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ABSTRACT. Significance: Glaucoma, a leading cause of global blindness, disproportionately
affects low-income regions due to expensive diagnostic methods. Affordable
intraocular pressure (IOP) measurement is crucial for early detection, especially
in low- and middle-income countries.

Aim: We developed a remote photonic IOP biomonitoring method by deep learning
of the speckle patterns reflected from an eye sclera stimulated by a sound source.
We aimed to achieve precise IOP measurements.

Approach: IOP was artificially raised in 24 pig eyeballs, considered similar to
human eyes, to apply our biomonitoring method. By deep learning of the speckle
pattern videos, we analyzed the data for accurate IOP determination.

Results: Our method demonstrated the possibility of high-precision IOP measure-
ments. Deep learning effectively analyzed the speckle patterns, enabling accurate
IOP determination, with the potential for global use.

Conclusions: The novel, affordable, and accurate remote photonic IOP biomoni-
toring method for glaucoma diagnosis, tested on pig eyes, shows promising results.
Leveraging deep learning and speckle pattern analysis, together with the develop-
ment of a prototype for human eyes testing, could enhance diagnosis and manage-
ment, particularly in resource-constrained settings worldwide.
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1 Introduction
Glaucoma is a chronic and progressive eye disease leading to damage of the optic nerve and
blindness. It comes in a variety of forms. Of these, open-angle glaucoma (OAG), normal tension
glaucoma, angle-closure glaucoma, pigmentary glaucoma, and trauma-related glaucoma are the
most prevalent.1–6 Ongoing research aims to gain a more comprehensive understanding of the
distinction between normal tension glaucoma under normal intraocular pressure (IOP) and ocular
hypertension without causing the illness. This research delves into various aspects, including
diurnal tension variations, progression comparisons between untreated patients with normal-
tension glaucoma and those with therapeutically reduced IOPs, and circadian IOP patterns in
healthy subjects and glaucoma patients. These investigations are vital for advancing our knowl-
edge of the complex dynamics of IOP and its role in glaucoma pathogenesis.4–6
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IOP exhibits dynamic physiologic fluctuations with both regular circadian rhythms and
random variations occurring over short and extended periods. These fluctuations are influenced
by the subject’s muscular tone and physiologic state.1,3–5,7–9 Therefore, ensuring reliable IOP
monitoring is of paramount importance in the clinical management of glaucoma. Despite the
crucial role of IOP in guiding decisions related to glaucoma, contemporary glaucoma monitor-
ing primarily relies on frequent IOP assessments during office hours. However, this approach
often provides limited diagnostic adequacy, primarily due to the inherent fluctuating nature of
IOP.3,10

Goldmann applanation tonometry (GAT) is the most frequently used ophthalmic tool for
measuring IOP.11–13 Although GAT is precise, it is influenced by inner-individual variances,
owing to differences in corneal thickness and stiffness.13 The method is intrusive and necessitates
the administration of anesthetic eye drops, limiting IOP monitoring over time. Corneal biochemi-
cal characteristics impacting the accuracy of the applanation tonometry. The ocular response
analyzer (ORA) allows for the IOP adjustment by considering the biomechanical parameters
of the cornea.12–15 By directing an ultrasonic wave to the surface of an eye, researchers have
been able to evaluate biological pulses, blood flow,16 and resonance modes of the eye cornea
under a sound wave stimulation.17 Even though such procedures employ sound-driven technol-
ogy to measure the physical properties of the eyes, no association with IOP has been found.10,18

An alternative method of IOP measurement is based on the air puff tonometer, which evaluates
IOP based on the resistance of the eye to the air puff.19 However, for several reasons, the method
is not suitable for obtaining full IOP profiles over long periods. First, air puff measurements can
be affected by several external factors, such as the patient’s eye position and movements and
eyelid position, leading to an increased variability in IOP measurements. Second, the air puff
method may not be suitable for assessing diurnal IOP variation, which is important for glaucoma
diagnosis and treatment. To obtain a full IOP profile, multiple measurements are required over an
extended period, which can be time-consuming and inconvenient for both the patient and the
healthcare provider. Also, repeated use of the air puff can cause dryness and irritation of the
eyes, leading to discomfort and reduced accuracy of the readings.

