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ABSTRACT. Significance: Advancements in label-free microscopy could provide real-time, non-
invasive imaging with unique sources of contrast and automated standardized
analysis to characterize heterogeneous and dynamic biological processes. These
tools would overcome challenges with widely used methods that are destructive
(e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays,
whole animal bioluminescence imaging).

Aim: This perspective aims to (1) justify the need for label-free microscopy to track
heterogeneous cellular functions over time and space within unperturbed systems
and (2) recommend improvements regarding instrumentation, image analysis, and
image interpretation to address these needs.

Approach: Three key research areas (cancer research, autoimmune disease,
and tissue and cell engineering) are considered to support the need for label-free
microscopy to characterize heterogeneity and dynamics within biological systems.
Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive
monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several
label-free microscopy modalities, improvements for future imaging systems are
recommended.

Conclusion: Improvements in instrumentation including strategies that increase
resolution and imaging speed, standardization and centralization of image analysis
tools, and robust data validation and interpretation will expand the applications of
label-free microscopy to study heterogeneous and dynamic biological systems.
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1 Introduction
Sophisticated in vivo and in vitro models have been developed to study normal physiology, dis-
ease development, and to test novel treatments. These biological systems are heterogeneous and
dynamic, comprising various cell types with specialized functions and complex spatiotemporal
interactions. However, standard techniques (e.g., histology, flow cytometry, plate-based assays,
whole animal bioluminescence imaging) to assess these biological systems are time consuming,
invasive, and/or lack the ability to characterize heterogeneous and dynamic biological processes
in the native context. Non-destructive, label-free microscopy techniques can bridge these gaps to
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study biological models encompassing in vitro two-dimensional (2D) and three-dimensional
(3D) cell culture, primary human samples (e.g., peripheral blood, tumor resections) or in vivo
animal models (e.g., mouse, zebrafish) in static (single time point) or dynamic (time course)
systems. Label-free microscopy techniques have the potential to non-invasively acquire 3D
image stacks from deep within in vitro and in vivo systems at high-speed and resolution to
capture molecular and morphological features of single cells. In addition, numerous sources of
label-free molecular contrast including Raman spectra, autofluorescence lifetimes, and spectral
properties provide multivariate measurements of cell function that can offer unique insights.1,2

However, improvements in instrumentation, image analysis, and image interpretation are neces-
sary to fully realize the capabilities of label-free microscopy (Fig. 1).

2 Rationale for Label-Free Microscopy to Monitor Heterogeneous
Cell Function Over Spatiotemporal Dynamics

Characterization of heterogeneity and dynamics within biological models is crucial to understand
the complex interaction among several cell types and extracellular components over space and
time. However, current bioassays commonly used in biomedical research face several challenges
in assessing dynamic and heterogeneous living systems. Many standard assays, including
ELISA, plate-based assays, extracellular flux analysis, and whole animal bioluminescence
imaging, provide bulk population measurements of intra- and extra-cellular metabolites or
cytokines, or the functional state of the overall system. These assays are useful for studying
homogeneous cell populations. However, when more than one cell type is present within the
population, it is difficult to attribute the changes observed in bulk measurements to functional
changes in a specific cell type. Meanwhile, single-cell assays for heterogeneity assessment, such
as histology, flow cytometry, and single-cell RNA sequencing, often require intensive and
destructive sample preparations that are not suitable for continuous assessment of dynamic cel-
lular processes. In addition, despite its ability to capture heterogeneous cell populations, micros-
copy with labeled systems (e.g., transgenic reporter lines, fluorescent contrast agents) can alter
the native biological context, while facing challenges with specific expression and/or delivery of
labeling molecules. Photobleaching is another important limitation in labeled microscopy, where
the loss of labeling signals prevents tracking of cells or subcellular features over time. Here, we

