissue

61 Outlier removal
using
Mahalanobis
distance

OCT 62 OCT and pulse
speckle imaging

Naïve Bayes
classifier

ROC
AUC = 0.86

63 A-line, B-scan,
and phase data

Multilevel
ensemble
classifier

tenfold CV 92.5%

64 Eight OCT
parameters

Linear model
classifier

Test set 91%

Wilson et al.: Review of machine learning for optical imaging of burn wound severity. . .

Journal of Biomedical Optics 020901-3 February 2024 • Vol. 29(2)



technology. Section 5 provides a summary of the findings of this review and briefly discusses
potential future directions.

2 Use of ML with Color Photography
To date, the majority of studies that have examined the use of ML to categorize burns have done so
using color photography data as inputs. These studies date back nearly two decades17–20 but have
become significantly more numerous over the past decade, especially during the past 5 years.

2.1 Early Studies
The first reported work in this area17–20 analyzed images in the ðL�; u�; v�Þ color space, which is
representative of the human perception of color. Parameters related to texture and color were
extracted from the images and used as inputs to the ML algorithm, which was based on a neural
network known as a Fuzzy-ARTMAP (fuzzy logic merged with adaptive resonance theory for
analog multidimensional mapping). This approach was tested on clinically obtained color images
of full thickness, deep dermal, and superficial dermal burns. In Refs. 18 and 19, with a dataset of
62 images, the ML classification method provided a mean overall accuracy (across all three
categories) of 82%, relative to the “gold standard” of visual inspection by burn care experts.
In Ref. 20, with a dataset of 35 images, the mean overall accuracy of the ML classifier was 89%.

Additional research began to emerge roughly half a decade later. A 2012 study21 compared
support vector machine (SVM), K-nearest neighbor (KNN), and Bayesian classifiers, using image
segmentation to identify burn regions and input parameters from texture analysis and h-transformed
data to classify burn severity. Fourfold cross-validation provided the highest classification accuracy
of burn severity (89%) when SVM was used. A “blind test” of the SVM provided a classification

Table 1 (Continued).

Data modality Studies Pre-processing ML classifier
Validation
methods Accuracy

Ultrasound 65
(ex vivo)

Texture analysis SVM and kernel
Fisher

93%

66
(in situ

postmortem)

B-mode ultra
sound data

Deep CNN 99%

Thermography 67 Thermography
and multispectral

CNN pattern
recognition

Training,
validation, and
test sets

Precision = 83%

68 Temperature
difference
relative to
healthy skin

Random forest Training and
validation sets

85%

Blood Flow 69 LSI CNN >93%

Terahertz
Imaging

70,71 Wavelet
denoising,
Wiener
deconvolution

SVM, LDA, Naïve
Bayes, neural
network

Fivefold CV ROC AUC =
0.86-0.93

72 Permittivity Three-layer fully
connected neural
network

Fivefold CV ROC AUC =
0.93

Note: PPG, photoplethysmography; OCT, optical coherence tomography; LSI, laser speckle imaging; SVM,
support vector machine; LDA, linear discriminant analysis; KNN, K-nearest neighbors; QDA, quadratic discrimi-
nant analysis; CNN, convolutional neural network; CV, cross-validation; ROC, receiver operating characteristic;
AUC, area under curve.
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accuracy of 75% for distinguishing between grades of burn severity. A 2013 report22 compared
SVM, KNN, and template matching (TM) algorithms for classifying three different burn severity
categories (superficial, partial thickness, and full thickness) in patients with a range of different
demographic characteristics (age, gender, and ethnicity). Using a sample size of 120 images
(40 superficial burns, 40 partial thickness burns, and 40 full thickness burns), the overall classi-
fication accuracy was 88% for the SVM, 75% for the TM, and 66% for the KNN.

