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Abstract. Standard surgical resection of glioblastoma, mainly guided by the enhancement on postcontrast
T1-weighted magnetic resonance imaging (MRI), disregards infiltrating tumor within the peritumoral edema
region (ED). Subsequent radiotherapy typically delivers uniform radiation to peritumoral FLAIR-hyperintense
regions, without attempting to target areas likely to be infiltrated more heavily. Noninvasive in vivo delineation
of the areas of tumor infiltration and prediction of early recurrence in peritumoral ED could assist in targeted
intensification of local therapies, thereby potentially delaying recurrence and prolonging survival. This paper
presents a method for estimating peritumoral edema infiltration using radiomic signatures determined via
machine learning methods, and tests it on 90 patients with de novo glioblastoma. The generalizability of
the proposed predictive model was evaluated via cross-validation in a discovery cohort (n ¼ 31) and was sub-
sequently evaluated in a replication cohort (n ¼ 59). Spatial maps representing the likelihood of tumor infiltration
and future early recurrence were compared with regions of recurrence on postresection follow-up studies with
pathology confirmation. The cross-validated accuracy of our predictive infiltration model on the discovery and
replication cohorts was 87.51% (odds ratio = 10.22, sensitivity = 80.65, and specificity = 87.63) and 89.54%
(odds ratio = 13.66, sensitivity = 97.06, and specificity = 76.73), respectively. The radiomic signature of the
recurrent tumor region revealed higher vascularity and cellularity when compared with the nonrecurrent region.
The proposed model shows evidence that multiparametric pattern analysis from clinical MRI sequences can
assist in in vivo estimation of the spatial extent and pattern of tumor recurrence in peritumoral edema,
which may guide supratotal resection and/or intensification of postoperative radiation therapy. © 2018 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.021219]
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1 Introduction
Glioblastoma is the most common and aggressive primary brain
tumor with a median survival of 12 to 15 months.1 Surgical
resection followed by chemoradiotherapy is the keystone in
the management of these poor-prognosis tumors.2–4 The extent
of resection is mainly guided by the boundary of the enhancing
tumor (ET) on the postcontrast T1-weighted (T1CE) magnetic
resonance imaging (MRI). The radiotherapy planning is also
performed through ET delineation. Conformal radiotherapy,
intensity-modulated radiation therapy, and proton therapy allow
for an increased radiation dose to the tumor bed and surrounding
margin while preserving critical brain structures.5,6 However, the
malignant parenchyma extends beyond the enhancing borders of
the tumor on T1CE,7,8 which is the primary target of the treat-
ment. Stereotactic biopsies have demonstrated the presence of
infiltrating glioma cells in peritumoral edema region (ED).9,10

The peritumoral edema is also a target for the planning of
the postoperative radiotherapy,11,12 and aggressive extent of
resection and radiation dose escalation in this region has
improved survival.3,13

Peritumoral ED, a hyperintense T2-weighted signal around
the ET, is a combination of infiltrating tumor cells14 and vaso-
genic edema,11 where fluid penetrates into the parenchymal
extracellular space. It is not possible to distinguish infiltrating
neoplasm from vasogenic edema with conventional imaging
sequences. A noninvasive method that detects highly infiltrated
tissues would be useful for understanding the behavior of the
tumor and guiding treatment planning.

Multiparametric MRI noninvasively provides comprehensive
information to characterize the tumor and surrounding abnormal
tissues.15–18 Each imaging sequence reflects different character-
istics of tissue, therefore, it would be beneficial to combine all
this information in a single map to define areas of tumor infil-
tration in peritumoral ED. T1CE contains information about
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regional angiogenesis and integrity of the blood–brain barrier in
the tumor. T2-weighted (T2) and T2-fluid attenuated inversion
recovery (T2-FLAIR) sequences are helpful for assessing
extracellular fluid in brain parenchyma.19 Measures derived
from diffusion tensor imaging (DTI) provide information
regarding the water diffusion process in the brain, affected in
part by tumor cells architecture and density.20 Dynamic suscep-
tibility contrast-enhanced (DSC)-MRI techniques reflect various
aspects of perfusion in the brain,15 which provide quantitative
measures of regional microvasculature and hemodynamics.21,22