Fig. 1 Future vision for label-free microscopy of heterogeneous and dynamic biological systems.
3D image stacks could be non-invasively generated deep within in vitro and in vivo systems at
high-speed and resolution. Several label-free sources of contrast could be extracted from
Raman spectra, fluorescence lifetimes, and phase shifts to define cell phenotypes (e.g., immune
cell activation, cancer cell growth, stem cell differentiation) and behaviors (e.g., cell migration).
Extracellular features including collagen content and morphology can also be visualized using
label-free methods, such as second harmonic generation microscopy. Multivariate models includ-
ing data visualization [e.g., uniform manifold approximation and projection (UMAP)] and predictive
artificial intelligence (AI) models can be built from label-free sources of contrast to determine
real-time function or predict future behavior within intact samples. Rightmost images depict
dynamic changes in cell function captured with a label-free microscopy time series, including
fibroblast activation (green), immune cell migration (blue), and cancer cell proliferation (red) within
a heterogeneous tissue environment. Overall, this framework will provide single-cell information
on molecular, functional, and structural features that will enable critical insights into dynamic,
heterogeneous, living samples over multiple timescales.
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discuss in detail the heterogeneous and dynamic nature of three example research areas (cancer,
autoimmune disease, and tissue and cell engineering) to justify the applications of label-free
microscopy in these areas.

2.1 Cancer Research
Tumorigenesis and treatment response are affected by the complex tumor microenvironment
(TME), which is comprised of multiple cell types (such as immune, stromal, and tumor cells)
and non-cellular components [such as the extracellular matrix (ECM) and exosomes].3,4 Within
these cellular and noncellular components, there are several subpopulations with heterogeneous
functions that actively influence the TME.4 For example, tumor-infiltrating immune cells include
both anti-tumor cells (such as cytotoxic T cells and M1 macrophages) and pro-tumor cells (such
as regulatory T cells and M2 macrophages).5 Meanwhile, growth factors secreted by tumor cells
support stromal cell viability and ECM stiffening, which in turn facilitate tumor cell proliferation
and metastasis while creating a physical barrier for immune cell infiltration.6 Dynamic inter-
actions among these cellular and noncellular components within the TME directly affect immune
functions, ECM remodeling, and drug sensitivity, ultimately determining patient outcomes.3 In
addition, the TME can alter oxygen and nutrient gradients, further contributing to inter- and intra-
patient heterogeneity in cancer cell drug response,7 while also increasing the diversity within and
between cell types in vivo.8 Therefore, multiple in vitro and in vivo systems have been developed
to model these characteristics during tumorigenesis, tumor progression, and treatment response,
including patient-derived organoids, ex vivo primary tumor slices, and xenograft animal models.9

It is important to recognize that both cancer development and treatment response are continuous
processes rather than discrete, static events. While destructive techniques, such as histology, flow
cytometry, and single-cell RNA/DNA sequencing, provide important insights into the TME,
these techniques are limited to snapshots in time. Hence, they do not fully capture the dynamic
and heterogeneous characteristics of cancer. Non-invasive label-free microscopy can be used to
monitor heterogeneous functions and quantify dynamic changes in these in vitro and in vivo
tumor models. This enables a better understanding of the complex cancer biology in its native
context and supports the development of novel cancer treatments.

2.2 Autoimmune Diseases
The heterogeneity of the immune system—reflected in the diversity of the T cell receptor rep-
ertoire and>1012 distinct antibodies secreted by B cells—creates a substantial challenge to study
autoimmune diseases.10,11 Common autoimmune disorders, such as systemic lupus erythemato-
sus (SLE) and inflammatory bowel disease (IBD), are associated with metabolic abnormalities,
improper cell–cell interactions, and atypical cell subpopulation ratios.12–14 For example, a high
Th17/Treg (regulatory T cell) ratio shows a positive correlation to disease activity in SLE
patients.15 Single-cell resolution is therefore crucial to evaluate these characteristics within auto-
immune disease models. Due to its ability to characterize heterogeneous cell populations in
dynamic environments, label-free microscopy is an attractive method for studying autoimmune
diseases. In addition, label-free sources of contrast are often continuous variables, which can
capture the known spectrum of dynamic activity within immune cells.16–19