Another 2013 study23 used multidimensional scaling (MDS) to quantify features of color
images that were related to burn depth. Parameters from this model were input into a KNN
algorithm for classification. The KNN provided 66% accuracy for distinguishing between three
different burn depth categories (superficial dermal, deep dermal, and full thickness) and 84%
accuracy for distinguishing between burns requiring grafts versus burns not needing grafting.
When principal component analysis (PCA) was performed and the three most significant
principal components were used as inputs into the KNN, the accuracy decreased to 51% for
the three-group classification (superficial dermal, deep dermal, and full thickness) and 72% for
the two-group classification (graft needed versus no graft needed). When the MDS parameters
were input into an SVM, the accuracy values were 76% and 82% for the aforementioned three-
group classification and two-group classification, respectively. A similar study in 201524 reported
an accuracy of 80% for distinguishing burns in need of grafts from burns not in need of grafts,
when MDS parameters were used in conjunction with an SVM classification algorithm on an
independent test dataset of 74 images.

Another 2015 study25 used an SVM to classify burns by severity (second degree, third degree,
and fourth degree) with 73.7% accuracy when twofold cross-validation was performed. A 2017
report26 compared 20 different algorithms for classifying burn severity into three categories (super-
ficial partial thickness, deep partial thickness, and full thickness), using both tenfold cross-
validation and an independent test dataset. The highest classification accuracy (73%) obtained
using cross-validation was achieved with a simple logistic regression algorithm. Five of the algo-
rithms were identified as the most accurate for classifying burns in the test dataset, and their mean
accuracies were all 69%. The low classification accuracy was primarily attributed to difficulties in
using the algorithms to distinguish between superficial partial thickness and deep partial thickness
burns. This issue was linked to the observation that the superficial partial thickness burns often
included some deep partial thickness burn regions, and vice versa, making classification difficult.

2.2 Studies from 2019 to 2023: Emergence of Deep Learning Approaches
At the time of this report, the majority of studies on ML methods for classifying color images of
burns were published from 2019 to 2023. Although some preliminary burn classification work
using digital color images and deep learning technology had been reported prior to 2019,27 the
period from 2019 to 2023 saw a substantial increase in the use of deep learning approaches for
burn wound classification.28–45

Several studies in this time period used deep learning algorithms to segment images into
burned and un-burned regions.31,34,35,38–40 A 2019 study31 used 1,000 images to train a mask
region with a convolutional neural network (Mask R-CNN) algorithm, comparing several differ-
ent underlying network types and obtaining a maximum accuracy of 85% for identifying burn
regions in images of different severities of burns. Another 2019 study38 used deep learning with
semantic segmentation to distinguish between burn, skin, and background portions of images.
Two 2021 studies34,35 (Fig. 2) used deep learning algorithms to segment burned versus un-burned
tissue to determine the total body surface area (TBSA) that was burned.

A 2019 study28 used deep CNN based approaches for burn classification, comparing four
different networks. The ResNet-101 deep CNN algorithm distinguished between four different
burn categories (superficial partial-thickness, superficial-to-intermediate partial-thickness, inter-
mediate-to-deep partial-thickness, and deep partial thickness to full thickness) with a mean accu-
racy of 82% when tenfold cross-validation was performed. In another study by this same group,29

a tensor decomposition technique was employed to extract parameters related to texture for input
into a cluster analysis algorithm that segmented the images into three categories (non-tissue
“background,” healthy skin, and burned skin) with a sensitivity of 96%, positive predictive value
of 95%, and faster computation time than other image analysis techniques (e.g., PCA). A third
report from this group30 used digital color images acquired with a commercial camera specialized
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for tissue imaging (TiVi700, WheelsBridge AB, Sweden) that uses polarization filters. The polar-
ized images were used to train a U-Net deep CNN for distinguishing between four different burn
severities (superficial partial-thickness, superficial-to-intermediate partial-thickness, intermedi-
ate-to-deep partial-thickness, and deep-partial thickness to full-thickness, which is defined based
on healing times). The accuracy of this technique was 92% when a separate test set (consisting of
data not included in the training set) was used.

A 2020 study32 used a ResNet-50 deep CNN to classify burns into three levels of severity
(shallow, moderate, and deep, which is based on the time/intervention required to heal) with an
overall accuracy of ∼80% when applied to a separate test dataset. Another 2020 study41 used a
deep CNN to classify burns as superficial, deep dermal, or full thickness in a separate test dataset
with an average accuracy of 79%. A third study from 202033 employed separate SVMs, trained
with features identified by deep CNNs, for each body part examined (inner forearm, hand, back,
and face), achieving burn severity (low, moderate, and severe) classification accuracy of 92% and
85% for two different test datasets. A 2021 report42 used deep neural network and recurrent
neural network approaches to classify burns as first, second, or third degree with accuracies
of 80% and 81%, respectively.