These patterns are variably affected by infiltrating tumor cells
and, independently, are not sufficiently specific to clearly define
areas of tumor infiltration.7

The goal of this study is to leverage machine learning meth-
ods in order to elucidate multiparametric imaging signatures
of heterogeneously infiltrated peritumoral brain tissue. Our
work builds upon, and extends, previous attempts to identify
infiltrated regions from imaging, which were lacking use of
advanced radiomic features from multiparametric MRI sequen-
ces, and were mostly using image intensities.7,16,17 Moreover, we
attempt to relate this imaging signature to possible underlying
tumor biological processes. We hypothesize that the proposed
method would capture and quantify subtle but important char-
acteristics and otherwise visually imperceptible imaging varia-
tions of peritumoral tissue in patients with glioblastoma, which
may relate to tumor infiltration and probability of relatively
earlier tumor recurrence.

2 Materials and Methods

2.1 Participants

Institutional review board approval was obtained for this study.
We first analyzed a discovery cohort of 31 patients with de novo
glioblastoma, who were diagnosed at the Hospital of the
University of Pennsylvania (UPenn) between 2006 and 2013.
Inclusion of subjects was based on the following criteria:
(i) age over 18 years, (ii) histopathological tissue diagnosis
of glioblastoma (World Health Organization grade IV),

(iii) clinical diagnosis of tumor recurrence proven with histopa-
thologic analysis after repeat resection, (iv) no previous history
of tumor and resection before the first surgery at University of
Pennsylvania, (v) availability of 3 T scanner data, (vi) available
preoperative MRI consisting of precontrast axial T1-weighted
(T1), T1CE, T2, T2-FLAIR, DTI, and DSC-MRI, and (vii) avail-
able postoperative and recurrence time-point MRIs comprising
at-least T1, T1CE, T2, and T2-FLAIR. More detail on image
acquisition and data demographics can be found in
Appendix A. Subjects who had residual tumor after surgical
resection were excluded. Residual tumors were defined as
any contrast-enhancing areas identified by neuroradiologist
(M.B., 16 years of experience) on the immediate postoperative
MRI scans captured no later than 48 h after the surgery. The
replication cohort comprised 59 patients with de novo glioblas-
toma who met the aforementioned criteria. The same treatment,
i.e., gross total resection of ET followed by temozolomide and
radiotherapy was given to all the patients involved in the study.

2.2 Preprocessing, Segmentation, and Calculation
of Perfusion and Diffusion Derivatives

The fractional anisotropy (FA), radial diffusivity (RAD), axial
diffusivity (AX), and apparent diffusion coefficient (ADC)
were derived from DTI, and relative cerebral blood volume
(rCBV) was derived from DSC-MRI. All preoperative MRIs
of each patient were coregistered, smoothed, corrected for
magnetic field in-homogeneities, and skull stripped.23–25 The
computer-based glioma image segmentation and registration
(GLISTR) algorithm26 was used to segment peritumoral ED and
two distinct regions of tumor core (TC), i.e., ET and nonenhanc-
ing tumor core (NET) (Fig. 1).

The GLISTR algorithm uses T1, T1CE, T2, and T2-FLAIR
sequences. It simultaneously registers a probabilistic atlas of a
healthy population to the MRIs with glioblastoma and segments
the sequences into ET, NET, ED, and healthy tissue labels.
This method uses the expectation maximization (EM) algorithm
and incorporates a tumor growth model, a process which

Fig. 1 Brain tumor segmentation via GLISTR by using input (a) T1CE, (b) T2-FALIR, (c) T1, and (d) T2
sequences. The segmented pertitumoral edema/tumor infiltration, enhancing tumor, and nonenhancing
tumor core are seen overlaid on (e) axial, (f) sagittal, and (g) coronal view of T1CE sequence.
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modifies the original atlas into a sequence with ET, NET, and
ED adapted to best match a given set of patient sequences. The
modified atlas is registered into the patient sequences, and
then GLISTR utilizes this process for estimating the posterior
probabilities of various tissue labels. EM iteratively refines
the estimates of the posterior probabilities of tissue labels, the
deformation field, and the tumor growth model parameters. The
deformation field takes into account the mass effect produced
by the tumor. Therefore, GLISTR has a framework for joint
segmentation and nonlinear registration that is guided by the
atlas. The inverted deformation field warps the patient sequen-
ces into the common atlas space. The mass effect gets relaxed
in the atlas-normalized sequences; hence, the ventricles get
decompressed compared to the original patients’ sequences.
This method thus incorporates a tumor growth model to adapt
the normal atlas into the anatomy of the patient brain.

