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Abstract. Given the increased need for consistent quantitative image analysis, variations in radiomics feature
calculations due to differences in radiomics software were investigated. Two in-house radiomics packages and
two freely available radiomics packages, MaZda and IBEX, were utilized. Forty 256 × 256-pixel regions of inter-
est (ROIs) from 40 digital mammograms were studied along with 39manually delineated ROIs from the head and
neck (HN) computed tomography (CT) scans of 39 patients. Each package was used to calculate first-order
histogram and second-order gray-level co-occurrence matrix (GLCM) features. Friedman tests determined
differences in feature values across packages, whereas intraclass-correlation coefficients (ICC) quantified
agreement. All first-order features computed from both mammography and HN cases (except skewness in mam-
mography) showed significant differences across all packages due to systematic biases introduced by each
package; however, based on ICC values, all but one first-order feature calculated on mammography ROIs
and all but two first-order features calculated on HN CT ROIs showed excellent agreement, indicating the
observed differences were small relative to the feature values but the bias was systematic. All second-order
features computed from the two databases both differed significantly and showed poor agreement among
packages, due largely to discrepancies in package-specific default GLCM parameters. Additional differences in
radiomics features were traced to variations in image preprocessing, algorithm implementation, and naming
conventions. Large variations in features among software packages indicate that increased efforts to standard-
ize radiomics processes must be conducted. © The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JMI.5.4.044505]
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1 Introduction
The texture of a medical image refers to the coarseness, consis-
tency, and arrangement of pixels within the image. Radiologists
typically make qualitative assessments regarding a patient’s
condition based on the texture and spatial patterns they perceive
within the image.1 With large databases of medical images avail-
able for researchers and radiologists to analyze, high-throughput
computing through the conversion of medical images into mine-
able data (i.e., radiomics) is possible, which may offer additional
insight into a patient’s underlying pathophysiology.2–4 Since the
development of several systematic and large-scale texture analy-
sis-based computer-aided diagnosis (CAD) schemes began at
the University of Chicago in the early 1980s, investigators
have used texture analysis over the decades to develop various
automated detection, diagnosis, and segmentation strategies.
By the mid 1980s, the University of Chicago had set the foun-
dation for CAD schemes used to detect lung nodules in digital
chest radiographs as well as microcalcifications in mammogra-
phy images.5–8 While these early investigations resulted in
a relatively large number of false positives per patient, it was
shown that radiologists’ ability to detect lesions significantly
improved when these texture analysis-based CAD schemes
were used.9,10 Since these earlier investigations, programs
using texture analysis have extended to examine and make clini-
cal predictions concerning additional tissues such as the colon,

liver, and brain.11–13 Because of the growing promise texture
analysis and radiomics have shown and the large amounts of
imaging data available, investigators have become more inter-
ested in quantifying texture to increase the amount of informa-
tion that can be extracted from medical images and to limit
variability among radiologists.

Many research groups have developed in-house and freely
available radiomics software packages to allow for the advance-
ment of radiomics research. These packages, however, are often
used with a one-size-fits-all approach without considering the
underlying mechanisms embedded in the algorithms that may
result in variations among packages or differences in the images
to which the algorithms might be applied. Such variations could
be caused by differences in preprocessing, differences in the
algorithms used to calculate features or differences in algorithm
implementation. In addition, often a radiomics package is used
to analyze images of one specific imaging modality, anatomic
location, or tissue type, although the software is designed to ana-
lyze another type of image. Radiomics features have been shown
to vary substantially based on differences in image acquisition
parameters, reconstruction algorithms, and gating techniques,
and these differences may be exacerbated when computed
with different packages.2,14–23

A number of studies have noticed this lack of harmoniza-
tion among radiomics research and have called for greater
standardization.18,24,25 Hatt et al.26 conducted a review of studies
involving texture analysis of positron emission tomography
(PET) images and identified sources of discrepancies in these
studies that need to be addressed to achieve more reproducible
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radiomics research. Due to the growing demand for harmonized
radiomics research, the imaging biomarker standardization ini-
tiative (IBSI), composed of 55 researchers from 19 institutions
in eight countries, aims to standardize the computation of
radiomics features as well as any potential image processing
required before feature extraction. Through this initiative, a
number of recommendations have been made regarding feature
calculation.27 The IBSI has compared radiomics methods across
collaborators using a small digital phantom with limited size and
gray-level range as well as a single computed tomography (CT)
scan from a patient with lung cancer with five different realistic
image processing configurations in order to achieve greater
standardization among these institutions.28,29 In addition, a
multi-institutional study developed by the quantitative imaging
network investigated the sensitivity of quantitative radiomics
descriptors of lung nodules when computed by different
research institutions. The variability of feature values, however,
was compounded by differences in the nodule segmentation
methods and other institution-specific factors, whereas the
dependence of the variability in features due to image-specific
parameters (e.g., tissue type, imaging modality, and image-
acquisition settings) was not discussed.30 Therefore, the purpose
of this study was to compare two in-house radiomics software
packages to two freely available software packages using clini-
cal images of various anatomic regions and imaging modalities
and to determine the sources of these variations in clinical data.