Fig. 2 Results of a deep learning algorithm for classifying burn severity using color photography
data, mapped across the tissue surfaces of patients. Data from color images (a) were input into a
multi-layer deep learning procedure including segmentation and feature fusion. The algorithm clas-
sified burn regions (c) as superficial partial-thickness (blue), deep partial-thickness (green), and
full-thickness (red). Ground-truth categorization (b) is shown for comparison (adapted from Ref. 34,
with permission).
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A 2023 study36 performed deep learning on color images of patients with a wide range of
Fitzpatrick skin types to identify burned regions and classify whether those regions required
surgical intervention. Patients were split into two subsets: those with Fitzpatrick Skin Types
I-II and those with Fitzpatrick Skin Types III-VI. The classification algorithm employed a deep
CNN made available via commercially available software (Aiforia Create, Helsinki, Finland).
For distinguishing burns for which surgical intervention was needed from burns that did not
require surgical intervention, using a separate test dataset, the area under the receiver operating
characteristic curve (ROC AUC) was nearly identical for the dataset from patients with lighter
skin (AUC = 0.863) and the dataset from patients with darker skin (AUC ¼ 0.875). This result is
expected due to the fact that the burn removed the epidermis (where melanin is located). Despite
the high AUC, the overall accuracy of the algorithm was 64.5%. Two studies by the same
group43,44 used new deep CNN algorithms to classify burn severity (superficial, deep dermal,
and full thickness) with >97% accuracy and distinguish between burns in need of grafting and
burns not requiring grafts with >99% accuracy, using fivefold cross-validation.

Another 2022 study37 compared “traditional” (non-deep-learning-based) ML algorithms
with deep learning approaches for classifying images of burns in patients. For distinguishing
between first degree (superficial), second degree (partial thickness), and three degree (full thick-
ness) burns in a separate test set, the most accurate “traditional” ML approach was a random
forest classifier with an augmented training dataset (accuracy = 80%). For performing the same
classification, the most accurate deep learning approach was a deep CNN that used transfer learn-
ing from a pre-trained model (VGG16). The accuracy of this algorithm was 96%, considerably
higher than the best “traditional” method. A 2021 study45 performed a similar comparison, in
which a deep learning approach incorporating CNN and transfer learning classified burn images
into three categories (superficial dermal, partial thickness, and full thickness) with an accuracy of
87% compared with 82% when an SVM was used.

Over the period from 2019 to 2023, there were also several studies that used “traditional”
(non-deep-learning-based) ML algorithms for burn wound classification.46–52 One such study46

(Fig. 3) used an SVM trained on a subset of the test set to distinguish between burns requiring a
graft versus burns not requiring a graft, with an accuracy of 82%. In a subsequent report,47 this
same group used a kurtosis metric, obtained following the segmentation of color images via

Fig. 3 Workflow of human burn severity classification method using parameters obtained from
color images. Four different parameters (hue, chroma, kurtosis, and skewness) are extracted from
the color images in the CIELAB space. Additionally, the histogram of oriented gradients (Hog)
feature is calculated to provide local information about the shape of the region of the tissue that
was burned. These parameters are employed to train an SVM to classify the severity of the burn.
The combination of L�, a�, and b� parameters shows different types of contrast for different cat-
egories of burns (super dermal, deep dermal, and full thickness). For distinguishing super dermal
burns (which do not require grafting) from the other two categories (which require grafting), 61 out
of 74 burns (82%) were classified correctly (adapted from Ref. 46, with permission).
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simple linear iterative clustering (SLIC), as an input into an SVM for classifying burns as requir-
ing grafting versus not requiring grafting. Using an open-access database (BURNS BIP-US) to
form the training set and test set, the classification accuracy of the SVMwas 89%. Another recent
study48 used a procedure to extract feature vectors (incorporating data related to texture and
color) from different regions of color images to categorize the burns as first degree, second
degree, or third degree in each region with sensitivity and precision >89% for each category
when fourfold cross-validation was used. A recent set of studies49–52 developed burn classifica-
tion ML algorithms for a diverse range of datasets spanning patients with notably different skin
tones. The percentage of studies in the 2019 to 2023 period that used non-deep-learning ML
algorithms was significantly less than the pre-2019 period due to the substantially increased
prevalence of deep learning techniques.