2.3 Radiomic Features

Ideally, one would want to have ground truth of peritumoral
tissue that is not infiltrated and tissue that is most-heavily
infiltrated, in order to train a classifier. In the absence of
such a ground truth, we took an alternative approach, which
his discussed next. The heterogeneity of edematous tissue was
assessed by defining two regions of interest (ROIs) within the
peritumoral edema: near-tumor ROI (N-ROI), adjacent to TC,
and far-from-tumor ROI (F-ROI), farthermost from the TC
but still within the peritumoral bright-FLAIR ED (Fig. 2).
The hypothesis behind using N-ROI and F-ROI was that they
are expected to have relatively higher and lower infiltration
and, therefore, can serve as references to model relatively
more- and relatively less-infiltrated regions, respectively.7,27

There was not any fixed length of the ROIs; however, F-ROI
was generally three times larger in size compared to N-ROI
because more space was available for drawing farther from
the tumor. The F-ROIs were subsampled at equal intervals to
have a balanced training dataset with equal number of voxels
of N-ROI and F-ROI.

A set of radiomic features was extracted at each voxel of
the N-ROI and F-ROI by using all the imaging sequences.
The features were categorized into five different groups;
(i) intensity features: signal intensity of preoperative MRIs;
(ii) distance features: distance of a voxel from TC; (iii) statistical
features: local mean and median of a voxel in preoperative

MRIs; (iv) texture features: local contrast and entropy of a
voxel in preoperative MRIs; (v) perfusion temporal dynamics:
perfusion time series of each voxel was summarized by five
principal components accounting for more than 95% of the
signal’s variance. More detail on the features can be found in
Appendix B. Prior to feature extraction, all the images were
normalized in 0 to 255 range.

2.4 Discovery and Replication Evaluation

A multidimensional pattern classifier was trained on the above-
mentioned features of the voxels of N-ROI and F-ROI using
support vector machines (SVM)28 with a Gaussian kernel func-
tion. The trained model was then applied on test voxels to cal-
culate the infiltration scores. The infiltration score of each voxel
was converted to pseudoprobability of that voxel belonging to
N-ROI or F-ROI class by using the Platt’s calibration method.29

In our modeling, this voxelwise map signifies spatial pseudo-
probability of infiltration that was named the infiltration index.
It may be noted that the infiltration index of a voxel has a value
between 0 and 1 representing estimated least-infiltrated and
most-infiltrated tissues, respectively.

In the discovery cohort, leave-one-out crossvalidation strat-
egy was adopted wherein an SVM classifier was trained on
n − 1 (n ¼ 31 for discovery cohort) subjects and was tested
on the left out subject. This process was reiterated n times,
each time leaving a different subject out. In order to provide
realistic estimates of how well the predictive models were likely
to generalize to new populations, a model was prepared on all
the subjects of the discovery cohort, i.e., n ¼ 31 and was tested
in a totally independent replication cohort of n ¼ 59 de novo
glioblastoma subjects. In particular, the principal component
analysis transform and z-score parameters (mean, standard
deviation) were learned from the training set and then applied
to test set (using crossvalidation on discovery cohort and using
direct evaluation on replication cohort).

2.5 Evaluation Method

The evaluation method following the guidelines of Ref. 7 was
used here. In brief, evaluation was performed by comparing the
estimated infiltration map to two ROIs: recurring ROI (R-ROI)
and nonrecurring ROI (NR-ROI). Figure 3 provides a cartoon
representation of a tumor with the annotation of recurrence
sites. It shows the regions (R-ROI and NR-ROI, both colored)
used in the evaluation process.