The above constraint has triggered the need for devising novel ways for continuous IOP
monitoring. Several reported examples include implantable telemetric pressure transducers,20–23

sensing contact lenses,6,24–28 implantable microfluidic devices,29 ocular telemetry sensors,30 and
optical devices.31–34

One laser-based system35 demonstrated the capacity to remotely recognize speech signals,35

heart beats,35 blood pulse pressure,36,37 blood oxygen saturation,38 and sensations.39,40 One
method35 measures the speckle in the far field using a defocused camera to extract several
bio-medical data from their dynamic. In this process, the tilting motion is transformed into a
linear movement of the speckle patterns, which may be readily retrieved using correlation-based
operations:
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where ðx; yÞ are the coordinates of the transversal plane, the axial axis is denoted by Z, λ is the
optical wavelength, ϕ is the random phase created by surface roughness, and Z1 is the distance
between the object and plane captured by imaging system, with the intensity of the obtained
speckle image being
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where h is the spatial impulse response, M is the inverse of the magnification of the imaging
system, and ðxs; ysÞ is the sensor plane coordinate set.

A prior method involved remote IOP evaluation using the speckle pattern analyses of sound
wave-stimulated fisheye records.41 The method evaluates IOP by analyzing the damping factor of
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the free sclera oscillations.41 However, the mistake of the IOP measurement in the range 15 to
25 mm Hg could reach 5 mm Hg.

We propose remote photonic IOP biomonitoring based on temporally encoded external
sound wave stimulation, which does not require direct contact with the eye and is inexpensive
to build. The suggested configuration includes projecting a laser beam onto the eye sclera stimu-
lated by a sound wave, recording the secondary speckle patterns with a fast-imaging camera, and
subsequent data processing using AI methods. To effectively reduce and manage background
noise from the recorded signal, we developed a deep learning-driven IOP measurement model.
This model enables in-depth analysis of the recorded signal, taking into consideration not only
the free oscillations of the eye sclera but also the forced oscillations induced by periodic
stimulation.

The method was successfully tested on 24 pig eyeball samples, given their similarity to the
human eye.42,43 The tests were conducted by artificial variation of IOP. The method demonstrated
a possibility for detecting changes in IOP. This approach does not necessitate preliminary
calibration to verify the precision of the measurement devices and shows that the technique may
be applied without extensive preparation or the specialist knowledge.

2 Materials and Methods

2.1 IOP Biomonitoring System Design
The pig eye has become a popular research model due to the ethical and financial constraints
involved in employing eyes of other species.42,43 Pig eyes are very similar to human eyes, having
holangiotic retinal vasculature, no tapetum, cone photoreceptors in the outer retina, and similar
scleral thickness.44

The 24 tested pig eyeballs were acquired from a local distributor within less than 2 h
postmortem, and the experiments were performed within 8 h following delivery. To preserve
biological tissues by preventing further decay and degradation, the eyeballs were fixed with
4% paraformaldehyde in 0.1 M phosphate buffer saline (PBS, pH 7.4) for 4 h at 4°C, subsequent
to which the retinas were removed and flat-mounted with the retinal ganglion cell layer upper-
most. Then, the eyes were cover-slipped with PBS/glycerin (1:1). It is essential to note that,
during the actual sampling and testing phases, we used clean eyeballs without any barriers
or cover-slips. This approach allowed for maintaining the integrity of the eyeballs while ensuring
no obstructions or barriers during data collection.

The optically based monitoring device was positioned at a distance of 35 cm from the tested
pig eyeball; see Fig. 1. Because speckle diffraction occurs over a wide angle,35 no constraints
concerning the position of the fast-imaging camera exist.