3 Use of ML with Multispectral and Hyperspectral Imaging

3.1 ML and Multispectral Imaging
Studies over the past decade have merged ML approaches with multispectral imaging to
enhance the input datasets used for training the burn classification algorithms. A 2015
report53 used a broadband light source and monochrome camera with a filter wheel in front,
to acquire images in eight wavelength bands with center wavelengths ranging from 420 to
972 nm. The system was used to image burns in male Hanford pigs, and a maximum likelihood
estimation-based algorithm for outlier detection was employed for post-processing.
Subsequently, the remaining dataset (with outliers removed) was input into the KNN and
SVM algorithms for distinguishing between six different types of tissue (healthy, wound bed,
partial injury, full injury, blood, and hyperemia). When a tenfold cross-validation procedure
was used, the overall classification accuracy was 76%. The authors noted a particular challenge
with classifying blood due to the multiple peaks of its absorption spectrum in the wavelength
range imaged. Another recent report54 compared the classification accuracy of eight different
ML algorithms for differentiating among the aforementioned six tissue categories using multi-
spectral imaging data from male Hanford pigs as inputs. Four of the algorithms (linear dis-
criminant analysis, weighted-linear discriminant analysis, quadratic discriminant analysis, and
KNN) had average accuracy values between 68% and 71%, and the other four algorithms (deci-
sion tree, ensemble decision tree, ensemble KNN, and ensemble linear discriminant analysis)
had average accuracy values ranging from 37% to 62%. A more recent clinical study55 (Fig. 4)
used a multispectral imager consisting of a light-emitting diode and a camera with a filter wheel
including filters centered at eight different VIS-NIR wavelength bands (420, 581, 601, 620,
669, 725, 860, and 855 nm). Patients with three different burn categories (superficial partial-
thickness, deep partial-thickness, and full-thickness, as confirmed via biopsy and histopathol-
ogy) were imaged within the first 10 days following injury. The imaging data were used to train
three different CNNs for distinguishing non-healing burns (deep partial-thickness and full-
thickness) from all other tissue types. The most accurate CNN (a Voting Ensemble algorithm)
provided a sensitivity of 80.5% and a PPVof 96.7% for the aforementioned healing versus non-
healing classifications. CNN-based classification was also applied to the subset of burns that
had initially been classified as “indeterminate depth” by clinicians at the time they were
imaged. For this subset, the sensitivity of the ML algorithm was 70.3% and the PPV was
97.1% for correctly classifying the burns into healing versus non-healing categories.

3.2 ML and Hyperspectral Imaging
ML techniques have also recently been used with hyperspectral imaging systems to incorporate
even more robust input datasets into burn classification algorithms. A 2016 study56 (Fig. 5)
used two different cameras (one in the 400 to 1000 nm spectral range and another in the 960 to
2500 nm spectral range) to image burns in Noroc pigs (50%/25%/25% hybrid of Norwegian
Landrace, Yorkshire, and Duroc). Both cameras performed line scans using push-broom tech-
niques. The resulting hyperspectral imaging data were input into an unsupervised algorithm for
performing image segmentation in both the spatial and spectral dimensions. This segmentation
technique was found to compare favorably with K-means segmentation for distinguishing
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different burn severities. A recent case study73 performed hyperspectral (400 to 1000 nm) im-
aging of a human partial thickness burn and used principal component analysis and a spectral
unmixing technique to categorize different types of tissue.