1. The R-ROIs were manually drawn by experts (H.A.,
M.B.) with the intention of selecting a small region
on the preoperative MRI that best corresponded to
the location of pathology-proven recurrence. This was
a best approximation due to preoperative mass effect,
resection, and inexact registration between preopera-
tive and follow-up recurrence scans (Fig. 4). Hence,
a 3 mm margin around the manually estimated ori-
gin-of-recurrent tumor region was included in the
R-ROIs, assuming that they were likely to be heavily
infiltrated but also accounting for registration uncer-
tainties in placing the R-ROIs (Fig. 4).

2. NR-ROIs were defined as all the remaining peritu-
moral EDs between 5 and 20 mm around the TC.

Fig. 2 Regions of interest: N-ROI, adjacent to TC; and F-ROI at the
most distant edge of edema.
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The following regions were excluded from the evaluation
process due to several reasons.

1. A margin between 3 and 10 mm (7 mm) around the
R-ROI was excluded from any labeling as recurrence
or nonrecurrence because of its immediate proximity
to actual recurrence. Even if there were no registration
uncertainty in the mapping from preoperative to
follow-up scans, this tissue would naturally be deemed
likely to be heavily infiltrated and to recur soon, due to
its proximity to actual recurrence.

2. The region beyond 20 mm distance from TC was
excluded from evaluation to avoid artificially overesti-
mating the predictive value of our analysis, because

distant edema is naturally unlikely to recur early;
therefore, a model predicting this correctly would
have limited added value over common clinical knowl-
edge. Similarly, the 5-mm margin around the TC was
also excluded in the evaluation for several reasons.
First, some peritumoral nonenhancing tissue is typi-
cally removed at our institution during surgery.
Second, registration uncertainties in mapping recur-
rence to preoperative scans are maximal around the
tumor, due to preoperative mass effect. Third, the natu-
ral history of glioblastoma shows that immediate peri-
tumoral tissue is the most likely to be heavily
infiltrated and to present the earliest recurrence; there-
fore, the practical value of a predictive model in that
region is limited.

To assess the performance of the proposed infiltration pre-
diction method, the R-ROI and NR-ROI served as positive and
negative regions. The binary label maps were obtained by
applying threshold of 0.5 on the continuous infiltration prob-
ability map (Fig. 5), and true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) were calculated by
comparing the label map with positive and negative regions.
Sensitivity, specificity, accuracy [Eqs. (1)–(3)], and area-
under-the-curve (AUC) were calculated from the TP, FP,
TN, and FN. In order to account for the different sizes of
R-ROIs and NR-ROIs, we calculated balanced accuracy,
which is the average value of sensitivity and specificity
[Eq. (4)].

EQ-TARGET;temp:intralink-;e001;326;430Sensitivity ¼
�

TP

TPþ FN

�
× 100; (1)

EQ-TARGET;temp:intralink-;e002;326;378Specificity ¼
�

TN

TNþ FP

�
× 100; (2)

EQ-TARGET;temp:intralink-;e003;326;333Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
× 100; (3)

EQ-TARGET;temp:intralink-;e004;326;291Balanced Accuracy ¼
�
Sensitivityþ Specificity

2

�
× 100:

(4)

In addition, odds ratio30 was calculated to quantify how
strongly the estimated preoperative infiltration maps were asso-
ciated with subsequent recurrence [Eq. (5)]. We considered the
infiltration map as a risk factor (exposure) and calculated its
association with the outcome, which is a recurrence in our study.
The R-ROI and NR-ROI served as outcome of our model,
whereas binary label map provided exposed (EX, >¼ 0.5) and
not exposed (NEX, <0.5) regions (Table 1).

The exposure and outcome were then used to calculate odds
ratio.

EQ-TARGET;temp:intralink-;e005;326;128Odds ratio ¼ R − ROIEX � NR − ROINEX
NR − ROIEX � R − ROINEX

: (5)

Fig. 3 Regions used in the evaluation process of the proposed
method. R-ROI: region demarcated by the radiologists and additional
3 mm margin around it. White area in the figure shows regions
excluded from the evaluation either due to close proximity to TC or
to recurrence. NR-ROI: region other than TC, R-ROI, and the regions
not included in evaluation due to close proximity (color figure online).

