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Abstract. We propose an implementation of the Hotelling observer that can be applied to the optimization of
linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering
information within a specific region of interest, and it is applied to the optimization of algorithms for detectability
of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection,
back-projection filtration, and Λ-tomography. The optimized algorithms are then evaluated through the
reconstruction of phantom data. The method appears robust across algorithms and parameters and leads
to the generation of algorithm implementations which subjectively appear optimized for the task of interest.
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1 Introduction
In recent years, digital breast tomosynthesis (DBT) has contin-
ued to gain attention as a promising modality for breast imaging.
By combining projection images acquired at varying angles, the
effects of tissue superposition can be ameliorated, leading to
improved visualization of masses and a decrease in false posi-
tives for mass detection.1–4 Since the angular range used in
tomosynthesis is small, DBT acquisitions contain insufficient
data to allow conventional tomographic image reconstruction
methods to yield fully three-dimensional (3-D) images. Instead,
a range of variants of analytic reconstruction methods from
x-ray CT, such as filtered back-projection (FBP), has been
developed for DBT in order to obtain quasi-3-D images. On the
one hand, the inability to achieve full object representation in
3-D means that without incorporating prior object information,
it is not possible to obtain an image which uniquely corresponds
to the projection data. On the other hand, this nonuniqueness
implies a certain freedom in designing an image reconstruction
algorithm, with even simple back-projection yielding images of
potential utility. While there have been some heuristics to guide
DBT reconstruction research, to date DBT algorithm design has
been largely guided by assessment of image artifacts.1,4

In this work, we present a method for objectively optimizing
analytic reconstruction algorithms in DBT. The method is based
on the Hotelling observer (HO)5 and optimizes a given algo-
rithm for performance of a signal detection task. We focus
on two tasks in this work: the detection of microcalcifications,
small deposits of calcium which can indicate malignancy, and
the detection of small low-contrast disks, intended to mimic
subtle lesions. Previous work by others has investigated the use
of the HO for optimization of DBT acquisition parameters,6–9

benchmarking DBT acquisition relative to mammography,8,10

and, similar to this work, exploring the impact of image
reconstruction.6,11

Often, the HO’s performance for a given task is estimated
using a collection of sample images, resulting in statistically var-
iable estimates of the HO’s figure of merit. Since we wish to
perform optimization of several reconstruction parameters, for
efficiency, we construct an approximation of HO performance
which does not rely on samples of noisy images, and is therefore
nonstochastic. Most previous studies in constructing nonsto-
chastic HO performance estimates rely on channels,12 such as
Laguerre–Gauss channels,13 which rely on assumptions of
symmetry in the signal of interest in order to reduce the dimen-
sionality of the HO metric computation. Instead, in this work
the HO signal-to-noise ratio (SNR) is obtained in the spatial
domain without the use of channels. Rather, extending previous
work,14–16 the dimensionality of the HO system of equations is
reduced by considering microcalcification detection only within
a restricted region of interest (ROI). Meanwhile, the effect of
reconstruction on the signal and quantum noise is captured
by explicitly modeling the effect of each linear operation on
a Gaussian detector noise model. We demonstrate that the pro-
posed method can enable efficient simultaneous optimization of
multiple reconstruction parameters. This is potentially useful
for DBT system development, where the interplay between
various reconstruction parameters and their collective effect on
image quality can be difficult to predict a priori. This method,
in combination with more conventional assessment methods
(e.g., artifact evaluation), can provide a fuller picture of the
utility of a given algorithm implementation for DBT.

Here, we demonstrate the use of the HO to optimize four
reconstruction algorithms, three of which are variants of the con-
ventional FBP algorithm, with the fourth algorithm being simple
back-projection without filtration. These algorithms each con-
tain several parameters which can be difficult to determine man-
ually. After optimizing the algorithms for two signal detection
tasks, we subjectively evaluate the implementations we obtain
using phantom data from a Hologic tomosynthesis unit. The
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quality of these reconstructed images is assessed in light of
the values obtained for the HO SNR figure of merit for each
reconstruction algorithm.

Since our primary motivation in this work is to facilitate the
development and implementation of reconstruction algorithms,
we place a particular emphasis on designing an assessment
method which is simple and efficient, so that extensive param-
eter sweeps can be performed to yield optimized reconstruction
algorithms. Once the large parameter space which exists for
reconstruction algorithms is reduced by this simplified model,
more realistic modeling could be used to evaluate the entire im-
aging system and compare relatively few algorithms or param-
eter choices.