2 Methods and Materials

2.1 Medical Imaging Data

Cranial-caudal (CC) digital mammography and head and neck
(HN) CT images were obtained through the Human Imaging
Research Office under institutional review board approval.24

Image parameters and patient information are shown in Table 1.
Pixel information was extracted from a single region of interest
(ROI) in each image. Mammography ROIs (256 × 256)
contained normal breast parenchyma, whereas HN CT ROIs
contained manually segmented tumor (mean number of pixels:
1102; range: 174 to 2819) with example ROIs from each
database shown in Fig. 1.

2.2 Radiomics Software

Four radiomics software packages were utilized for this study.
Two packages had been developed in-house by independent
research labs at the University of Chicago (A1 and A2),21,31–34

and two were freely available packages, MaZda v4.6 (Institute
of Electronics, Technical University of Lodz, Poland)35–38 and
IBEX v1.0 beta (The University of Texas MD Anderson
Cancer Center).39 The two packages from outside our institution
were chosen because they were freely available at the initiation
of this study, and they had been cited in a number of recent
publications. Each package was capable of calculating several
classifications of radiomics features including first-order histo-
gram features, fractal features, Fourier features, and gray-level
run length matrix features; however, only first-order histogram
features and second-order gray-level co-occurrence matrix
(GLCM) features were common among all four packages as
shown in Table 2.

In an abstract from the IBSI, the union of all features across
all packages was compared;28 however, in the current study,
only the features shared by all four packages with the same

naming conventions were compared. These common features
are shown in Table 3.

2.3 Sources of Feature Variation: GLCM
Parameters

GLCM features first were calculated using the package-specific
default GLCM parameters unique to each package. These
parameters included the gray-level limits, the dimensions of
the GLCM, and the directions used in the final average of the
GLCM feature values; the distance between neighboring pixel
values was 1 for all packages, and the GLCM features were all
normalized by the number of pixels within the ROI. Next, these

Table 1 Patient and scan characteristics.

Mammography HN CT

Number of scans 40 39

Number of ROIs 40 39

Peak kilovoltage (kVp) 24 (n ¼ 1) 29 (n ¼ 19) 120 (n ¼ 32)

26 (n ¼ 1) 30 (n ¼ 3) 140 (n ¼ 7)

27 (n ¼ 2) 31 (n ¼ 8)

28 (n ¼ 5) 32 (n ¼ 1)

Slice thickness (mm) NA 2.5 (n ¼ 3)

3.0 (n ¼ 36)

Mean pixel spacing
(range) (mm)

0.1 (0.1 to 0.1) 0.536

(0.424 to 0.688)

Scanner manufacturer
and model

GE Senographe
2000D

Philips brilliance
16 (n ¼ 5)

Philips brilliance
64 (n ¼ 30)

Philips iCT 256
(n ¼ 3)

Siemens
biograph 64

(n ¼ 1)

Fig. 1 Example ROIs depicting (a) a 256 × 256-pixel mammography
ROI and (b) an HN ROI containing contoured tumor.
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parameters were modified to allow for the greatest possible con-
sistency among packages. The package-specific default along
with the consistent GLCM parameters is shown in Table 4.
Due to limitations in the customizability of the MaZda interface,
the gray-level limits and the number of directions could not be
modified to match the other packages. Features were calculated
by each software package for each ROI of each image.