Fig. 1 IOP biomonitoring system setup, simulation, and preprocessing.
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We utilized a 532 nm continuous-wave (CW) green laser with a maximum power output of
300 mW (Model PPGL-2100F CW 300 mW max). The laser was carefully positioned directly
opposite the illuminated eyeball, as shown in Fig. 1. The laser beam covered a 3 mm diameter
area and was fixed at a selected location on the sclera adjacent to the pupil. It is noteworthy that
the applied laser power of 750 μW falls within the safe range for human eyes, ensuring the safety
of our experimental setup.45

For the recording of speckle patterns reflected from an eye sclera, we employed a Basler ace
acA1300-200um digital camera configured to capture frames at a rate of 1000 frames per second
(FPS). The camera was set with a spatial resolution of 64 × 64 pixels, with a focal length of
55 mm, and an F-number of 2.8, using a Basler C23-5026-2M-S f50mm lens. We maintained
the camera’s focus on a far field, inducing defocusing of the sclera and the speckle pattern. The
frame exposure used for speckle patterns recording was 200 μs. The defocusing technique
caused the speckle pattern to move solely in the transversal plane.

To stimulate the sclera, we employed a loudspeaker (Pioneer, Ts-G1615R) set for the exci-
tation frequency of 390 Hz@105 dB.41 The speaker was found to be highly responsive after a
sweep of frequencies between 130 and 1000 Hz. An arbitrary waveform function generator
(Tektronix, AFG3022B) controlled the speaker, as shown in Fig. 1. For each recording, the sound
wave agitated a pig eye by 26 consecutive cycles, each cycle comprising one second of stimu-
lation followed by 1 s of a break. The frame rate of the digital camera was more than twice the
stimulation frequency to meet the Nyquist ratio requirements. Each frame of the camera output
contained a secondary speckle pattern.

The eye pressure was actively controlled using a water filled transparent burette connected to
a pig eye by an injection needle. The water column pressure was expressed in mm Hg with a
1 mm resolution. Each 1 mm Hg was considered equivalent to a 13.2 mm water column. The
normal human eye pressure falls within the range of 10 to 21 mm Hg.46 Each eye was tested with
a single needle penetration, and the IOP was adjusted at intervals of 1 mm Hg within the range of
10 to 21 mm Hg to ensure high accuracy within the normative pressure range. For pressures
exceeding 21 mm Hg, testing was conducted with 2 mm Hg intervals. The maximum IOP value
was defined at 45 mm Hg. Each tested eye was rejected after one day of complete testing under
singular needle penetration.

2.2 Data Processing
The tests were conducted on separate days upon receipt of the samples, and each pig eyeball was
tested in one continuous session. The dataset comprised ∼20million frames captured from 24 pig
eyes, each contributing ∼15 distinct videos with varying IOP ranges. Each video lasted 52 s
(equivalent to 52,000 frames at 1000 FPS). Each video frame comprised a two-dimensional array
with a spatial resolution of 64 × 64 pixels. Notably, for each test sample, corresponding to a
specific eyeball and IOP range, we had at least one video with the same setup. Each pig eyeball
video was given a unique identification containing the duration of the measurement and the IOP
reference value.40

The videos from different recording days were initially combined to form an overall dataset.
From this dataset, we meticulously created distinct subsets for training and testing purposes.39

During the subdivision, we ensured that frames from the same eyeball were exclusively assigned
to either the training or test set, maintaining the separation to avoid any mixing or leakage of data
between the two sets. By following this approach, we aimed to include data from all tested eye-
balls in the analysis, while upholding the appropriate evaluation protocols, with a train-test split
ratio of 80:20, ensuring a substantial portion of data for robust testing and evaluation.

IOP classification was divided into two testing components. The first component, the generic
remote IOP classification, determined IOP in a discrete manner, requiring no calibration or prior
knowledge about the tested eye. The main goal of this component was to identify abnormal IOP
levels for further examination. The classification system subdivided the input signal into one
of three possible classes with a range of 12 mm Hg. The first class was the normal range of
10 to 21 mm Hg. The second class, representing high IOP, encompassed the range of 22 to
33 mm Hg. The third class, representing extremely high IOP, covered the range of 34 to
45 mm Hg. A combined data sample of the three IOP ranges is shown in Fig. 1. It can be observed
that the signal contains two visible components that affect the setup: a short period around
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2 to 3 ms corresponding to the agitation frequency of 390 Hz and a prolong period around 75 Hz,
corresponding to the frequency of 13 Hz, related to the frequency coming from the driver
of the laser. The mentioned frequencies are dominating on the graphs related to the three ranges
of IOP.