2 Methods

2.1 Digital Breast Tomosynthesis System Model

We will use the convention that two-dimensional (2-D) or 3-D
images are represented by one-dimensional (1-D) vectors,
indexed by a single variable, which can be obtained by lexico-
graphical ordering. We begin the development of our DBT sys-
tem model by operating in the projection data domain after
the negative logarithm has been applied. The i’th element of
the projection data g can then be modeled as a line integral
through the continuous object f

EQ-TARGET;temp:intralink-;e001;63;474gi ¼
Z
L
fðsi þ lθ̂iÞdlþ ni; (1)

where the domain of integration L is defined as the intersection
of the i’th ray with the compact support of the object, si denotes
the source position, and θ̂i is a unit vector in the direction of the
detector element corresponding to the i’th ray. Further, we
assume that the noise in each detector reading can be modeled
as independent, additive Gaussian noise via the stochastic term
ni. In order to model the effect of finite detector pixels, the
model in Eq. (1) is applied with 16-fold subsampling within
each detector element. Finally, a 0.4-mm focal spot size is mod-
eled by convolving the projection data with a 0.4-mm rect func-
tion, scaled to account for geometric magnification.

For simplicity, we will adopt a noise model which is strictly
Gaussian and assumes uncorrelated noise in the detector ele-
ments. Under this assumption, the data covariance matrix,
denoted Kg and given by Kg ¼ E½ðg − ḡÞðg − ḡÞT� is diagonal,
consisting only of variances with all covariances between detec-
tor elements equal to 0. Here and elsewhere, variables with bars
denote averages and the superscript T denotes the transpose
operator. The specific noise model we consider is taken from
Ref. 17. In particular, the noise model begins with the
assumption that the variance in the postlogarithm data goes as

EQ-TARGET;temp:intralink-;e002;63;200Varfgig ¼ 1

N̄i
þ 1

N̄0

; (2)

where N̄0 is a constant denoting the average number of photons
at the i’th ray in a blank scan, and N̄i is the mean number of
photons from the i’th ray that are transmitted through the object
and reach the detector. Relating the term N̄i to the mean line
integral ḡi gives

EQ-TARGET;temp:intralink-;e003;63;101ðKgÞi;j ¼
�

eḡiþ1
N̄0

∶i ¼ j
0 ∶else:

(3)

We have set N̄0 ¼ 105 in this work; however, this choice does
not impact the optimal reconstruction parameter settings, as a
change in N̄0 will scale all of the calculated HO SNR values
by the same multiplicative factor. Electronic noise, detector
cross talk, and detector efficiency were not modeled in this
work.

In order to simplify the observer model and facilitate efficient
computation while still capturing the essential imaging model,
we only consider reconstruction within a specific ROI. This ROI
is defined as the intersection of two planes. The first plane
is parallel to the detector and contains the signal of interest.
We restrict the observer to this plane because we make the
assumption that only a single 2-D image is used for performing
classification. This image can be either a single slice or as in
the case of the back-projection filtration (BPF) algorithm
a weighted average of several slices. The second plane is
perpendicular to the detector, contains the signal, and is parallel
to the scan trajectory. This plane is selected because it is likely to
contain the majority of the signal information, since the signal is
back-projected within this plane. The final ROI is then a 1-D
profile through the signal of interest, running the full width
of the reconstructed image in the scan direction. Once param-
eters such as pixel size are obtained along the scan trajectory
direction (y-direction) using the proposed HO method, these
are then matched within each slice in the direction from the
chest wall to the nipple (x-direction).

In order to evaluate the performance of the optimized
reconstruction algorithms, projection data of a Gammex 156
mammography phantom acquired using a Hologic tomosynthe-
sis unit were used. Therefore, the configuration for the simula-
tion portion of the study mimicked that system, with a source-to-
image distance of 70 cm and 0.14 mm detector pixels. There
were 15 total simulated projections, spaced in 1 deg increments,
and for the simulations the axis of rotation was set to be even
with the detector plane. Microcalcifications of 0.16 mm were
simulated as Gaussians with maximum values equal to the
mean linear attenuation coefficient of calcium for an 80-kVp
tube spectrum. The smallest low-contrast mass in the Gammex
phantom was modeled as a 0.25-cm uniform disk with 5% con-
trast relative to the background. The thickness of the disk was
set to 0.25 cm, resulting in a contrast of 0.57% relative to back-
ground in the projection data. The simulated background was
uniform, corresponding to the background of the Gammex
phantom. As described in Sec. 1, the purpose of investigating
reconstructions of real data is to perform subjective visual
validation of the simplified HO model in light of the physical
factors which are present in real data, but are not included in
the simulation methodology.