2.4 Sources of Feature Variation: Algorithm
Implementation

Differences in algorithm implementation and ROI processing
were investigated to determine sources of variation among soft-
ware packages. While the underlying mathematical equations
used in all software packages are expected to be mathematically
the same, the interpretation and implementation of these
formulas may vary from one package to another. Packages A2,
MaZda, and IBEX cited Haralick,40 whereas A1 cited publica-
tions by Felipe41 and the Handbook of Computer Vision

Applications41 for the equations used for feature calculation;
however, the algorithmic implementation of these equations
may vary due to differences in notation, equation representation,
and implementation strategies. Furthermore, the Handbook of
Computer Vision Applications cites the Haralick paper for its
equations after modifying the notation and imposing some
corrections and conditions on the equations used. The source
code for the packages, excluding MaZda since it was not
available, was investigated for differences between algorithm
implementation.

To remove the effects of ROI preprocessing and GLCM
parameter variability for each package, feature functions were
extracted from the two in-house packages as well as IBEX
such that only the functions used to calculate the individual fea-
tures were investigated. These functions were used to calculate
features directly on a single mammographic image. Individual
feature values were compared across packages to determine
differences in algorithm implementation. These equations
were extracted after GLCM construction such that differences
in the GLCMs across packages did not affect the resultant
feature values.

2.5 Statistical Analysis

After verifying that data were not normally distributed using the
Shapiro–Wilk test, nonparametric repeated measures Friedman
tests were used to test for significance among features calculated
by the software packages. The null hypothesis is that all features
calculated using each software packages are the same and
sampled from the same population. Significance was assessed
at the α ¼ 0.05 level using Bonferroni correction to account
for the 12 features evaluated (p < 0.00417).

The intraclass correlation coefficient (ICC) was used to
assess the agreement of radiomics feature values among pack-
ages with package-specific and consistent GLCM parameters

Table 2 Number of directionally independent features per feature
category that can be calculated by each radiomics package.

Feature category A1 A2 MaZda IBEX

Shape 73 18

First-order histogram 22 18 9 24

Intensity histogram Gaussian fit 5

Absolute gradient 5

Run-length matrix 5 11

Neighborhood intensity difference 5

Co-occurrence matrix 14 14 11 22

Autoregressive model parameters 5

Wavelet 20

Fractal 5 25

Fourier 17 22

Laws 84

Table 3 First- and second-order radiomics features common among
all four packages.

First-order histogram features Second-order GLCM features

Maximum Entropy

Minimum Contrast

Mean Sum average

Standard deviation Sum variance

Skewness Sum entropy

Kurtosis Difference entropy

Table 4 Package-specific default GLCM parameters and GLCM
parameters that were modified to maximize consistency among
radiomics packages.

GLCM parameter A1 A2 MaZda IBEX

Package-specific default

Gray-level limits ½−1500;1500� [Min PV,
Max PV]

[1,4096] [Min PV,
Max PV]

Number of gray
levels

3001 64 256 (Max PV –

Min PV)

Number of directions 4 8 4 8

Consistenta GLCM parameters

Gray-level limits [Min PV,
Max PV]

[Min PV,
Max PV]

1 to 4096b [Min PV,
Max PV]

Number of gray
levels

64 64 64 64

Number of directions 8 8 4b 8

PV = pixel value.
aParameters were modified to maximize consistency across
packages.

bThese parameters could not be modified.
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using the two-way mixed effect model illustrating the absolute
agreement of the feature values across packages [i.e., ICC
(A,1)].42 The ICC quantifies the absolute agreement between the
sets of data by comparing the variability in feature values across
software packages to the variability in values across patients.
ICC values are stratified to indicate “excellent” (ICC > 0.9),
“good” (0.9 ≥ ICC > 0.75), “moderate” (0.75 ≥ ICC > 0.5),
or “poor” (ICC ≤ 0.5) agreement.43

3 Results
First-order gray-level features and second-order GLCM features
were generated using the 40 mammography and 39 HN CT
ROIs as input for each of the four radiomics software packages.
Boxplots depicting the distributions of the calculated features
among all four packages are shown in Fig. 2.

ICCs and the p-values for differences across packages for
each feature are shown in Table 5. While first-order features
showed significant differences, the ICCs for all first-order
mammography features besides kurtosis demonstrated excellent
agreement. This indicates that while systematic biases are
introduced due to differences in each of the packages resulting
in significant differences, the magnitude of these biases are
small relative to the feature values themselves. Therefore, the
ICC still reflected excellent agreement in these features among
packages. Among HN CT ROIs, maximum showed good agree-
ment, and mean showed moderate agreement, whereas the
remaining first-order features all showed excellent agreement.

Second-order GLCM features were calculated using the
package-specific default GLCM parameters with the distribu-
tions of feature values shown in Fig. 3.