3.3 Combining Multispectral Imaging with Color Image Analysis and
Photoplethysmography

A set of four recent studies58–61 used a combination of (1) multispectral imaging (eight wave-
lengths, ranging from 420 to 855 nm), (2) texture analysis of color image data, and (3) photo-
plethysmography (PPG) for classifying burn wounds. The initial work of this group58,59

demonstrated that inputting data from these three modalities into a quadratic discriminant analy-
sis (QDA) ML algorithm provided an accuracy of 78% for classifying four different tissue types
(deep burn, shallow burn, viable wound bed, and healthy skin) in Hanford pigs. This represented
a dramatic improvement over the classification accuracy obtained using just PPG (45%), a
notable improvement over that obtained with only color image texture analysis parameters
(62%), and a slight improvement over the result from using only multispectral imaging data
(75%). These values of overall accuracy were impacted significantly by the fact that the clas-
sification algorithms typically yielded accuracy values below 50% for classifying shallow burns.
In a follow-up study by the same group,60 the QDA technique (which is supervised) was com-
bined with a k-means clustering algorithm (which is unsupervised) to classify human burn
wounds. The combination of k-means clustering and QDA resulted in an overall mean accuracy
of 74% for distinguishing between viable and non-viable skin compared with 70% when only
QDA was used. An additional report61 incorporated a post-processing procedure using
Mahalanobis distance calculations to help remove outliers, but it only used multispectral and
color images (not PPG). This algorithm provided an accuracy of 66% for classifying non-viable
human tissue compared with 58% when classification was performed without the outlier-removal
routine. Thus, in this study, the omission of PPG data likely contributed to the decreased clas-
sification accuracy.

Fig. 4 Tissue classification results using multispectral imaging data to train CNN. (a) Digital color
images from three burn patients. The patients in Rows 1 and 3 had severe burns; the patient in
Row 2 had a superficial burn. (b) A probability map of burn severity, where purple/blue colors re-
present a low probability of a severe burn and orange/red colors denote a high probability of a
severe burn. The clear-appearing region in the middle of burn (2b) represents a set of pixels with
probability < 0.05 of severe burn. (c) A segmented probability map in which purple pixels denote a
probability of severe burn that exceeds a user-defined threshold. The algorithm performed well at
correctly identifying the two severe burns and distinguishing them from the superficial burn (repro-
duced from Ref. 55, with permission).
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3.4 Multispectral Spatial Frequency Domain Imaging
A recent report by our group57 (Fig. 6) used an emerging technique called multispectral spatial
frequency domain imaging for ML-based burn wound classification in a Yorkshire pig model. In
this study, light with combinations of eight different visible to near-infrared wavelengths (470 to
851 nm) and spatially modulated sinusoidal patterns of five different spatial frequencies (0 to
0.2 mm−1) was used to image different severities of pig burns. The rationale behind using the
spatially modulated light was that the different spatial frequencies are known to have different
mean penetration depths into the tissue, thereby potentially providing more detailed information
about the extent of burn-related tissue damage beneath the surface. Calibrated diffuse reflectance
images from different combinations of the wavelengths and spatial frequencies were then input
into an SVM to classify the severity of the burns. When images from all 40 combinations of the

Fig. 5 Classification of burn severity using hyperspectral imaging data. (a) Notable differences are
seen in the 400 to 600 nm range of the reflectance spectra of more severe burns (Level 4) and less
severe burns (Level 2) in a porcine model. These differences are likely attributable to changes in
the concentration of hemoglobin (which strongly absorbs light in this wavelength regime) due to
different levels of damage to the tissue vasculature. (b) Different burn severities (left column) are
classified using two different segmentation algorithms: a spectral-spatial algorithm (center column)
and a K-means algorithm (right column) (adapted from Ref. 56, with permission).
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five spatial frequencies and eight wavelengths, acquired 1 day post-burn, were used to train the
SVM, burn severity classification (no graft required versus graft required) with an accuracy of
92.5% was obtained for a tenfold cross-validation. For comparison, when only the unstructured
(spatial frequency = 0) images at the eight different wavelengths were used as inputs (to mimic
standard multispectral imaging), the accuracy of the classification algorithm was 88.8% for the
same cross-validation procedure.