2.2 Image Reconstruction Algorithms

In addition to pixel-driven back-projection, three reconstruction
algorithms, all based on FBP, are considered in this work. The
first algorithm is most similar to an FBP implementation com-
monly used in x-ray CT, with application of a ramp filter and
Hanning apodization window applied before back-projection.
The second algorithm we optimize is related to FBP, but per-
forms the filtering step after back-projection. We will refer to
this implementation as BPF to distinguish it from FBP; however,
elsewhere this approach is also referred to as FBP.18 Finally, we
will also implement and optimize a reconstruction method
known as Λ-tomography19 or local tomography,20,21 which
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has been proposed as a means of performing local image
reconstruction in tomosynthesis.

Each of these four reconstruction algorithms is linear and dis-
crete-to-discrete since it transforms the discrete projection data
to discrete image vectors. The algorithm can then be thought of
as a matrix, A, which produces an image vector y via the trans-
form y ¼ Ag. Further, it will be beneficial for our purposes to
decompose each algorithm into each of its constituent linear
processing steps, so that

EQ-TARGET;temp:intralink-;e004;63;653A ¼
YN
i¼1

Ai; (4)

where there areN total processing steps in the algorithm, such as
discrete Fourier transforms (DFTs), convolutions, etc. We can
then obtain the useful result that the image covariance matrix
Ky is given by

EQ-TARGET;temp:intralink-;e005;63;560Ky ¼
 Y1

i¼N

A†
i

!
Kg

 YN
i¼1

Ai

!
; (5)

where the superscript † denotes the conjugate transpose and the
limits of the first product imply reverse ordering of the product
elements, i.e., A†

NA
†

N−1: : : A
†

1. Given implementations of each
algorithm step Ai, it is typically straightforward to construct
an implementation of A†

i . While Ky is typically too large to
store directly in computer memory, Eq. (5), together with the
data noise model of Eq. (3), provides a convenient linear oper-
ator implementation for computing inner products with the
image covariance matrix. This will provide the basis for iterative
computation of the HO figure of merit described in Sec. 2.3.

2.2.1 Filtered back-projection algorithm

Here, we briefly summarize the fan-beam FBP algorithm imple-
mentation used in this work. Our description is based on that
contained in Ref. 22. Fan-beam FBP reconstruction follows
a three-step process involving weighting, filtration, and back-
projection. First, each gi is multiplied by a weighting factor.
This can be written in matrix form as

EQ-TARGET;temp:intralink-;e006;63;298g 0 ¼ Wg; (6)

where W is a diagonal weighting matrix whose elements are
given by wðnÞ ¼ D∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ n2d2u

p
. Here, D is the source-to-

detector distance, n is an integer denoting the detector element
where n ¼ 0 corresponds to the central ray, and du is the detec-
tor pixel size. The matrix W is diagonal because each of the
weights for the various detector pixels is applied independently.

Next, the modified projection data vector g 0 is filtered with a
ramp filter, which can be implemented in the DFT domain by
multiplication with another diagonal matrix, R, containing the
DFT-domain ramp kernel. Likewise, apodization filters (such
as a Hanning filter in this work) can be applied as another diago-
nal matrix in the DFT-domain. Finally, one performs a weighted
back-projection of each of the filtered projections onto a discrete
image array via a back-projection matrix operator B, resulting in
the reconstructed image pixels which are elements of y. The full
reconstruction operation can then be written as

EQ-TARGET;temp:intralink-;e007;63;89y ¼ Ag ¼ BF−1
1‐DHRF1‐DWg; (7)

where H is a diagonal matrix with the Hanning window in
the diagonal elements, R and W are again the ramp-filter and
weighting matrices, and B and F1‐D are matrices representing
back-projection and the discrete FFT operation, respectively.
The subscript 1‐D highlights the fact that the filtering is per-
formed in the projection data domain only along the scan direc-
tion. The Hanning window is in turn given by

EQ-TARGET;temp:intralink-;e008;326;675HðνuÞ ¼ 0.5

�
1þ cos

�
2duνu
νc

��
; (8)

where νu is the detector spatial frequency, νc is a parameter
which controls the strength of filtering, and du is again the detec-
tor pixel size. We will refer to νc as the spectral filter cutoff,
which is normalized so that νc ¼ 1 corresponds to a cutoff at
the Nyquist frequency of the detector. As pointed out by
Ref. 18, the sampling properties of tomosynthesis introduce arti-
facts that are far more significant than those which result from
neglecting the exact fan-beam weighting. Therefore, for simplic-
ity, we will make a final modification of the FBP algorithm and
setW equal to the identity matrix and perform unweighted pixel-
driven back-projection in our simulations. For FBP, then, there
are three significant parameters which require optimization: the
in-plane pixel size, the slice thickness, and νc, the cutoff for
the Hanning filter.