In addition to providing a better understanding of autoimmune disease, label-free micros-
copy has potential clinical applications. Current methods for diagnosing SLE are time-
consuming and often require months or years for a proper diagnosis due to non-specific and
varied symptoms manifested in patients.20,21 Label-free microscopy offers unique sources of
contrast based on endogenous cellular features. This can increase the sensitivity and speci-
ficity to screen for abnormalities in cellular functions and cell–cell interactions associated
with autoimmune diseases. Label-free techniques also alleviate sample preparation, hence,
reducing sample characterization time in clinics. Because of these features, label-free micros-
copy holds great promise for clinical translation. Furthermore, recent research suggests that
targeting immune cell metabolism could be an effective treatment in SLE and IBD.22,23 Label-
free microscopy modalities that are sensitive to cell metabolism could improve drug screening
and support the generation of multimodal diagnosis, monitoring, and treatment tools for
autoimmune disorders.
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2.3 Tissue and Cell Engineering
Engineered tissues and cells have been used as therapeutic products, disease models, and treat-
ment screening platforms. However, variability within and among batches remains a major chal-
lenge for tissue and cell engineering.24 For example, brain organoids generated from induced
pluripotent stem cells display varying differentiation potential and maturation rate, which limits
their use in neuronal maturation studies.25 Similarly, the manufacturing of engineered immune
cells, such as chimeric antigen receptor (CAR) T cells, faces variability in transgene incorpo-
ration efficiency and cell behavior, which leads to inconsistent responses among patients.26

In a closed-loop manufacturing workflow, analytical methods that are destructive or rely on
labels often require removing samples from the in-process products. Removing cells from a cul-
ture for analytical testing is common in CAR T cell development and manufacturing, although
this approach risks product contamination and destroys the sampled cells. However, cells cannot
be removed during tissue manufacturing because intact structure is required for functional tis-
sues. Hence, removing cells during the tissue manufacturing process results in product loss.
Label-free microscopy can non-invasively monitor heterogeneous and dynamic cell functions
within and among cultures without sample destruction while enabling timely interventions to
ensure consistent and potent products. Molecular or structural features extracted from label-free
microscopy can also serve as critical quality attributes for engineered tissues and cells.
Importantly, the non-destructive nature of label-free microscopy facilitates expansion of rare cell
types such as tumor-infiltrating lymphocytes or the exclusion of contaminants such as pluripotent
stem cells in engineered cell and tissue products.27–29 Overall, label-free microscopy is advanta-
geous for tissue and cell engineering as it allows non-invasive identification and continuous
monitoring of single cells to improve product quality.

3 Current Landscape of Label-Free Microscopy

3.1 Hardware
Numerous label-free microscopy techniques exist to visualize cell morphology, migration,
molecular features, and function. Cell morphology and migration can be monitored with quan-
titative phase imaging (QPI) methods pioneered by Prof. Popescu that rely on differences in
index of refraction for contrast,30 as well as computational microscopy,31,32 scattered light
microscopy,33 and traditional brightfield or differential interference contrast microscopy.34

Similarly, optical coherence tomography (OCT) generates high-resolution images of tissue struc-
ture to assess thickness, density, and organization of cells and the ECM.35 These modalities are
advantageous for rapid, low-cost imaging and simplified optical design to track dynamic cell
movements and interactions, but often lack molecular contrast to identify specific cellular and
subcellular populations. To identify these subsets, label-free molecular microscopy has been
developed to monitor intrinsic sources of biochemical contrast in cells, including Raman micros-
copy,36 spectral imaging,2 and nonlinear microscopy.37 Raman microscopy measures the vibra-
tional modes of molecular bonds to identify the presence and abundance of specific
biomolecules, such as proteins, lipids, and nucleic acids. Nonlinear microscopy can separate
endogenous molecular sources of fluorescence (e.g., metabolic cofactors, retinoids) with spectral
detection or fluorescence lifetime imaging microscopy (FLIM).38 Meanwhile, second harmonic
generation (SHG) microscopy specifically highlights the distribution of collagen and other non-
centrosymmetric molecules within the tissue.39 These approaches provide additional insights into
molecular and functional behaviors in cells and their environment.

Label-free microscopy can characterize cellular heterogeneity and is amenable to kinetic
measurements over space and time within unperturbed systems. These features are especially
attractive for tracking important subsets of cells in living systems, supporting applications of
label-free microscopy for cancer, autoimmune disease, and tissue and cell engineering. For
example, high-speed live cell interferometry, a QPI methodology, has been used to monitor single
cell biomass changes with treatment in mouse breast tumor xenografts,40 and to quantify biomass
in human breast cancer organoid models.41 Autofluorescence FLIM and SHG have highlighted
the interactions between immune, tumor, and stromal cells in mouse melanoma in vivo42 and
revealed the role of fibroblasts in ECM remodeling during cancer cell metastasis.43 Line-field
confocal OCT has also been introduced into the clinic for label-free assessment of skin lesions to

Pham et al.: Perspectives on label-free microscopy of heterogeneous. . .