The second component determined the IOP of each tested eye with an accuracy level of
1 mm Hg, utilizing prior calibration, which involved establishing a calibration model using data
from previous tests. The process involves training a model for each eye. To prove the feasibility
of the method, we focused on the normal IOP range of 10 to 21 mm Hg. A set of IOP sensitivity
techniques was defined so that each successive technique improved the accuracy over its pre-
decessor. The first technique was a binary classification task that classified two IOP ranges: 10 to
15 mm Hg and 16 to 21 mmHg, each having a 6 mm Hg range. The second technique was able to
classify three different IOP ranges: 10 to 13, 14 to 17, and 18 to 21 mm Hg. The third technique
was able to classify the exact measured IOP level with a deviation range of 1 mm. Each model
was tested for each eyeball and compared with all tested eyeballs.

The generic and individual components of IOP monitoring allowed for the design of an
IOP classification system that is accurate, permitting rapid identification of both abnormal and
normal IOP.

To classify the IOP, each video, containing 52,000 frames, underwent pre-processing for
frame correlation extraction (Fig. 1). For every two consecutive frames, the correlation was
calculated using a full discrete two-dimensional linear cross-correlation19 with symmetrical
boundary conditions, representing the shift between the two frames. To normalize this correlation
signal, the Manhattan norm19 was applied using the following equation:

EQ-TARGET;temp:intralink-;e003;117;472norm ¼
Xn
i¼1

jdiffði;iþ1Þj; (3)

where diff represents the correlation between two consecutive frames and “label” corresponds to
the sample i. The Manhattan norm, as expressed in Eq. (3), sums the absolute differences
between consecutive frame correlations. As part of the output, a one-dimensional (1D) array
was created by pre-processing all frames of each recorded video.

A quantitative assessment and comparison of our proposed method used the metrics shown
in Eqs. (5)–(8), where TP is the true positive, TN is the true negative, FP is the false positive, and
FN is the false negative, which are calculated on a per-frame basis by the logical operators given
in Eq. (4):
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The tuple ðxi; yiÞ is the model prediction and the label for sample i.
It is essential to emphasize that all experiments were conducted in strict adherence to

established guidelines and regulations. Our experimental setup remained completely safe for
biological tissues.
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2.3 Deep Learning for IOP Classification
The model’s input data for IOP classification are a 1D array, which is essentially a vector
containing cross-correlation of the recorded consecutive video frames. These data were used
to train a four-layer convolutional neural network (CNN) model for IOP classification, as shown
in Fig. 2(a). The data were divided into training and testing sets, as explained in the previous
section. The model was then applied separately to each of the three techniques for IOP
classification.

The model output was specific to each technique, so we trained separate models for each
technique. Each model was independently trained to output data according to its corresponding
technique. The first three layers within the CNN model were a combination of 1D convolution,47

batch normalization,48 and rectified linear unit (ReLU),49 followed by a global average pooling
operation.50,51 The last layer was a regular densely connected neural network (NN) layer with a
Softmax activation function.52 The kernel size of each 1D convolutional layer was 3, with the
corresponding 64 filters. The network output, representing the IOP classification resolution,
depended on the specific IOP sensitivity technique. The loss function was categorical cross
entropy:53

EQ-TARGET;temp:intralink-;e009;114;544LCE ¼ −
Xn
i¼1

ti logðpiÞ; for n classes; (9)

where ti is the truth label and pi is the Softmax probability for the i’th class.
For the training, the loss function was minimized by the Adam optimizer54 with β1 ¼ 0.9,

β2 ¼ 0.999, and initial learning rate = 0.001. Using the reduced learning-rate on Plateau
callback,55 we reduced the learning rate when the validation loss stopped improving. This deep

Fig. 2 CNN model architecture and feature extraction sample. (a) CNN model architecture.
The behavior of our model’s decision-making process could be clarified by extracting our trained
convolutional layer filters and displaying them on a new input signal. (b) The input signal had a
duration of 25,000 ms and was normalized to represent 26 consecutive cycles in the 0 to 1 range.
Furthermore, our trained 64 convolutional layer filters constituted the CNN’s final convolutional
layer, with the amplitude expressing the decision’s confidence level, with 1 being highest and
0 being lowest. Filters with amplitudes less than 0.8 were used after filtering layers. (c) When the
eyeball started or stopped reacting to the external stimulation sound signal, the CNN classified the
IOP level. Every increment in the IOP level induced alterations in ocular weight, volume, and
geometry, thereby exerting a consequential influence on the configuration, orientation, and velocity
of ocular motion, each of which was modulated by the auditory signal. From this physiological
explanation, it is possible to conclude that the IOP level can be determined by remotely sensing
nano-vibrations of an eye caused by an external sound stimulation.
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learning procedure was implemented with a batch size of 32 for 500 epochs on a single 1080Ti
graphics processing unit using a TensorFlow 2 package.