2.2.2 Back-projection filtration algorithm

As an alternative to the more CT-like FBP algorithm just pre-
sented, Mertelmeier18 describes a method for performing all of
the filtering necessary for reconstruction in the image domain
after back-projection. We refer to this as the BPF algorithm.
After applying the back-projection matrix B to the projection
data vector g, a 2-D DFT, denoted here by the matrix F2‐D,
is applied in the image domain. The image spatial frequency
version of the ramp filter is given by

EQ-TARGET;temp:intralink-;e009;326;359RBPF ≈ 2αjνyj; (9)

where νy is the spatial frequency along the source trajectory
direction (y-direction), and α is known as the tomo-angle in
a scan with an angular range from −α to α. As in the FBP
case, smoothing can be implemented via a Hanning filter; how-
ever, while the detector-domain smoothing affected the image
along the scan direction (y-direction) and the slice direction
(z-direction), image-domain filtering can be independently
performed in the y- and z- directions. (As with pixel-size, the
smoothing applied to the x-dimension is set to match the
y-dimension to preserve image appearance within a given
slice.) For the BPF algorithm, we will refer to the scale factor
in Eq. (8) as the spectral filter width or the slice filter width for
the y- and z-dimensions, respectively. The final reconstructed
image is then given by

EQ-TARGET;temp:intralink-;e010;326;173y ¼ F−1
2‐DHspectrumHsliceRBPFF2‐DBg; (10)

where Hspectrum and Hslice are given by Eq. (8) with νy and νz,
respectively, replacing νu. The matrices B and F2‐D again denote
back-projection and the Fourier transform, and RBPF is defined
in Eq. (9). For the BPF algorithm, as with FBP, pixel size and
slice thickness are free parameters that must be determined, as
are the spectral and slice filter cutoff frequencies.
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2.2.3 Λ-tomography

The final algorithm we will investigate is Λ-tomography,19–21

which reconstructs an image corresponding to a Laplacian-
filtered version of the object, rather than a representation of
the object itself. Λ-tomography has been advocated for tomo-
synthesis due to its ability to lessen artifacts due to projection
truncation while preserving edges and regions of object uniform-
ity.19 While several variants exist, in this study we implement
the most basic form, which simply replaces the DFT-domain
ramp filter with a negative numerical second derivative, where
the second derivative of the i’th detector element ui is approxi-
mated as uiþ1 − 2ui þ ui−1. For the first and last detector
elements (i ¼ 1 and i ¼ imax), we assume that u0 ¼ u1 and
uimaxþ1 ¼ uimax

. Denoting the matrix form of this operator as
L, we obtain the following for the Λ-tomography algorithm

EQ-TARGET;temp:intralink-;e011;63;580y ¼ Ag ¼ BF−1
1‐DHF1‐DLg; (11)

where, similar to FBP, we have again allowed for spectral
filtering in the data domain via the Hanning filter matrix H.
The matrices L, F1‐D, and B are again the negative numerical
second derivative, the FFT, and back-projection, respectively.
The parameters to be optimized for Λ-tomography are essen-
tially the same as those for FBP: slice thickness, pixel size,
and Hanning filter cutoff.

2.3 Hotelling Observer Signal-to-Noise Ratio Metric

The HO’s figure of merit is the HO SNR,5 given by

EQ-TARGET;temp:intralink-;e012;63;431SNR2 ¼ wTΔȳ; (12)

where for zero-mean additive noise, Δȳ is equivalent to a noise-
free reconstruction of the signal of interest and w is the Hotelling
template, defined implicitly through the equation

EQ-TARGET;temp:intralink-;e013;63;366Kyw ¼ Δȳ: (13)