All features differed significantly among the four packages
for both mammography and HN CT ROIs.

All second-order features for both mammography and HN
CT ROIs showed poor agreement; however, HN features tended

to show slightly higher ICC values. Plots showing values for the
kurtosis and GLCM entropy across the 39 HN CT ROIs are
shown in Fig. 4, which demonstrate excellent and poor agree-
ment across packages, respectively. In the scatter plot depicting

Fig. 2 Distribution of first-order features calculated on (a) the mammography ROIs and (b) the HN CT
ROIs. Boxes extend from the first to the third quartile with the median represented by the centerline.
Outliers are indicated by +.

Table 5 p-Values resulting from the nonparametric Friedman tests
comparing radiomics features across packages and ICCs illustrating
agreement in features among packages. Second-order features were
calculated using package-specific default GLCM parameters.

Mammography HN CT

Feature p-Value ICC p-Value ICC

Max <0.004 0.999 <0.004 0.755

Min <0.004 0.996 <0.004 0.975

Mean <0.004 0.997 <0.004 0.614

Standard deviation <0.004 1.000 <0.004 1.000

Skewness 0.917 1.000 <0.004 1.000

Kurtosis <0.004 0.297 <0.004 0.989

GLCM contrast <0.004 0.001 <0.004 0.193

GLCM entropy <0.004 0.001 <0.004 0.003

GLCM sum entropy <0.004 0.002 <0.004 0.004

GLCM sum average <0.004 <0.001 <0.004 <0.001

GLCM sum variance <0.004 <0.001 <0.004 0.002

GLCM difference entropy <0.004 0.004 <0.004 0.006
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the feature distributions for kurtosis, the differences in feature
values among packages for each patient are small relative to
the variation in feature values among patients. In addition,
the differences in feature values introduced by differences

among radiomics packages were consistent, resulting in signifi-
cant differences when using Friedman tests; however, because
the bias was small compared to the variation among patients, the
ICC is close to 1 reflecting excellent agreement. In contrast, for

Fig. 3 Distribution of second-order features for (a) the mammography ROIs and (b) the HN CT ROIs
using the package-specific default GLCM parameters outlined in Table 3.

Fig. 4 Scatter plots illustrating the agreement of features across packages. HN kurtosis showed excel-
lent agreement (ICC ¼ 0.989) because the variability in feature values among packages is much less
than the variability in feature values among patients, whereas HN GLCM entropy showed poor agree-
ment (ICC ¼ 0.003). Because of the consistent bias introduced in the feature distributions, HN kurtosis is
still significantly different when calculated using different radiomics packages despite the strong agree-
ment reflected by the ICC for HN kurtosis.
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GLCM entropy, the differences in feature values for each patient
across packages are large and systematic, resulting in significant
differences and an ICC value near 0 reflecting poor agreement.

3.1 Variation in Image Importation and
Preprocessing

In both the A1 and A2 packages, the raw images are imported
with no preprocessing or normalization applied before features
are calculated. MaZda, however, applies a default normalization
such that the value of each pixel is increased by one. The MaZda
user manual35 states that this is done to keep consistency with
the equations presented by Haralick and Shapiro.44 In addition,
MaZda was not designed to accommodate negative pixel values,
and the resulting pixel values are greatly dependent on whether
or not the image was stored as signed or unsigned because of the
way signed and unsigned images differ in their bit allocation. In
comparison, pixel values in IBEX are not dependent on if the
image was stored as signed or unsigned, but negative pixel val-
ues are truncated at zero while nonnegative pixel values retain
their original value. In addition, IBEX imports images using
the RescaleSlope and RescaleIntercept tags from the DICOM
header in the following manner:

EQ-TARGET;temp:intralink-;e001;63;502Image Data ¼ ðImage DataÞ � RescaleSlope
þ RescaleInterceptþ 1000: (1)

The RescaleSlope tag for a standard CT scan typically has a
value of −1024, resulting in the value of each pixel in the image
being reduced by 24. These trends can be seen in the boxplots
for the min, max, and mean in Fig. 2. MaZda, on the contrary,
does not consider any information contained in the DICOM
header, resulting in fundamentally different results than when
analyzed in IBEX. Differences in image importation are sum-
marized in Table 6.

3.2 Variations in Algorithm Implementation

First- and second-order feature values for the single mammog-
raphy image when feature functions were extracted from the
packages A1, A2, and IBEX are shown in Table 7.