2.4 Comparison Between the Remote Photonic Validation and the Prior (Q)
Factor Method

The prior method for IOP evaluation utilized the damping (Q) factor of the transitional free
oscillations of the eye sclera surface following the termination of the stimulation by a temporally
encoded sound wave.19 The obtained data were analyzed by the common statistical methods
previously tested on artificial eyes and fisheyes.

To further validate the efficacy of the presented approach, we conducted experiments using a
set of 24 pig eyes. Pig eyes were chosen as a suitable animal model for glaucoma research due to
their similarities to human eyes under chronically increased IOP conditions. In addition, pig eyes
are more accessible than nonhuman primate eyes.19

The presented approach does not require preliminary calibration for improved measurement
precision. Using deep learning, we classified different IOP ranges accurately, without the knowl-
edge of a specific IOP level.

Furthermore, although the prior method only analyzes the damping part of the free sclera
oscillation, the presented method analyzes the entire signal, incorporating both the free and
forced oscillation components. By considering the entire signal, we extract more comprehensive
and robust data, leading to enhanced accuracy in the classification rate, using deep learning.

The presented novel method eliminates the need for preliminary calibration by incorporating
the complete signal analysis. This technical improvement enhances the accuracy and reliability of
the classification process, making the presented method a promising approach for noninvasive
IOP monitoring.

3 Experimental Results

3.1 Results of the Generic IOP Classification
Generic remote IOP classification does not require any prior knowledge, and the model predicts
the IOP accurately. Classification of the speckle patterns and their association with a specific
IOP level was carried out using CNN. The results of the evaluation on an independent test set,
to which the model was never exposed during training or validation, are given in Table 1,

Table 1 Generic and individual components of IOP monitoring model classification results.

Method
IOP range
(mm Hg)

Precision
(%)

Recall
(%)

F1
(%)

Accuracy
(%)

Generic photonic IOP
classification (without
calibration or prior knowledge)

10 to 21 98 97 97 91
22 to 33 81 84 82

34 to 45 72 70 71

Individual eye IOP
classification

5 mm Hg IOP
range

10 to 15 85 74 79 80
16 to 21 77 87 81

3 mm Hg IOP
range

10 to 13 87 82 84 83
14 to 17 78 76 76

18 to 21 85 91 87

1 mm Hg IOP
range

10 to 11 82 79 80 70
12 to 13 64 69 65

14 to 15 66 58 60

16 to 17 63 55 55

18 to 19 69 76 70

20 to 21 86 78 79
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demonstrating that our model achieved an accuracy of 91%. In Fig. 3(a), we present a confusion
matrix to elucidate the performance of our trained generic model. This matrix is based on a
100-ms data sample of pre-processed pig eye speckle pattern displacement, employed here
as an illustrative example. It is imperative to underscore that our experimental protocol entailed
the utilization of a complete 25,000-ms duration of the input signal, encompassing 26 consecu-
tive data cycles. The depicted confusion matrix shows compelling insights into the IOP detection
performance. Specifically, for a single test sample within the normal IOP range, we observed a
remarkably high accuracy of 97%, accompanied by a notably low error rate. Moreover, the model
demonstrates commendable success rates in identifying elevated IOP ranges, achieving accura-
cies of 84% for the 22 to 33 mm Hg range and 70% for the 34 to 45 mm Hg range, with the
majority of errors confined to the range between 84% and 97%. Figure 3(a) also contains a
graphical representation of these findings, with each IOP range visually differentiated by a
distinct color. Table 1 reveals that, within the normal IOP range, the amplitude variations con-
sistently exhibit smaller magnitudes in comparison with the two high IOP ranges. This amplitude
represents the filter’s characteristics, reflecting the confidence level of the IOP classification
decision. The observed variance in amplitudes across different IOP ranges indicates that our
definition of the IOP classification problem is accurate and supports the feasibility of the pro-
posed method. Instead of providing specific measurements of the amplitudes, our algorithm uti-
lizes CNN to analyze and identify the differences in amplitudes corresponding to the IOP ranges.
These variations in amplitudes are indicative of the physiological changes occurring in the eye as
the IOP level varies. By leveraging the power of the CNN, our method effectively captures and
utilizes this information to accurately classify IOP levels. This reinforces the soundness and
validity of our approach in addressing the IOP classification problem.