Fig. 4 Top-row shows preoperative MRI sequences and the
R-ROI (red) demarcated by the radiologists. The extended blue
region shows the 3-mm margin that was also added to R-ROI to
account for registration errors. The bottom-row shows recurrence
MRI sequences, which were used as a reference to demarcate
R-ROI (color figure online).
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2.6 Software Availability

The proposed method is implemented in Insight Toolkit and is
integrated in the Cancer Imaging Phenomics Toolkit (CaPTk),
which is available in Ref. 31.

3 Results

3.1 Infiltration Scores

Table 2 shows the results separately for the subjects of the dis-
covery and replication evaluations. Results for the discovery
cohort were obtained using leave-one-out crossvalidation,
whereas the results for replication cohort were based on single
model trained on the discovery cohort. Classification results
include a mean sensitivity of 80.65%, specificity of 87.63%,
accuracy of 87.51%, and recurrence odds ratio estimates of

10.22 for tissue predicted to be relatively more infiltrated in
the discovery cohort. Similar results were observed for the rep-
lication cohort. The proposed method showed a mean sensitivity
of 97.06%, specificity of 76.73%, accuracy of 89.54%, and
recurrence odds ratio estimates of 13.66 for the replication
cohort.

Figure 5 shows an infiltration map generated for an example
subject. The left part of the middle row shows a preoperative
T1CE sequence of the subject, and the predicted infiltration
map is overlaid on it. The right part shows the T1CE sequence

Fig. 5 An estimated map for tumor infiltration from preoperative MRIs. Top row (preoperative MRIs):
MRIs, comprising T1CE, T2-FLAIR, T1, and T2, on the right, and 3-D view of an estimated infiltration
map overlaid on the T1CE image on the left. Red arrow points to the area of high risk. Bottom row
(recurrence MRIs): MRIs, comprising T1CE, T2-FLAIR, T1, and T2, on the right, and 3-D view of real
recurrence via T1CE image on the left. Middle row: Detailed view of preoperative T1CE MRI with the
overlaid predicted infiltration map on the left, and detailed view of recurrence T1CEMRI on the right (color
figure online).

Table 1 Outcome and exposure of the proposed infiltration prediction
model.

R-ROI NR-ROI

EX R − ROIEX NR − ROIEX

NEX R − ROINEX NR − ROINEX

Table 2 Performance of the proposed infiltration prediction model for
discovery and replication cohorts.

Discovery cohort Replication cohort

Odds ratio 10.22 13.66

Accuracy 87.51 89.54

Sensitivity 80.65 97.06

Specificity 87.63 76.73

Balanced accuracy 85.00 87.00

AUC 0.83 0.91
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of the same subject with real recurrence. A side-by-side view of
both the sequences shows that the predicted recurrence (red
region in left) matches well with the real recurrence (bright
region in right).

The predictive power of the developed infiltration model
was also accessed via receiver operating characteristic (ROC)

curve and corresponding AUC. The AUC was 0.83 and 0.91,
for discovery and replication cohort, respectively (Fig. 6).

3.2 Imaging Features of Regions Involved in
Training and Evaluation

Considering the variation in the imaging profile of R-ROI
and NR-ROI, we sought to better understand the primary imag-
ing characteristics (features), which distinguish these regions
(Fig. 7). The imaging features were significantly different
between R-ROI and NR-ROI [Fig. 7(b)], and between N-ROI
and F-ROI [Fig. 7(a)]. The imaging features were consistent
between N-ROI (hypothesized to be more infiltrated) and
R-ROI (recurrent region), and between F-ROI (hypothesized
to be less infiltrated) and NR-ROI (nonrecurrent region). The
major finding in this direction is that R-ROI, when compared
with NR-ROI, revealed higher vascularity and cellularity.
In addition, R-ROI has lower signal intensity on T2 and T2-
FLAIR sequences and higher signal intensity on T1, thereby

Fig. 6 ROC curves in (a) discovery and (b) replication cohorts. The
ROC curves are compared with chance (the black diagonal line).