Journal of Biomedical Optics S22702-4 Vol. 29(S2)



identify cancerous characteristics and monitor healing post-treatment with an isotropic spatial
resolution down to 1 μm, acquisition time of 10 frames∕s, and imaging depth of 0.5 mm
[Fig 2(a)].44 Meanwhile, as macrophage dysfunction is implicated in the pathogenesis of several
autoimmune diseases including SLE and type 1 diabetes, QPI and Raman scattering spectros-
copy have been used to characterize morphological and molecular features of macrophages from
multiple sources (cell line versus resident and elicited peritoneal macrophages).45,47 These label-
free measurements (including Raman spectral properties and 301 morphology features represent-
ing size, shape, intensity, radial distribution, and texture extracted from QPI images) classified
macrophages and their activation states with up to 97% sensitivity and specificity [Fig. 2(b)].45

Hence, label-free methods could be used to characterize autoimmune diseases and understand
autoimmune flare-ups.45,48,49 Applications of label-free microscopy in tissue and cell engineering
have also been demonstrated, as autofluorescent lifetimes and intensity of metabolic coenzymes
NAD(P)H and FAD collected with two-photon FLIM are sensitive to heterogeneous T cell func-
tion and predict differentiation efficiency for cardiomyocytes derived from induced pluripotent
stem cells.50–52 Finally, multiple modalities can be combined to assess engineered skin tissue
[Fig. 2(c)],46 where the advantages of larger field of view (4 × 4 mm) and imaging depth
(1.7 mm) offered by cross-polarization (CP) OCT complement the high resolution and single
cell information from multiphoton SHG and FLIM to characterize tissue structure (collagen
organization) and function (cell metabolism) across different scales.

Fig. 2 Applications of label-free microscopy in (a) cancer research, (b) autoimmune disease
research, and in (c) cell and tissue engineering. (a) Line-field confocal OCT image (top) and cor-
responding histopathological examination (bottom) of a superficial basal cell carcinoma. Blue star:
stratum corneum; white star: epidermis; yellow star: clusters of tumor cells; green star: cleft
between tumor cell islands and dermis. Adapted with permission from Ref. 44. OCT was acquired
with a supercontinuum laser at 800 nm center wavelength and 250 nm full width half maximum.
(b) Raman spectral properties and 301 morphological features extracted from QPI classified differ-
ent macrophage populations and their activation states, which are implicated in autoimmune dis-
eases, with up to 97% sensitivity. Adapted with permission from Ref. 45. 780 nm laser diode was
used for QPI light source. Raman spectroscopy was performed with 532 nm laser excitation. (c) CP
OCT and multiphoton tomography (MPT) based on SHG and autofluorescence FLIM of NAD(P)H
showed the formation of collagen fibers and increased oxidative metabolism in dermal papilla and
fibroblast cells over 14 days of engineered skin tissue (dermal equivalent) development. MPT
image shows interaction of collagen (green) and individual cells (red). Adapted with permission
from Ref. 46. CP OCT was performed with a 1300 nm center wavelength source. 740 nm excitation
wavelength was used for both SHG and FLIM of NAD(P)H, with detection range of 373 to 387 nm
and 410 to 650 nm, respectively.
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However, current label-free microscopy systems are still limited in spatial resolution, speed,
and imaging depth. While cellular and subcellular features are important to capture population
heterogeneity, few label-free microscopy systems offer sufficient resolution to visualize cellular
organelles, cell-cell synapses, and cell–ECM interactions. Meanwhile, label-free modalities with
high resolution and molecular contrast, such as FLIM and Raman microscopy, often rely on laser
scanning and require either high photon counts for reliable fluorescent lifetime fitting or long
exposure times to build up thousands to millions of pixel-wise Raman spectra.53,54 For instance,
laser-scanning autofluorescence FLIM of the metabolic coenzyme NAD(P)H requires long inte-
gration times (on the order of tens of seconds) per field of view due to the low quantum yield of
NAD(P)H (∼2% for NAD(P)H, compared to ∼80% for the exogenous fluorophore fluores-
cein).55–58 This increases image acquisition time, especially for laser-scanning techniques, limit-
ing both the imaging throughput and the capacity to capture fast biological processes such as
cardiomyocyte contraction or immune cell movement.