The generic method, which classifies pig eyeballs without calibration or prior knowledge,
attains an accuracy of 91%, while maintaining a high recall of 97% and high precision of 98% in
the normal IOP range classification task. The individual eye component is divided into three IOP
sensitivity ranges: 5, 3, and 1 mm Hg. The 5 mm Hg range attains an accuracy of 80% while
maintaining a high recall of 87% for the 16 to 21 mm Hg range and 85% precision for the 10 to
15 mm Hg range. The 3 mm Hg range attains an accuracy of 83% while maintaining a high
precision of 87% for the 10 to 13 mm Hg range and 91% recall for the 18 to 21 mm Hg range.

Fig. 3 Confusion matrices and data sample plot of IOP trained models. (a) Confusion matrix of the
generic model and a 100-ms pre-processed speckle pattern signal from all eyes. The average IOP
range detection is 97% with a low error rate. High IOP ranges are identified at 84% (22 to 33 mm
Hg) and 70% (34 to 45 mm Hg) with errors primarily occurring between these ranges. In addition, a
data sample plot is provided to visually represent the input signal. (b) Confusion matrices of the
three IOP classification tasks on a single eye. The presence of errors in close IOP ranges indicates
successful learning. Specifically, in the 1 mmHg IOP range variation, errors predominantly occur in
the middle ranges and have relatively low values.
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The 1 mmHg range attains an accuracy of 70%while maintaining a high precision of 82% for the
10 to 11 mm Hg range and 86% precision for the 20 to 21 mm Hg range.

3.2 IOP Classification for a Particular Pig Eye
Utilizing calibration and prior knowledge of the specific eye, our classification technique
uniquely identifies each eye, enabling a more accurate estimation of IOP with a higher precision
compared with the generic IOP classification method. The measurement procedures involve clas-
sifying IOP sensitivity into three categories: 5, 3, and 1 mm Hg. Table 1 presents the average
measurement metrics for all IOP ranges in the 24 tested eyes, including precision, recall, and
accuracy.

For the 5 mm Hg measurement step, two classes were considered: 10 to 15 and 16 to 21 mm
Hg, achieving an accuracy of ∼80% in identifying IOP for each class. The second IOP classi-
fication, with a 3 mm Hg step, resulted in an accuracy of 83%. Notably, Table 1 highlights that
the highest measurement metric values are observed at the edges of the IOP ranges, such as 10 to
13 mm Hg with an F1 score of 84% and under 18 to 21 mm Hg with an F1 score of 87%. These
findings align with the classification under the 1 mm Hg IOP step. Specifically, within the 10 to
11 mm Hg IOP range, the model achieved a precision of 82%, whereas for the 20 to 21 mm Hg
IOP range, precision reached 86%.

In Fig. 3(b), we present the confusion matrices for the three specific IOP classification tasks.
These matrices show the insights of the model’s performance, which reveal a distinct pattern.
Notably, the model tends to make errors primarily within close proximity to IOP ranges rather
than evenly distributed across all possible IOP values. This pattern signifies the model’s effective
learning process. Moreover, when examining the confusion matrix for the 1 mm Hg IOP step
variation, we observe that the highest error rate occurs within the mid-range of IOP values rather
than at the extremes. Remarkably, these errors exhibit relatively low values, further character-
izing the model’s behavior concerning fine-grained IOP variations.