4 Use of ML with Other Imaging Techniques

4.1 Optical Coherence Tomography (OCT)
Several studies have used OCT, either alone or in combination with another technology, to mea-
sure data for input into ML burn classification algorithms. A 2014 report62 acquired pulse speckle
imaging (PSI) data along with OCT 1 h post-burn to distinguish full-thickness, partial-thickness,
and superficial burns in a Yorkshire pig model. Using a Naïve Bayes classifier with data from the
combination of these two techniques yielded an area under the receiver operating characteristic
curve (ROC AUC) of 0.86 for accuracy of classifying the three categories of burns, compared
with 0.62 when only OCT data were used and 0.78 when only PSI data were used. A 2019
study74 combined OCT with Raman spectroscopy (using laser excitation at 785 nm) to inform
ML-based classification of full-thickness, partial-thickness, and superficial partial-thickness por-
cine burns ex vivo. Parameters from Raman spectroscopy measured data related to tissue bio-
chemical composition, specifically, the NCαC/CC proline ring ratio (943∕971 cm−1), CH

Fig. 6 ML-based classification of burn severity in a preclinical model using multispectral spatial
frequency domain imaging (SFDI) data. (a) A commercial device (Modulim Reflect RS™) projected
patterns of light with different wavelengths and spatially modulated (sinusoidal) patterns onto a
porcine burn model and detected the backscattered light using a camera. (b) The backscattered
images at the different spatial frequencies were demodulated and calibrated to obtain reflectance
maps at each wavelength. The relationship between reflectance and spatial frequency was differ-
ent at the different wavelengths (e.g., 471 nm versus 851 nm, as shown here). (c) The reflectance
data at each wavelength were used to train an SVM to distinguish between four different types of
tissue (unburned skin, hyper-perfused periphery, burns that did not require grafting, and burns that
required grafting). The ML algorithm reliably distinguished more severe burns (originating from
longer thermal contact times) from less severe burns. When using a tenfold cross-validation pro-
cedure, the overall diagnostic accuracy of the method was 92.5% (adapted from Ref. 57, with
permission).
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bending/Amide III ratio (1300∕1268 cm−1), and CH2 bending/Amide ICO stretch ratio
(1450∕1660 cm−1). Parameters from OCT provided data about the tissue structure. The combi-
nation of OCT and Raman spectroscopy data resulted in an ROC AUC of 0.94 for classifying the
three different types of burns. A recent study on human skin in vivo63 used parameters measured
with polarization sensitive OCT (phase information, in addition to A and B scans) for a multi-
level ensemble classification technique, distinguishing burns with an accuracy of 93%. An addi-
tional human study64 performed feature extraction from OCT data and input eight extracted fea-
tures into a linear classifier based on an ML algorithm to distinguish margins of surgically
resected burn tissue from healthy surrounding tissue. For a training set of 34 tissue samples and
a test set of 22 tissue samples, the sensitivity and specificity of the classification algorithm were
92% and 90%, respectively.

4.2 Ultrasound
Within the past several years, the use of ML burn classification algorithms based on ultrasound
data has also been shown. A 2020 report65 performed texture analysis of ultrasound images from
porcine tissue ex vivo. The resulting data was used to train an algorithm for distinguishing
between four different burn severities, using a combination of kernel Fisher discriminant analysis
and an SVM. This technique provided 93% accuracy for classifying four different burn duration/
temperature combinations meant to correspond to superficial-partial thickness, deep partial-
thickness, light full-thickness, and deep full-thickness burns. A subsequent porcine study, involv-
ing ex vivo and postmortem in situ skin,66 employed a deep CNN with an encoder–decoder net-
work, using ultrasound data (B-mode) as inputs, to distinguish between the four aforementioned
burn categories with an accuracy of 99%.

4.3 Thermal Imaging
Recent literature has also included the incorporation of thermal imaging data in the infrared
wavelength regime into ML algorithms to help classify burn severity. A 2016 study67 used
data from color images and thermal images in tandem to inform an ML-based classification
algorithm that combined multiple techniques, including pattern recognition routines and
CNNs. A 2018 report68 used thermography with a commercial infrared camera (T400, FLIR
System, Wilsonville, OR) to determine the difference in temperature between burns of different
treatment groups (amputation, skin graft, and re-epithelialization without grafting) for patients
within several days post-burn. An ML algorithm using a random forest technique was developed
to predict the burn treatment group (amputation, skin graft, and re-epithelialization) using this
temperature data, yielding an accuracy of 85%.

4.4 Blood Flow Imaging
Blood flow measurements using coherent light-based techniques (Laser Speckle Imaging, Laser
Doppler Imaging) have frequently been employed to identify signatures of burn severity.75–81

Recent research has begun to incorporate data from such measurements into ML algorithms
to classify the severity of burns. A recent study69 used Laser Speckle Imaging data from a
Yorkshire pig burn model as inputs into a CNN to categorize burn depth and predict whether
a graft would fail. The algorithm provided accuracies of over 93% for both of these
classifications.