Recall that the term Ky is the image covariance matrix, given
by Eq. (5). Typically, some dimension-reducing operator is
appended to the reconstruction algorithm so that the matrix
Ky can be efficiently computed and inverted. Here, in lieu of
conventional channels, we reduce the dimensionality of Ky
by restricting the reconstruction to an ROI, as described in
Sec. 2.1. The resulting image covariance is still too large to
store directly in computer memory, so Eq. (13) is instead solved
iteratively, using the method of conjugate gradients. For the

present work, the solution via conjugate gradients is obtained
with sufficient efficiency that a grid search of the algorithm
parameter space is used to obtain optimal parameters for micro-
calcification detection. As a check, the HO SNR in the projec-
tion data domain is also computed, as this is an upper bound on
the SNR estimated by our postreconstruction HO implementa-
tion. The squared ratio of the image domain HO SNR to
the projection-domain HO SNR is then reported as an efficiency
value.

Of key importance to the present work is that, as constructed,
the SNR of Eq. (12) is not defined in terms of estimates derived
from sample images. By contrast, the HO SNRwe obtain is non-
stochastic. In most studies of HO performance, HO SNR is esti-
mated from samples, so that bias and variance of the estimates
must be considered when comparing our approach with more
conventional methods for computing HO SNR. For a more
in-depth discussion of this issue and experimental comparisons
of nonstochastic ROI-based methods and stochastic sample-
based methods, see Ref. 14.

3 Results
The results for optimal efficiency values and parameter settings
for microcalcification detection and low-contrast signal detec-
tion are shown in Tables 1 and 2, respectively, for each of
the algorithms considered. Interestingly, despite restriction to
an ROI, most algorithm implementations were extremely effi-
cient with regard to preserving signal detectability from the pro-
jection data domain, with over 99% of HO SNR being preserved
postreconstruction in the case of simple back-projection. The
HO efficiency was found to vary with slice thickness primarily
because of the resulting location of the slice center relative to the
microcalcification signal; therefore, we also allowed the slice
thickness to be a free parameter for optimization by the HO.
For cases where there seemed to be no SNR penalty for decreas-
ing pixel size, the largest pixels with near-optimal SNR were
selected.

Figure 1 illustrates trends of HO efficiency with varying
pixel size and filter width for BPF, FBP, and Λ-tomography.
For the low-contrast disk detection, HO efficiency was insensi-
tive to pixel size across a wide range. Drastic jumps in efficiency
of microcalcification detection with varying pixel size are
an effect of discretization, with performance increasing and
decreasing as the modeled signal moves in and out of pixel cen-
ters. Similar trends were seen for slice thickness (not shown).
Note that in many cases, the HO efficiency is relatively insen-
sitive with a wide plateau near an optimal parameter setting.
It is also interesting to observe the trade-off in optimizing

Table 1 Optimal parameters for microcalcification detection for the four reconstruction methods considered in this work, as determined by the HO
implementation we propose. Also presented are the efficiency values of the HO in the image domain relative to the HO SNR operating directly on
the projection data.

Efficiency (%)
Optimal slice

thickness (mm)
Optimal y -pixel

size (mm)
Spectral filter

cutoff
Slice filter
cutoff

Back-projection 99.70 1.125 0.085 N/A N/A

BPF 96.89 1.184 0.0854 1.28 1.68

FBP 97.06 1.41 0.132 1.2 N/A

Λ-tomography 87.25 1.184 0.04457 1.13 N/A
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reconstruction parameters for each of the two tasks. For in-
stance, performance trends for each task are opposite with
respect to filter cutoff. For the low-contrast detection task,
heavier filtering does not substantially degrade the contrast, but
reduces noise magnitude, improving performance. Meanwhile,
low-frequency filter cutoffs strongly degrade microcalcification

detection performance, as these signals have substantial high
spatial frequency content. Intersections in each of these plots
define compromise parameter settings for algorithm implemen-
tations that are equally efficient at preserving information for
each task. In addition to phantom images reconstructed using
algorithms optimized for a single task, we next present images

Table 2 Same as Table 1, but for the low-contrast detection task.

Efficiency (%)
Optimal slice

thickness (mm)
Optimal y -pixel

size (mm)
Spectral filter

cutoff
Slice filter
cutoff

Back-projection 99.85 1.125 0.085 N/A N/A

BPF 91.03 1.184 0.178 0.108 0.573

FBP 92.31 1.41 0.178 0.121 N/A

Λ-tomography 81.19 1.184 0.421 0.0393 N/A

Fig. 1 Parameter sweeps of pixel size, spectral filter, and slice filter (if applicable) for three algorithms
investigated—BPF, FBP, and Λ-tomography. Results are shown for both the microcalcification detection
task and the detection of the 0.25 cm low-contrast phantom insert. As a given parameter varies, all other
parameters are kept fixed at their optimum values for the respective task.
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reconstructed with parameter settings of equal HO efficiency
for each task.