3.3 Explanation of IOP Classification Model Results
The CNNmodels utilized in this study were optimized during the training process, leveraging the
advantages of 1D convolutional layers. These layers, known for their weight sharing, sparsity of
the connection capabilities, and parameter efficiency, were found to be beneficial for the IOP
classification tasks. A key advantage of the convolutional layers is the ability to extract relevant
features. Figure 2(a) demonstrates this by visualizing the trained convolutional layer filters
applied to a new input signal, providing insights into the decision-making process of the model.

To provide further details, the input signal used in our experiments had a duration of
25,000 ms and was normalized within the range of (0, 1) to represent 26 consecutive cycles,
as shown in Fig. 2(b), which also displays the 64 convolutional layer filters that constitute the
final convolutional layer of the CNN. Each filter’s amplitude reflects the confidence level of the
decision, with a value of 1 indicating the highest degree of confidence and 0 indicating the lowest.

Figure 2(c) demonstrates the classification behavior of the proposed CNN when the eyeball
exhibits a response or ceases to respond to the sound of the external stimulation signal, char-
acterized by a periodic vibratory profile. These responses are associated with different IOP levels.
It is important to note that each IOP level corresponds to variations in the eye’s weight, volume,
and geometry, which directly influence its shape, direction, and speed of movement, all affected
by the agitating sound wave. From a physiological perspective, it is reasonable to conclude that,
by remotely sensing the induced micro-vibrations of an eye, the IOP level can be determined
accurately.

The amplitude variations in Fig. 2(b) reflect the model’s confidence level in its decision-
making process, and Fig. 2(c) demonstrates the CNN’s classification behavior based on the
eyeball’s responses to sound stimulation, associated with different IOP levels and their physio-
logical influences on eye movements.

4 Discussion
We developed and demonstrated a low-cost, remote photonic IOP biomonitoring method that
addresses the limitations of current IOP measurement techniques. The existing methods, such
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as GATand ORA, often require expensive equipment, close proximity, and physical contact with
a patient, which can be resource intensive.19 The proposed method utilizes the CNN classification
of speckle patterns reflected from the eye sclera, illuminated by a laser beam, during temporally
encoded external sound stimulation.

Our noncontact IOP biomonitoring tool offers several advantages over traditional methods.
First, it is relatively inexpensive to manufacture and operate, with estimated hardware material
costs under US$5000 for mass production. The device has the potential to be compact and
mobile, making it convenient for various clinical settings. Importantly, the method demonstrates
high accuracy even without preliminary calibration or prior knowledge about the tested eye. We
conducted successful IOP biomonitoring of 24 pig eyes, which share similar characteristics to the
human eye,19 further validating the accuracy and potential clinical utility of our approach.

Our photonic-based diagnostic tool is designed to enhance current high-performance clinical
IOP measurement devices by effectively addressing major challenges related to cost, the use of
anesthetic eye drops that impact the tested individual, and the need for specialized equipment and
procedures. GAT, the commonly used method for IOP examination, is accurate, but could be
influenced by individual variations in corneal thickness and rigidity. It also requires the use
of anesthetic eye drops, limiting continuous IOP monitoring.19 By contrast, our photonic-based
system offers an accurate and non-invasive diagnostic IOP measuring tool. By projecting an
eye-safe laser beam onto the eye sclera and capturing scattered secondary speckle patterns using
a fast-imaging camera, we provide a reliable alternative for IOP assessment.

To vary the IOP for experimentation, we inserted an injection needle into the pig eyeball,
connecting it to a calibrated burette filled with water. The IOP was set at intervals of 1 mm Hg
within the range of 10 to 21 mm Hg to ensure high accuracy in the normative pressure range. For
pressures above 21 mm Hg, we conducted testing with 2 mm Hg intervals, with a maximum IOP
value set at 45 mm Hg. This approach allowed for establishing a ground truth and ensures the
effectiveness and reliability of the data collection process.

The results of our generic IOP model demonstrated an accuracy of over 90% with near-
perfect detection of normative IOP levels. This system holds great potential for early detection
of glaucoma, enabling proactive monitoring of individuals with high IOP through an accurate
personal IOP measurement system.