When calculated by isolating feature functions from prepro-
cessing steps, most features show strong agreement among

packages. Sum variance is shown to greatly differ between
A1 and IBEX; however, A1 references Jahne et al.45 for this
equation, which incorporates the value of the sum average in
its calculation, whereas IBEX references Haralick et al.,40

which instead incorporates the value of the sum entropy. It is
stated in Jahne et al.45 that this discrepancy is thought to be
a typographical error. In addition, while skewness and kurtosis
among A1, A2, and IBEX appear to be relatively similar, A1
uses a bias correction that could result in large discrepancies
for smaller images.

Differences in values for GLCM entropy, sum entropy, and
difference entropy between package A2 and the other two pack-
ages arise from different entropy definitions. While A1 and
IBEX use a logarithm with base 2 in this calculation, A2 uses
a natural logarithm. When these features from A2 are scaled by
a ratio incorporating the two logarithm bases, the values of the
entropy, sum entropy, and difference entropy agree with values
calculated by packages A1 and IBEX to within four significant
digits.

3.3 Variations in Naming Conventions

While some features with a common name have different algo-
rithmic implementations in different software packages, other
features use the same equation (and potentially the same imple-
mentation) but are known by a number of different names. The
individual features analyzed in this study were those that had
common naming conventions among software packages. This
feature set might have been larger had common naming conven-
tions been used to describe common mathematical calculations.
As an example, the literature, as well as the notes in some pub-
lished Matlab functions, shows that GLCM energy can also be
referred to as “uniformity,” “uniformity of energy,” and “angular
second moment.”44,46 The same Matlab functions refer to
GLCM contrast as “variance” or “inertia.” Also, the GLCM

Table 6 Differences in image importation characteristics.

A1 A2 MaZda IBEX

Imported image dependent on image
being signed or unsigned

✓

Capable of importing negative pixel
values

✓ ✓

Capable of performing calculations
using negative pixel values without
manual preprocessing

✓ ✓ ✓

Capable of performing calculations
using negative pixel values with
manual preprocessing

✓ ✓ ✓ ✓

Uses DICOM header in preprocessing ✓

Table 7 Feature values for a single mammography image when
feature algorithms are extracted from packages A1, A2, and IBEX.

Feature A1 A2 IBEX

Max 3161 3161 3161

Min 2123 2123 2123

Mean 2545.7 2545.7 2545.7

Standard deviation 152.6 152.6 152.6

Skewness 0.439 0.439 0.439

Kurtosis 2.967 2.967 2.967

GLCM contrast 1.814 × 1012 1.814 × 1012 1.814 × 1012

GLCM entropy −1.889 × 109 −1.309 × 109 −1.889 × 109

GLCM sum entropy −3.104 × 109 −2.152 × 109 −3.104 × 109

GLCM sum average 4.271 × 1010 4.271 × 1010 4.271 × 1010

GLCM sum variance 3.044 × 1029 3.044 × 1029 1.608 × 1027

GLCM difference
entropy

−3.269 × 109 −2.266 × 109 −3.269 × 109
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homogeneity used in A1 was identified as identical to the
inverse difference moment outlined in Haralick;40 however,
the homogeneity in A1 uses the absolute value of the involved
differences44 rather than the square of that difference. Despite
the underlying code differing greatly in one package, the com-
puted GLCM absolute value and GLCM difference average fea-
ture values were identical for all patients, indicating that these
features may be equivalent; however, variations in naming con-
ventions may be difficult to identify when both feature names
and algorithm implementation differ among software packages.
Finally, it can be seen in Fig. 2 that the kurtosis calculated by
MaZda is exactly three less than the kurtosis calculated by the
remaining packages for each ROI. This is because MaZda
instead calculates the kurtosis that exceeds that of a Gaussian
distribution, i.e., the excess kurtosis, which has a value of
about three. This discrepancy in naming convention is not
explicit in MaZda’s interface.

3.4 Variations in GLCM Parameters

When GLCM parameters were modified to those shown in
Table 3 to maximize the consistency among radiomics packages,
the resulting feature distributions are shown in Fig. 5. Compared
with the distributions shown in Fig. 3, the ranges in the feature
values are dramatically reduced for both the mammography and
HN images, indicating greater agreement among packages.
When using the modified GLCM parameters for both mammog-
raphy and HN CT ROIs, ICCs increased (Table 8) compared
with those calculated using default GLCM parameters but
remained less than 0.33 indicating poor agreement. In addition,
all second-order features were still significantly different across
packages for both mammography and HN CT ROIs.