4.5 Terahertz Imaging
Terahertz (THz) imaging is of interest in a burn severity classification context because, in theory,
THz imaging enables wound visualization through gauze bandages. Recent studies have used
THz imaging systems as inputs into ML algorithms to diagnose burn severity. Khani et al. and
Osman et al.70,71 used a portable time-domain THz scanner to measure three different severities of
burns (full thickness, deep partial thickness, and superficial partial thickness) in female
Yorkshire70 and female Landrace71 porcine models. When the THz imaging data were employed
to train ML-based classification, the area under the ROC curves for distinguishing between these
burn categories ranged from 0.86 to 0.93. In a subsequent study, Khani et al.72 used Debye
parameters from THz imaging to assess the permittivity of burns in a Landrace pig model,
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potentially providing a simplified methodology for training ML-based procedures for classifying
burn severity.

5 Discussion and Conclusions

5.1 Summary of Literature to Date, and Current Limitations
Table 1 summarizes the methodologies, classifiers, validation methods, and classification accu-
racies of the ML methods trained on the imaging modalities described in this review. Over half of
these studies used conventional digital color images as inputs to the ML algorithms. A box plot
illustrating the distribution of the accuracies of color image-based ML algorithms using “tradi-
tional” (non-deep-learning based) ML methods and deep learning approaches is provided in
Fig. 7. It is important to note the wide range of reported classification accuracies reported in
these studies. The initial purpose of this review was to provide a quantitative comparison between
the accuracy of ML algorithms for burn classification using different tissue imaging modalities.
However, upon review of the literature, it became clear that the large number of additional var-
iables that are different between the studies make it extremely difficult to objectively identify the
most accurate technique(s). These covariates include differences in the preclinical models or
patient populations studied; the sizes of the datasets used for training; the specific ML classifiers
employed; the training, validation, and testing procedures utilized; and the number and complex-
ity of categories used for classification. Table 1 summarizes several of these covariates, but more
work is needed to quantify, in a statistically rigorous manner, the specific effects of each of these
different covariates on the reported classification accuracies of the ML algorithms. The rate of
growth of this literature and the expansion of different techniques used for obtaining input data to
train ML classifiers are depicted in Fig. 1. As the literature in this area continues to expand, it will
become even more critical to perform rigorous meta-analyses of the reported results to determine
which aspects of the algorithms are most crucial for enabling optimal classification accuracy. For
example, the recent trend toward increased use of deep learning approaches appears promising
for improving the accuracy of burn wound severity classification, but this hypothesis must be
confirmed more rigorously across a wider range of datasets of varying degrees of diversity and
complexity.

Fig. 7 Box plots showing the means, standard deviations, and distributions of reported accuracy
values from burn wound classification studies using (a) “traditional” (non-deep learning) ML algo-
rithms and (b) deep learning ML algorithms with digital color images as inputs. Classification
results from 15 different “traditional” ML algorithms and 12 different deep learning algorithms were
used; the data are from Refs. 19–26, 28, 30, 32, 33, 36, 37, 41–43, and 45–47. Several studies
comparing multiple ML algorithms21,23,26,33,37,43,45 provided multiple data points that were included
in these box plots. Overall, the deep learning algorithms trended toward higher mean accuracy,
and the five highest accuracy values were all from deep learning algorithms. However, the deep
learning algorithms still had a wide range of reported accuracy values, likely due to the substantial
presence of other factors that differed between the studies (e.g., size and composition of dataset;
training, validation, and testing procedures; type of ML algorithm employed; types of data pre-
processing; and categories used for classification).
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Furthermore, data from additional emerging technologies such as photoacoustic imaging82,83

may be of significant use for training ML-based burn classification algorithms, motivating addi-
tional comparisons with existing literature to assess the effectiveness of these new approaches
relative to previously employed imaging modalities. In addition to the potential emergence of
new data modalities to provide inputs to ML burn classification algorithms, expanded sets of
parameters measured via technologies described in this report may also enhance the input data
used for training such algorithms. One example of this possibility is the use of multispectral SFDI
(described in Sec. 3.4) to obtain information about the water content of burns with different
severities, as an additional input into the ML-based classification procedure. For instance, our
group has previously used SFDI to show that water content (denoting edema) can be significantly
greater in deep partial-thickness burns than in superficial partial-thickness burns.84 This finding is
a potentially important inroad into addressing the ongoing clinical need for techniques to more
accurately distinguish between these two types of burns, which can appear very similar visually
but require very different medical treatment protocols to facilitate healing.