Fig. 7 Imaging characteristics of the regions involved in training and evaluation of the proposed model.
(a) N-ROI and F-ROI, (b) R-ROI, and NR-ROI. The x -axis shows the regions and the y -axis shows the
values of the voxels (scaled in the range of 0 to 1) in each imaging sequence. The P value of ANOVA test
showed a significant difference between the two groups in all sequences (P < 0.001).
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suggesting lower water concentration compared to NR-ROI.
Each imaging feature contained significant discriminating
information as can be seen by the separation between different
regions in Figs. 7(a) and 7(b), which when integrated via
a machine learning algorithm yielded the reported infiltration
predictions. The discriminating power of various individual
intensity features calculated by ROC curve analysis was:
T1 (AUC ¼ 0.65), T1CE (AUC ¼ 0.63), T2 (AUC ¼ 0.70),
T2-FLAIR (AUC ¼ 0.63), ADC (AUC ¼ 0.72), FA (AUC ¼
0.71), AX (AUC ¼ 0.69), and RAD (AUC ¼ 0.69).

The proposed model was also evaluated using conventional
imaging sequences such as T1, T1CE, T2-FLAIR, and T2 only,
and intensity, texture, statistical, and distance features were
used to build the model. The experiment was performed under
the same conditions, i.e., leave-one-out crossvalidation on
the discovery cohort (n ¼ 31) and then applying the model
built on discovery cohort to an independent replication cohort
(n ¼ 59). The performance of the model for both the cohorts
was lower (odds ratio: discovery = 6.59, replication = 8.65)
compared to the performance obtained using all the imaging
sequences (odds ratio: discovery = 10.22, replication = 13.66).
This observation underscores the advantage of using a multi-
parametric MRI model that integrates synergistic imaging
features extracted from various imaging sequences. However,
this result also indicates that useful predictions can be obtained
via conventional MRI, which is available in all clinics, as long as
rich radiomic feature sets are extracted.

4 Discussion
Despite the therapeutic advancements over the past decade,
the median survival for glioblastoma still remains around 14
months.32 The standard clinical practice for glioblastoma resec-
tion is removal of enhancing core of the tumor, mainly guided
by the preoperative T1CE MRI, thereby leaving the majority of
the infiltrating tumor mostly unresected. Similarly, the current
radiation procedure involves radiation on the resection bed
and a variable margin around the resection bed, which both
normally receive the reduced and spatially uniform radiation
dose. There is a need to quantify the heterogeneity within
the peritumoral region and assess the spatial pattern and extent
of tumor infiltration within the peritumoral region in order to
guide these surgical processes and pave the way for targeted
intensification of local therapy to the infiltrated peritumoral
region. In this study, we aim to leverage multiparametric MRIs
along with advanced machine learning methods to address
this critical and unresolved need in the field of glioblastoma
therapy and demarcate the regions at highest risk for tumor
recurrence.

The multiparametric modeling has been previously leveraged
to investigate the imaging surrogates of peritumoral infiltration.
For instance, Akbari et al. used conventional and advanced im-
aging sequences to identify basic MR imaging features sugges-
tive of glioblastoma infiltration, yielding a predictive model for
recurrence.7 Our investigation builds on the described previous
work for multiparametric analysis by implementing comprehen-
sive quantitative analysis of distance, texture, statistical, and
signal strength measures of the infiltrated and noninfiltrated
regions from a large cohort of de novo glioblastoma patients
using conventional and advanced imaging sequences. The better
performance of our model compared to previous studies7,11,12

can be attributed to the comprehensive feature set and availabil-
ity of a larger cohort.

4.1 Implications for Surgical and Radiation Planning

The ability to predict the site of tumor recurrence has numerous
potential clinical ramifications. Neurosurgeons have proposed
the concept of supratotal resection, in which they administer
agents (e.g., Ref. 33) that identify areas of microscopic tumor
infiltration at the time of surgical resection of a primary
glioma, allowing for increased rates of gross total resection
and improved progression-free survival.34 Adding a noninva-
sive tool to the armament of neurosurgeons may further
increase these surrogates for overall survival. The proposed
method would enable intensive, yet targeted, surgery and
radiotherapy, thereby potentially delaying recurrence and pro-
longing survival.