Limited imaging depth also poses a challenge for the adoption of label-free microscopy,
especially for non-transparent in vivo models such as mice. The attenuation of light in tissue
is represented with μt, the optical attenuation coefficient.35 While μt is dependent on the wave-
length and tissue type, it typically ranges between 1 and 50 cm−1 for common tissue types (such
as skin and fat) and can reach up to 1000 cm−1 for blood.59 The attenuation coefficient decreases
in the near infrared and infrared windows, hence longer excitation wavelengths allow for greater
penetration depth; however, the imaging depth is still limited to the millimeter scale from the
tissue surface.60,61 For example, OCT in the near-infrared window provides millimeter scale
penetration depths into scattering tissues and has been used in several in vivo models for
label-free imaging.44,46 Meanwhile, the inherently low signal-to-noise ratio (SNR) of intrinsic
sources of contrast compared to engineered contrast agents further exacerbates signal attenuation
with deep tissue imaging.62 Therefore, the use of label-free microscopy for non-invasive
monitoring of unperturbed systems in vivo remains a challenge.

3.2 Image Analysis
Standard analysis workflows for label-free microscopy include several steps: (1) segmentation
and tracking to identify and monitor objects, (2) feature extraction from those objects to yield
quantitative measurements, and finally (3) metadata handling, such as visualization, pattern
characterization, and generation of predictive multivariate models. With the integration of neural
networks and deep learning, existing tools have achieved fast and accurate automatic segmen-
tation of label-free images, including segmentation of cells (CellProfiler,63 cellpose,64 and
StarDist65), collagen (CT-Fire66 and CURVEAlign67), and mitochondria (MiNA,68 Mito
Hacker,69 and U-Net70), as well as object tracking (btrack,71 TrackMate,72 and Trackpy73).
While the segmentation tools can characterize intra- and intercellular heterogeneity, tracking
tools can monitor dynamic processes. Segmentation and tracking tools can be used to extract
numerous features from each object, such as mitochondrial morphology and network structure;
collagen fiber alignment and density; cell size, shape, and co-localization; and cell and/or
organelle speed and direction.

Supervised machine learning models are under development to visualize, identify, and cor-
relate patterns in multivariate label-free images for medical diagnostics and biomanufacturing.
For example, machine learning classifiers have been used with QPI for automatic Gleason grad-
ing of human prostate cancer specimens74 and with FLIM to automatically assess maturation of
engineered cartilage.75 Meanwhile, non-supervised models are used to identify patterns within
label-free images, including dimensionality reduction and data visualization algorithms, such as
uniform manifold approximation and projection (UMAP),76 t-distributed stochastic neighbor
embedding (t-SNE),77 and principal component analysis (PCA).78 For example, UMAP has
been used to visualize clustering of single-cell RNA expression and Raman spectral profiles.79

Similarly, PCA of QPI features have identified biomarkers for drug screening in breast cancer.80

Examples of image analysis tasks, computational tools, and their application to label-free micros-
copy studies are provided in Table 1.

While tools to address individual steps within the label-free microscopy analysis workflow
exist, they are currently modular and not fully integrated with each other. This integration is
especially needed for multi-modality imaging with several label-free microscopy techniques.
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In addition, there is a lack of centralized and standardized sources for label-free image analysis
codes, as current tools were developed by individual labs or organizations that require different
programming languages, such as Python or MATLAB. Therefore, these tools often demand a
certain level of programming knowledge or other specialized skills to execute and troubleshoot,
hindering the translation and adoption of label-free microscopy.

3.3 Image Interpretation
Image interpretation remains a challenge for label-free microscopy in biomedical research.
For example, in autofluorescence imaging, several fluorescent species with different biological
functions can have overlapping spectral properties, which confounds the process of image a
nalysis and data interpretation. More than 14 endogenous fluorophores have been identified in
cells that contribute to tissue autofluorescence signals, including structural proteins, such as
elastin and collagen, vitamins such as vitamin A and B6, neurotransmitters, lipids, and metabolic
coenzymes.38,84 The majority of these autofluorescence biomolecules are excited in the UV
range.38,84 This is especially problematic for in vivo systems, where it is difficult to isolate the
signal of interest and minimize the sources of background signal bleed-through. Meanwhile, the
changes in the autofluorescence lifetime, for example, in NAD(P)H, can be due to numerous
factors, including protein binding activity, preferred binding partners, and the presence of
quenchers such as pH and oxygen.85,86 Similarly, changes in Raman spectra can be subtle, and
variability in instrument, sample, and computational processing methods limits consistency
between studies and interpretation of underlying biological processes.87