In addressing potential challenges related to the missing data and variations in the data size
between the training and test sets, we implemented preprocessing steps for model training.
Although our dataset does not contain missing data, due to meticulous recording and control
measures, the theoretical consideration of addressing the missing data points aimed to enhance
the robustness of the CNN model and improve its generalizability across different data sizes. Part
of this preprocessing involved utilizing the Manhattan norm on the frames to further refine the
model’s ability to handle variations in the data size. It is worth noting that increasing the amount of
training data generally leads to improved model performance. Collecting extensive data for each
subject, particularly in clinical settings, can be resource intensive. Therefore, identifying the mini-
mum data requirements for the reliable IOP classification is a crucial consideration, and our find-
ings suggest that, even with a relatively modest dataset, accurate classification of high IOP can be
achieved. The data size required to train a model for each subject depends on the number of single
IOP values that we aim to classify. As a rule of thumb, the minimum data needed to identify if the
subject is suffering from high IOP consist of at least two video samples, equivalent to 104 s of
recording data (104,000 video frames), which helps prevent overfitting or underfitting.

It is important to note that our experimental setup involved pig eyeballs, which closely
resemble human eyes, ensuring a reliable data collection process and accurate ground truth
representation. These experiments aimed to simulate clinically significant glaucoma cases and
demonstrate the feasibility of our method.19 The data collection took place in a controlled envi-
ronment, with the laboratory darkened and silenced to minimize potential interference from
background noises.19

Regarding the insertion of a needle into the eyeball, we maintained control over the direction
of insertion, although we did not directly validate the precise location inside the eye. Although it
is plausible for some needles to experience partial blockage due to the living tissue of the eyeball,
we did not observe any significant blockage. This observation is supported by the slight drop in
the water level of the calibrated burette, indicating successful filling of the eye with water.
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Compared with previous methods, our presented approach, which includes a comprehensive
signal analysis, showcases superior performance in accurately classifying IOP ranges. This
improvement stems from the ability to assess not only the damping part but also the entire signal,
which encompasses both free and forced oscillation components. These enriched data enable
enhanced accuracy and reliability in the classification process, making our method a promising
approach for noninvasive IOP monitoring. Furthermore, our approach eliminates the need for
preliminary calibration, simplifying the measurement process and increasing its accessibility for
clinical use.

Although the experimental setup has demonstrated promising results, the clinical prototype
for in vivo noninvasive monitoring will undergo further enhancements to address challenges,
such as fast eye saccades and pulsation. The system will be miniaturized and tested on human
eyes, with the frequency generator replaced by a compact unit. All instruments will be securely
mounted on a solid base fixed to a patient’s head to eliminate the effect of voluntary movements.
In addition, the computer used for data processing and model training will be replaced by a
compact, cost-effective, and dedicated computer designed for real-time use. We will also explore
the integration of an infrared laser as part of our ongoing efforts to optimize and enhance the
system’s performance.

The clinical utility of our approach lies in its potential for personalized IOP monitoring
systems. The models presented in Table 1 were trained on the data from individual eyes and
tested by the measurements from the same eyes, leveraging the specific characteristics and
patterns of each eye for accurate IOP classification. This concept of personalized monitoring
offers benefits for scenarios in which continuous monitoring and early detection of IOP changes
are crucial, such as in glaucoma management.

5 Conclusion
Our study presented the development of a photonic IOP biomonitoring system that utilized CNN
analysis of remotely recorded speckle patterns reflected from an eye sclera subjected to a periodic
sound wave stimulation. This novel approach offers several key advantages, including its contact-
free nature, low-cost implementation, and mobility, making it highly suitable for practical clinical
applications.

Through rigorous testing on 24 pig eyeballs using our hardware and software platform, we
achieved high accuracy in detecting elevated IOP levels. This successful demonstration of
IOP detection holds promising clinical implications, particularly in the diagnosis of glaucoma,
a condition commonly associated with high IOP.

One of the significant contributions of our research is the potential to address unmet clinical
needs, especially in low- and middle-income countries. The development of the photonic-based
technology offers the possibility of democratizing IOP diagnosis by providing accessible and
affordable solutions. This has the potential to make a substantial impact on the global healthcare,
ensuring that individuals in underserved regions can receive timely and accurate IOP assessments.

Building upon our research findings, future development efforts will focus on the creation of
a human friendly, compact, head-mounted IOP sensing device. Such a device would enhance the
practicality and ease of use in clinical settings, enabling efficient and non-invasive IOP
measurements.
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