Radiation dose escalation trials in the twentieth century uni-
formly failed to show a survival benefit.35,36 However, there is
renewed interest in these types of trials in the modern era of
concurrent chemoradiation with temozolomide. It is theorized
that radiotherapy delivery techniques may improve the thera-
peutic ratio in dose escalation. Identification of the region
of interest for radiation dose escalation remains challenging,
as a balance is needed between normal tissue toxicity and
therapeutic doses. Quantifying a region at highest risk of
tumor recurrence provides a potential target for dose escalation
based on the very spatial heterogeneity of disease in the
peritumoral edema. The high risk areas, found in the infiltra-
tion maps, which often appear adjacent to ET or cavity but
sometimes are a distance away, may serve as potential regions
that could be included in a target volume for radiation dose
escalation. We believe that using predictive models to better
delineate the region of highest risk can influence the pattern
of relapse in patient with glioblastoma, with the potential to
improve clinical outcomes such as progression-free survival
and overall survival, by directing high-dose radiation primarily
toward regions likely to present earlier recurrence while
offering relative preservation of lower-risk brain tissue. The
proposed method will assist personalization of treatment regi-
mens based on patient-specific features rather than a one-size-
fits-all delineation of high-risk regions of interest.

4.2 Biological Interpretation of the Radiomic
Signatures

The main findings of the derived radiomic signature (Fig. 7)
indicate that R-ROI (when compared with NR-ROI) has lower
signal intensity on native-T2 and T2-FLAIR signals, thereby
suggesting lower water concentration. Further, the R-ROI
shows relatively higher T1 signal intensity, which would also
be consistent with lower water concentration. Finally, the
R-ROI shows slightly higher T1CE, which suggests relatively
more compromised blood–brain barrier in tissue, also consistent
with the characteristics of infiltrating tumor. The diffusion
measures provide information that relates to cell density of
the peritumoral tissue. Regions with high cellularity tend to
have lower ADC37 and higher FA.38 Consistent with the existing
literature, the obtained radiomic signature suggests that the
R-ROI (when compared with NR-ROI) has lower mean diffu-
sivity and higher FA. The features calculated from DSC-MRI
signal, which relate to aspects of tissue vascularization, perfu-
sion, and permeability of blood vessels, were also different
among R-ROI and NR-ROI.

Individual assessment of these radiomic signatures displayed
differences between R-ROI and NR-ROI, as can be seen via
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visual inspection in Fig. 7. However, appropriate integration of
these radiomic signatures via machine learning methods yielded
much better sensitivity and specificity, both in crossvalidation
and in independent cohort evaluation, underlining the value of
multivariate pattern analysis approaches.

4.3 Limitations

A limitation of this study is that the data were acquired from
a single institution, whereas multicenter data would be benefi-
cial to further and externally validate our infiltration prediction
model. However, the use of independent discovery and repli-
cation cohorts, along with the use of clinically available
imaging sequences, provides confidence that this radiomic
signature will generalize well to other institutions and patient
populations.

5 Conclusion and Future Work
The postcontrast T1 imaging cannot delineate the surrounding
infiltrating tumor for glioblastoma patients, therefore is not
sufficient to guide the surgical and radiation procedures. The
current study provides an in vivo noninvasive and reproducible
method for preoperative assessment of the pattern of tumor infil-
tration within the peritumoral region, suggestive of subsequent
tumor recurrence, which can offer significant advantages over
the current clinical practice by guiding surgical and radiation
treatment planning and paving the way for personalized targeted
treatment.

While radiomic features used in this study provided promis-
ing indication of infiltration, future studies would benefit
from using more sophisticated radiomic features to emphasize
the biologic heterogeneity in glioblastoma. In fact, the use of
machine-learning algorithms to implement both supervised
and unsupervised feature detection may allow the model to
account for potential complex and nonlinear radiographic-histo-
logic relationships. Finally, the proposed model may generalize
to a host of other tumor types; however, any model predictions
other than glioblastoma would entail a replication evaluation
similar to that performed in the current study.