Therefore, label-free measurements should be benchmarked with standard assays to accu-
rately interpret underlying biological phenomena. Metabolic subsets of cells identified non-
invasively with autofluorescence FLIM are currently validated with metabolic flux analysis,
metabolomics, and/or metabolite measurements in media.17,51,88 Similarly, Raman spectral fea-
tures can be supported with matrix-assisted laser desorption/ionization mass spectrometric im-
aging. Single-cell identity assessed with label-free microscopy can also be benchmarked against
flow cytometry analysis of intracellular and surface protein markers. However, these assays are
destructive to the samples and can only be performed in parallel or at experimental endpoints,
which does not fully capture the dynamics obtained with label-free microscopy.

Table 1 Examples of current tools available for label-free image analysis and their applications.

Tasks Tools Example applications in label-free microscopy

Automated image
segmentation and
feature extraction

Single cell segmentation:
CellProfiler, cellpose, StarDist

Segmentation and quantification of
autofluorescence signals from individual cell
cytoplasms to identify changes in T cell metabolism
upon activation51

Collagen segmentation and
morphology/network analysis:
CT-Fire, CURVEAlign

Characterization of collagen fiber morphology and
organization from SHG images of colon cancer
mucosa versus healthy tissue81

Mitochondria segmentation: MiNA,
Mito Hacker, U-Net

Segmentation and characterization of mitochondrial
network, morphology, and dynamics (cleavage)
following FCCP treatment with high resolution
phase microscope82

Object tracking Btrack, TrackMate, Trackpy Single-cell tracking in label-free brightfield images of
pluripotent stem cells during differentiation into
definitive endoderm83

Multivariate
analysis

Dimension reduction and data
visualization: UMAP, t-SNE, PCA

Clustering of single-cell RNA sequencing and
Raman spectral properties during stem cell
reprogramming79

Correlations and classification:
machine learning, neural networks

Automated Gleason grading of human prostate
cancer specimens based on QPI parameters of
tissue biopsies with up to 82% accuracy74
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4 Strategies to Improve Label-Free Microscopy

4.1 Hardware
As technologies advance, label-free microscopy will see improvements in imaging resolution,
speed, depth, and molecular specificity to capture greater heterogeneity and faster dynamics in
biological samples. For example, single photon avalanche diode (SPAD) arrays are becoming
prevalent in microscopy due to their high sensitivity and temporal resolution. As SPAD
array technology advances, SPADs could be integrated into label-free microscopy systems,
such as light-sheet autofluorescence,89 light-sheet hyperspectral Raman,90 and QPI light-sheet91

to enable high-speed, volumetric images. For example, an SPAD array (192 × 128 pixels,
1.75 mm × 2.35 mm sensor size with dedicated time-to-digital electronics for each pixel) was
integrated into a light-sheet geometry, resulting in a 6- to 30-fold decrease in acquisition time per
frame for autofluorescence FLIM compared to laser-scanning two-photon autofluorescence
FLIM.89 Similarly, light-sheet Raman micro-spectroscopy acquired hyperspectral Raman images
with a fivefold increase in acquisition speed compared to a confocal Raman microscope.90

Alternatively, by coupling label-free techniques with adaptive optics, greater depths and
aberration-free image resolution can be attained.92 In addition, robust biological interpretation
with a high level of confidence can be achieved by combining unique sources of contrast from
multiple label-free modalities for correlative studies. For example, QPI and quantitative intensity
imaging have been combined to create fluorescence self-interference (SELFI) for super resolu-
tion imaging beyond diffraction limit with 2̃3 to 50 nm axial resolution up to a few tens of
microns depth.93 With these advancements in instrumentation, future label-free microscopy sys-
tems could achieve high-speed, high-resolution, and volumetric characterization of important cell
subsets engaged in fast dynamics, such as beating cardiomyocytes or the formation of immune
cell synapses in vitro and in vivo.