Because MaZda limited the GLCM parameters that could be
customized, the analysis was repeated excluding MaZda. When
using the modified GLCM parameters, all second-order features
still showed significant differences for both mammography and
HN CT ROIs. While ICCs, excluding MaZda, increased for
every feature, only two features (GLCM contrast and sum aver-
age) for both mammography and HN CT ROIs increased in
value to exceed 0.9 indicating excellent agreement.

4 Discussion
This study demonstrated dramatic differences in computed
radiomics features values among the four packages due to vari-
ous sources of discrepancy. These sources of variation among
packages include differences in image importation and prepro-
cessing, algorithm implementation, as well as GLCM and
feature-specific parameters. While many first-order features
showed relatively good agreement across packages, nearly all
features significantly differed. All second-order features showed
very poor agreement and differed significantly when using pack-
age-specific default GLCM parameters. Therefore, when these
radiomics features are used for predictive modeling, computer-
aided diagnosis, or image segmentation, for example, the results
could greatly differ depending on the software being used.
Subsequently, the results from studies that use one particular
package potentially may not correlate with studies that rely on
a different package, and if the same package is used, results may
still not agree if feature parameters (e.g., GLCM parameters) are
not consistent across these studies.

The exchange and comparison of radiomics software may
allow for a standardization of these software packages resulting
in more translatable radiomics-based research. For example,

Fig. 5 Distribution of second-order features for (a) the mammography ROIs and (b) the HN CT ROIs
using the consistent GLCM parameters outlined in Table 3. Feature distributions show greater agreement
when using the package-specific default GLCM parameters shown in Fig. 3.
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it was found by comparing the feature values across packages
that package A1 had an error in the normalization of the GLCMs
before feature calculation. Therefore, software errors may be
revealed through a comparison of results and code from one
institution to another, and it may be more likely to address pre-
viously unknown errors. Use of a standard set of “calibration”
cases and reporting of the resulting feature values such as those
provided by the IBSI could serve as a tool by which to validate
and commission new radiomics software.27 In addition, an edi-
torial from Vallières et al.47 summarizes the elements of the
radiomics workflow that may also result in variations and prac-
tices that could be used when incorporating radiomics into
research. For example, the radiomics ontology offers a means
of consistently reporting aspects of the radiomics workflow
including radiomics features, segmentation algorithms, and
image filters. This editorial refers to the responsible research
and innovation website for guidelines regarding the effective
reporting of research methods and results.

A number of studies have recognized and reported the need
for standardizing the radiomics pipeline.18,24–26 Because of this,
the IBSI worked toward standardizing radiomics research by
compiling an extensive manual of recommended feature defini-
tions and image processing protocols. The collection of 19 insti-
tutions included in the IBSI used these recommendations to
iteratively modify the feature extraction process when using a
shared digital phantom and eventually a CT scan from a single
lung cancer patient. Features were considered standardized if
50% of the contributors produced the same feature value.
Through this process, agreement was achieved for 99.4% and
96.4% of features extracted from the digital phantom and CT
scan, respectively.28,29 While the institutions included in the
IBSI have increased the homogeneity of their radiomics work-
flow, this study illustrates that the field would benefit from a

broader standardization effort that captures institutions using
both propriety in-house radiomics packages as well as freely
available open-source packages. The IBSI has established an
important role in the standardization of feature definitions
and radiomics algorithms. The goal of this study was not to
duplicate the IBSI effort or offer recommendations outside of
those established by the IBSI but rather to quantify the
differences in radiomics features computed from real-world
clinical images by radiomics software packages that have
been the basis for numerous publications. The findings provide
additional support for the goals that the IBSI seeks to achieve
and quantifies the sources of variation that are highlighted here
and also by the IBSI.

This investigation included a few limitations that introduced
a degree of uncertainty in these results while also indicating
areas that may require attention while working toward standard-
izing radiomics research. The source code for MaZda was not
available, making it difficult to investigate the underlying
mechanics and isolating the components such as preprocessing
and algorithm implementation. To facilitate reproducible
research, freely available radiomics packages may want to
increase the transparency of their methods by making the source
code available to the public for comparison. Also, MaZda does
not allow for automated ROI processing, so for robust prediction
models that include hundreds or thousands of images, manual
feature extraction could take several hours and introduce a high
degree of human error. IBEX also did not inherently allow for
automated feature extraction for multiple images while also
altering feature parameters; however, the IBEX source code
could be used to create an automated feature extraction function.
Radiomics packages developed in the future should consider
automating the feature extraction process while allowing the
user to customize the feature calculation parameters such as

Table 8 p-Values and ICC values for second-order features when using GLCM parameters modified to maximize consistency both with and
without MaZda included. While all features differed significantly when MaZda was not included in the analysis, agreement improved when
MaZda was not included.