Figure 2 shows reconstructed images of the 0.32 mm group
of simulated microcalcifications (specks) in the Gammex phan-
tom. This is the smallest group for any of the reconstruction
methods where all six specks are visible. The left side of
the figure corresponds to the reconstruction implementations
deemed optimal by the HO for microcalcification detection,
while for the images on the right side, the spectral and slice
filter widths were set for equal HO efficiency for the two
tasks (nothing was changed for simple back-projection). The

correspondence between images and algorithms is given in the
figure caption. The interpolation artifacts in the FBP images are
a result of pixel size being mismatched with the detector pixel
size; however, the HO is insensitive to these artifacts. Likewise,
Fig. 3 shows similar reconstruction results for the central signal
in the group of 0.24 mm specks. Since the algorithms result in
very different gray values, a dynamic windowing scheme is used
to display the images.

The images in Fig. 4 show similar results, but for algorithms
optimized for the low-contrast disk detection task. Again, since
optimal pixel size and slice width were insensitive to the choice

Fig. 2 Clusters of 0.32 mm specks from the Gammex phantom, obtained using (a) algorithms with
parameters optimized by the HO for microcalcification detection and (b) algorithms optimized for
equal efficiency for both tasks. For each subfigure, the images correspond to (top left) back-projection,
(top right) FBP, (bottom left) BPF, and (bottom right) Λ-tomography.

Fig. 3 Same as Fig. 2, but only the central speck from the 0.24 mm group of specks is shown. The
0.24 mm speck is located in the center of each image. As before, for each subfigure, the images cor-
respond to (top left) back-projection, (top right) FBP, (bottom left) BPF, and (bottom right) Λ-tomography.
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of task, nothing is changed for simple back-projection between
the two subfigures. The disk-optimized Λ-tomography imple-
mentation demonstrates significant ringing artifacts near object
edges from over-filtering, but the HO is again insensitive to
these artifacts. By inspection of Fig. 4, it is apparent that the
low-contrast inserts in the Gammex phantom have a wide
range of appearances depending on the reconstruction algorithm
used.

In general, although the images obtained with different algo-
rithms have very different appearances and parameters that vary
substantially (e.g., pixel size between FBP and Λ-tomography),
the reconstructions of the phantom data appear reasonable in
light of the quantitative results obtained for HO efficiency in
each case. Since, based on the efficiency values in the two
tables, the HO was able to select algorithm implementations
which were nearly equivalent in the context of a specific task,
the method demonstrated here could be used as a means of more
holistic algorithm assessment based on artifacts and other prop-
erties of images like those shown in Figs. 2–4, while keeping
signal detectability fixed.

4 Conclusions
In this work, we have proposed an implementation of the HO
which operates in the spatial domain without the use of channels
in order to optimize linear reconstruction algorithms in DBT.
Instead of using channels, only a single dimension of the
image volume is utilized for HO assessment in order to reduce
dimensionality, and the Hotelling template is subsequently
obtained iteratively. Our results demonstrate that up to roughly
99% of the information in the projection data domain which is
useful to the HO is still contained in the 1-D domain used by our
HO implementation. Further, subjective evaluation of the algo-
rithm implementations obtained with this method suggest that,
while the HO is insensitive to some artifacts, this method leads

to images of quality which is at least comparable to that obtained
through time-consuming manual parameter tuning.

Some limitations of the present work are that, since the meth-
odology proposed was designed to be as simple as possible for
efficient algorithm optimization, many choices in modeling the
system and task lack realism. This suggests that, as it stands,
the approach demonstrated here is not adequate for end-point
evaluation of an imaging system for the purpose of determining
performance for tasks with immediate clinical relevance. Instead,
the methods we put forward are more suited to component-level
optimization of the reconstruction algorithm in the development
stage of system design. More realism may be possible for the
lightweight HO implementation we propose, such as nearest
neighbor detector pixel correlation, different signal models, over-
lapping structures or tumors, or possibly a simple random back-
ground model. The main purpose of the lightweight HO is to
reduce the large parameter space which exists for reconstruction
algorithms. Realistic anthropomorphic model observers, which
are more costly to evaluate, could then be used to select between
comparatively few parameter settings or algorithms.
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