Improvements in the imaging depth, resolution, and speed of label-free microscopy can also
be achieved with artificial intelligence (AI) techniques. For instance, developments in neural
networks and machine learning could enhance photon-deprived signals from deep sections
within 3D samples. In fact, machine learning has recently been used to process label-free
FLIM images acquired in low SNR conditions.94,95 This allows reliable recovery of FLIM decays
with low photon counts, hence enabling fast image acquisition in deep tissue. For example, life-
time estimates with high accuracy were achieved with 50 times fewer photons per pixel (i.e.,
10 photons∕pixel for exogenous fluorescence and 30 to 40 photons∕pixel for autofluorescence
from live cells) compared to ground-truth.94 Similarly, an increase in imaging depth has been
achieved using deep learning algorithms that combined confocal microscopy and QPI for phase
retrieval and tomographic reconstruction.96,97 AI-assisted adaptive optics methods have also been
used with nonlinear label-free microscopy to improve imaging depths for high-resolution
images.98 Meanwhile, deep neural networks have been used to obtain 3D volumetric images from
2D fluorescence images of dyes, such as FITC and Texas Red, to study neuronal activity.99

These approaches could be applied to label-free images to achieve greater imaging depths and
resolution. These studies collectively highlight the potential of AI techniques to overcome current
limitations and enable new opportunities for label-free microscopy, especially to study hetero-
geneous and dynamic systems in cancer, autoimmune disease, and tissue and cell engineering.

4.2 Image Analysis
Improvements in image resolution, speed, and depth will increase the amount of information
collected per experiment. Therefore, faster and more accurate segmentation and tracking tools
are needed to handle greater numbers of objects and longer time-lapse imaging. The scalability
and robustness of these tools will need to be tested with large numbers of annotated images that
capture heterogeneous and dynamic information.

Since image analysis is a multistep process, the development of a complete, standardized
workflow that integrates current stand-alone modular tools with a user-friendly interface will
greatly improve adoption of label-free microscopy. With continuous development, community
engagement, and adoption of novel AI tools, centralized libraries will emerge that encompass
a range of algorithms and packages to improve the access, scale, and specificity of label-
free microscopy. Integrative systems, such as Napari,100 ImageJ,101 OMERO,102 or BioImage
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Informatics Index,103 have started to address these challenges by incorporating plug-ins or tools
for specialized image analysis tasks. The whole label-free microscopy community must work
together to further expand these centralized tools and develop a standardized analysis workflow
from segmentation to feature extraction and metadata modeling. This will streamline the analysis
process and increase adoption of label-free microscopy for biomedical researchers, while also
improving data integrity and reproducibility for the whole field.

4.3 Image Interpretation
Advancements in label-free instrumentation and image analysis will support the validation and
interpretation of label-free images. Ongoing developments in multimodal imaging will generate
co-registered images between label-free methods and standard assays to further address chal-
lenges in image interpretation. AI-assisted image analysis workflows are also critical to extract
important features from label-free images and correlate with standard biomarkers or clinical end-
points, such as evaluation of cancer treatment response, disease diagnosis for autoimmune dis-
orders, and identification of critical quality attributes for tissue and cell engineering. These efforts
will support the development of a comprehensive atlas for robust interpretation of label-free
images with respect to biological outcomes. Recently, a pan-cancer T cell atlas has been devel-
oped based on genomic, pathological, and clinical features from over 350 patients across multiple
cohorts to identify T cell stress response as a novel biomarker for immunotherapy resistance.104

Such an atlas for label-free microscopy, together with thorough validation, lays the foundation
for future applications of label-free microscopy as a stand-alone analytical tool to identify, char-
acterize, and monitor cell or molecular subsets over time and space. Multivariate predictive mod-
els based on label-free microscopy features can then inform important decisions in cancer,
autoimmune disease, and tissue and cell engineering.

5 Conclusion
Label-free microscopy offers non-invasive assessment of complex biological systems that span
several key biomedical applications, including but not limited to cancer research, autoimmune
disease, and cell and tissue engineering. Current label-free microscopy modalities have multiple
benefits over standard assays, allowing non-invasive characterization of cellular morphology,
dynamics, and molecular features. Improvements in instrumentation and AI-assisted techniques
will enable label-free microscopy with high-speed, resolution, and depth. The use of supervised
and unsupervised machine learning and automated image segmentation will further support
label-free image analysis and data visualization. Centralization and standardization of the image
analysis workflow is also important for data integrity and adoption of label-free microscopy. In
addition, data validation with robust biological interpretation will facilitate the translation of
label-free microscopy to study heterogeneous biological systems and dynamic cellular processes.
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