Appendix A: Additional Dataset Details

A.1 Image Acquisition Protocol
Preoperative MRIs were acquired using a 3-T scanner. Obtained
for all patients prior to surgery were: T1-weighted: matrix
192 × 256 × 192; resolution 0.98 × 0.98 × 1.00 mm3; repetition
time (TR): 1760 ms; echo time (TE): 3.1 ms; T1CE: matrix
192 × 256 × 192; resolution 0.98 × 0.98 × 1.00; TR: 1760 ms;
TE: 3.1 ms. T2-weighted: matrix 210 × 256 × 64; resolution
0.94 × 0.94 × 3.00; TR: 4680 ms; TE: 85 ms. T2-FLAIR: matrix
192 × 256 × 60; resolution 0.94 × 0.94 × 3.00; TR: 9420 ms;
TE: 141 ms. DTI: matrix 128 × 128 × 40; resolution
1.72 × 1.72 × 3.00; 30 gradient directions. DSC-MRI, gradient
echo type echo planar imaging (GRE EPI) = field of view
22 cm 128 × 128 × 20; resolution 1.72 × 1.72 × 3 mm3;
TR: 2000 ms; TE: 45 ms. An initial loading dose of one-quarter
of the total contrast dose was administered first to help
minimize errors due to potential contrast leakage out of
intravascular space, and DSC-MRI data were acquired during

Table 3 Demographics of the discovery (n ¼ 31) and replication
(n ¼ 59) cohort of glioblastoma subjects.

Characteristics Category Discovery Replication

Age (years)

MEAN 59.30 62.59

Std. deviation 12.63 11.87

Gender

Male, n (%) 17 (54.83) 30 (50.84)

Female, n (%) 14 (45.16) 29 (49.15)

Table 4 Description of the features used for building infiltration
model.

Feature name Feature description

INT_T2FLAIR Intensity of T2-FLAIR image

INT_T1CE Intensity of T1 post-contrast image

INT_T1 Intensity of T1-weighted image

INT_T2 Intensity of T2-weighted image

INT_AX Intensity of AX image

INT_FA Intensity of FA image

INT_RAD Intensity of RAD image

INT_ADC Intensity of ADC image

INT_RCBV Intensity of RCBV image

Distance Shortest distance of a voxel from tumor (ET+NET)

PC1_PERF First principal component of perfusion signal

PC2_PERF Second principal component of perfusion signal

PC3_PERF Third principal component of perfusion signal

PC4_PERF Fourth principal component of perfusion signal

PC5_PERF Fifth principal component of perfusion signal

TXT_CO_T1CE Texture measure of contrast in T1CE image

TXT_CO_T2FLAIR Texture measure of contrast in T2-FLAIR image

TXT_EN_T1CE Texture measure of entropy in T1CE image

TXT_EN_T2FLAIR Texture measure of entropy in T2-FLAIR image

MN_T1CE Mean value of a voxel in T1CE image

MN_T2FLAIR Mean value of a voxel in T2FLAIR image

MD_T1CE Median value of a voxel in T1CE image

MD_T2FLAIR Median value of a voxel in T2FLAIR image
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a second bolus of the remaining contrast dose after a 5-min
delay for a total of 0.3 mL∕kg or 1.5 times single dose
MultiHance (gadobenate dimeglumine). For postprocessing,
blood volume maps were created on a Leonardo workstation
(Siemens) using the neuro perfusion evaluation task card as
per clinical routine.

A.2 Data Demographics
The discovery and replication cohort, respectively, comprised 31
and 59 patients. The demographics for both the cohorts are given
in Table 3.

Appendix B: Radiomic Features
A set of radiomic features was extracted at each voxel by using
all the imaging sequences (Table 4). The features were catego-
rized into five different groups:

Intensity measures: The signal intensity of all the imaging
sequences.

Texture measures: For the texture features, the imaging
sequences were first normalized to 32 different gray levels, and
then a bounding box of radius 2 voxels was used for all the
voxels of each image. Subsequently, a gray level co-occurrence
matrix was filled with the intensity values within a radius of
1 voxel to extract entropy and correlation.39

Statistical measures: The statistical features comprise the
mean and median of the intensities from each imaging sequence
within a radius of 1 for each voxel.

Distance measures: Shortest distance of a voxel from the
tumor (ET+NET). The computer-based glioma image seg-
mentation and registration algorithm26 was used to segment
tumor.

Perfusion temporal dynamics: Perfusion time series of each
voxel was summarized by five principal components accounting
for more than 95% of the signal’s variance.
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