In addition to the need to systematically assess the effects of different components of the ML
algorithms on the resulting accuracy, it is also crucial to make sure that the training of the ML
classifier is optimal for clinical translation. Multiple studies cited in this report clearly illustrated
that certain burn categories were more difficult to accurately classify than others. Potential rea-
sons for this challenge may include biophysical variations between the tissues within a given
category or the possibility that certain tissue sites could contain a mixture of different burn cat-
egories (e.g., superficial partial thickness and deep partial thickness burn regions) within the
same imaged area and sampled tissue volume. Training ML algorithms that are robust in the
presence of this level of physiological realism should be prioritized in future studies to facilitate
appropriate clinical translation. Establishing clear consensus definitions of each category or one
classification system can allow for a better comparison between algorithms and techniques. Also,
in clinical settings, it can be a major challenge to obtain enough imaging data from tissue that can
unequivocally be classified into each of the “ground-truth” burn severity categories needed to
train the ML algorithms. In preclinical studies, the variation in physiology between the different
porcine models provides another potential confounding variable that makes direct comparison
between studies difficult and may have implications for the effective clinical translation of
classifiers.

The “ground-truth” diagnostic information used for training ML-based burn wound classi-
fication algorithms is typically provided by clinical observation. It is important to note that, in
some cases, the clinical impression itself may not be accurate, especially at time points soon after
the creation of the burn. Previous studies have reported that clinical observation can, in some
cases, only be accurate for classifying ∼50% to 80% of burn wounds.13–16 Certain critical dis-
tinctions (e.g., distinguishing superficial partial-thickness burns, which will heal without skin
grafting, from deep partial-thickness burns, which require grafting) can be particularly challeng-
ing for clinicians to make promptly and accurately via observation alone.15 A recent multi-center
initiative85 used histology data to train an algorithm for distinguishing between four different
burn severities. This algorithm was applied to a dataset of 66 patients (117 burns, 816 biopsies),
and following histopathological examination, it was found that 20% of the burns had been mis-
classified as severe enough to need grafting. These limitations of current clinical practice provide
clear motivation for the development of ML-based classification algorithms but also introduce
difficulty in accurately training and validating the algorithms. Furthermore, in many of the
reported studies, there was not a clear description of the exact type of “clinical impression” that
was used for the “ground-truth” diagnosis/prognosis when training the algorithms. Among the
studies that did describe the clinical impression process in more detail, there was notable varia-
tion in the time points used for clinical assessment. This absence of a consistent gold standard
across studies introduced a further confounding variable that made it difficult to quantitatively
compare the accuracies provided by the different imaging modalities.

5.2 Conclusions
In this report, we have assembled a comprehensive summary of the literature to date that has used
imaging technology to inform ML algorithms to identify burn wounds and classify their severity.
Numerous studies indicate that these approaches hold significant promise for helping to inform
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prompt and accurate clinical decisions as to whether surgical treatment (i.e., grafting) of a burn
wound is necessary to enable proper recovery. However, the literature to date is quite disparate,
consisting of numerous different combinations of tissue segmentation/tissue classifications, im-
aging technologies, ML classifiers, and methods for training and validating the algorithms. This
wide variance in the literature with respect to multiple different independent variables currently
makes it extremely difficult to perform rigorous, systematic, quantitative comparisons between
the accuracy of different methodologies with respect to a single independent variable (e.g., im-
aging modality or ML classifier used). Therefore, to facilitate the optimal translation of these
technologies to a wide range of clinical settings, it is crucial for future studies to emphasize the
advantages and limitations of their methodologies relative to other reported approaches, with the
long-term goal of developing a standardized methodology throughout the field. Incorporation of
the most informative of these techniques in a user-friendly and real-time interface is essential for
clinical adoption, which would ideally be employed in the operating room.
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