Mammography HN CT

Feature p-Value ICC p-Value ICC

With MaZda GLCM contrast p < 0.004 0.327 p < 0.004 0.315

GLCM entropy p < 0.004 0.006 p < 0.004 0.021

GLCM sum entropy p < 0.004 0.008 p < 0.004 0.017

GLCM sum average p < 0.004 0.309 p < 0.004 0.208

GLCM sum variance p < 0.004 0.015 p < 0.004 <0.001

GLCM difference entropy p < 0.004 0.043 p < 0.004 0.041

Without MaZda GLCM contrast p < 0.004 0.998 p < 0.004 0.989

GLCM entropy p < 0.004 0.061 p < 0.004 0.281

GLCM sum entropy p < 0.004 0.055 p < 0.004 0.387

GLCM sum average p < 0.004 1.000 p < 0.004 0.994

GLCM sum variance p < 0.004 0.023 p < 0.004 <0.001

GLCM difference entropy p < 0.004 0.330 p < 0.004 0.387
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those involved in constructing the GLCMs. Furthermore,
when publishing findings obtained from radiomics research,
any relevant material required to reproduce the work, such as
feature definitions or GLCM parameters, should be included
in paper appendices or supplemental material.

Additional limitations of this study that hindered compari-
sons among packages included the inconsistency in computed
radiomics features and the inability of some packages to calcu-
late features in three-dimensions (3-D). Of the hundreds of fea-
tures that could be calculated among the various packages, the
only feature classes all four software packages had in common
were the first-order histogram features and GLCM features, and
only six features from each class were common among pack-
ages. This illustrates that features should be translatable across
radiomics software packages using the feature definitions sup-
plied by the IBSI.27 These definitions should also be used to
allow for calculations in both two- and three-dimensions. For
instance, because some packages included in this study could
not compute 3-D features, comparison to IBSI harmonization
data was not possible.27

Future work should incorporate additional radiomics pack-
ages to further test the variability of the resultant feature values.
The first- and second-order features used in this study were
chosen because they were the only 12 features that all four pack-
ages had in common; however, using additional package com-
binations could allow for a larger number of studied features.

Additional studies should directly investigate the effects of
analyzing images from various imaging modalities such as mag-
netic resonance imaging (MRI) or PET. Radiomics packages
may have been developed to process a particular type of
image from a specific imaging modality. MaZda was originally
developed to extract features from MRI scans with a particular
range of pixel values, whereas A1 was originally developed to
study lung CT scans in Hounsfield Units. Therefore, the pack-
age-specific default GLCM parameters for A1 used a gray-level
limit of −1500 to 1500, whereas the gray-level limit for MaZda
was determined automatically based on the bit depth of the MRI
image. Investigating images from additional imaging modalities
and additional tissue types could offer insight into how different
packages behave under various circumstances. Future work
could also include studying the effects of using various radio-
mics packages to accomplish a particular clinical task such as
classifying patients with a particular disease.

5 Conclusion
An analysis of the variability in four radiomics software pack-
ages was performed to determine sources of discrepancies in
computed radiomics features among packages. Inconsistencies
in image importation, algorithm implementation, and GLCM
parameters were investigated. The vast majority of features dem-
onstrated significant differences in computed values across
packages; however, most first-order features showed excellent
agreement based on ICC. Second-order features had relatively
poor agreement among packages as assessed by ICC. When
GLCM parameters were modified to provide greater consistency
across packages, ICCs increased but only showed agreement for
two features (GLCM contrast and sum average). Investigators
should therefore use caution when adopting new radiomics
packages and incorporating them into their research, ensuring
the software used is appropriate for the images being studied
and fully disclosing the underlying calculation parameters so
that results from one radiomics-based study may be translatable

to other studies. Additional collaboration with groups such as
the IBSI should be conducted to achieve greater harmonization
of radiomics methods with direct clinical application across
a greater number of institutions.
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