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Abstract

Purpose: While radiomics feature values can differ when extracted using different radiomics
software, the effects of these variations when applied to a particular clinical task are currently
unknown. The goal of our study was to use various radiomics software packages to classify
patients with radiation pneumonitis (RP) and to quantify the variation in classification ability
among packages.

Approach: A database of serial thoracic computed tomography scans was obtained from 105
patients with esophageal cancer. Patients were treated with radiation therapy (RT), resulting in
20 patients developing RP grade ≥2. Regions of interest (ROIs) were randomly placed in the
lung volume of the pre-RT scan within high-dose regions (≥30 Gy), and corresponding ROIs
were anatomically matched in the post-RT scan. Three radiomics packages were compared: A1
(in-house), IBEX v1.0 beta, and PyRadiomics v.2.0.0. Radiomics features robust to deformable
registration and common among radiomics packages were calculated: four first-order and four
gray-level co-occurrence matrix features. Differences in feature values between time points were
calculated for each feature, and logistic regression was used in conjunction with analysis of
variance to classify patients with and without RP (p < 0.006). Classification ability for each
package was assessed using receiver operating characteristic (ROC) analysis and compared
using the area under the ROC curve (AUC).

Results: Of the eight radiomics features, five were significantly correlated with RP status for all
three packages, whereas one feature was not significantly correlated with RP for all three pack-
ages. The remaining two features differed in whether or not they were significantly associated
with RP status among the packages. Seven of the eight features agreed among the packages in
whether the AUC value was significantly >0.5.

Conclusions: Radiomics features extracted using different software packages can result in
differences in classification ability.
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1 Introduction

Radiomics has shown great promise in classifying various diseases.1–4 Recently, more advanced
and accurate radiomics schemes have been developed, illustrating the promise that quantitative
feature-based detection methods could play in a clinical setting. For example, studies have
shown that radiomics techniques are capable of distinguishing between benign and malignant
prostate lesions as well as offering additional information regarding the aggressiveness of
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the cancer.5 Other studies showed promise in automatically segmenting lesion candidates in
mammograms and classifying them as benign or malignant with high accuracy.6

Given the promising results that radiomics-based studies have reported, investigators have
attempted to incorporate radiomics into their automated detection, diagnosis, and segmentation
schemes.4 The increased focus on this research has resulted in many institutions developing their
own radiomics software, some of which has been made available so that others may use it.
However, these packages have been used interchangeably without considering the inherent
variations among them.7 Variations across software packages can result from differences in algo-
rithm implementation, image preprocessing and importation, or feature definitions. A number of
studies have shown that differences in image acquisition parameters (e.g., voxel size, image
reconstruction, or imaging system manufacturer) can cause large differences in radiomics feature
values when extracted from any number of imaging modalities.1,7–14

Variations in feature values due to differences in image acquisition parameters may be
exacerbated by computational differences embedded in the feature calculation software.
Because it is often difficult to report a completely comprehensive outline of these methods,
these studies are difficult to reproduce and validate, and the lack of reproducibility has slowed
the clinical implementation of many promising radiomics-based detection and diagnosis
schemes.

Some studies have illustrated the need for more standardized radiomics research.7,11,15–19

Additional collaborations such as those put forth by the International Biomarker Standardization
Initiative (IBSI) have attempted to standardize this workflow by providing recommendations
regarding the various aspects of the feature-calculating process including image preprocessing,
pixel interpolations, and feature definitions; however, this standardization has been applied to
a relatively limited cohort of radiomics packages.20,21

Although it is known that radiomics feature values may differ when calculated at different
institutions or with different radiomics software packages, the ultimate goal of such features is
their use as imaging biomarkers.7 Many freely available software packages have yet to become
standardized to any particular reference, resulting in continued variability in radiomics research
across institutions. Quantifying the differences in image-based radiomics feature values and
understanding the sources of these variations are important; however, the effects of these var-
iations when applied to a particular clinical task are currently unknown. Therefore, the purpose
of this study was to use three radiomics packages to extract feature values from serial thoracic
computed tomography (CT) scans of patients receiving radiation therapy (RT). Feature values
were used to classify patients with and without radiation pneumonitis (RP), and classification
ability associated with each radiomics package was compared.

2 Methods and Materials

2.1 Medical Imaging Data

A retrospective database of serial thoracic CT scans was acquired under institution review board
approval from 105 patients receiving RT for esophageal cancer. Each patient underwent two
high-resolution diagnostic CT scans, with the first scan acquired prior to treatment and the sec-
ond acquired no more than 4 months after treatment (Table 1).22,23

A treatment planning scan and the associated dose map obtained from treatment planning
were also acquired for each patient. Dose maps were generated using heterogeneity corrections
using a Pinnacle (Philips Medical Systems, Andover, Massachusetts) treatment planning system
for photon therapy or Eclipse (Variation Medical Systems, Palo Alto, California) treatment plan-
ning system for proton therapy. Patients were monitored for up to 6 months after treatment, and
using all available documentation and imaging, RP status was determined through consensus of
three clinicians using Common Toxicity Criteria for Adverse Effects, version 4. Each patient was
assigned a binary value reflecting RP status: 1 for patients with RP (grade ≥ 2) or 0 for patients
without RP (grade < 2), as shown in Fig. 1.

The patient- and treatment-specific variables shown in Table 1 and their association with
RP were evaluated using the chi-squared test for nominal categorical variables and the
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Mann–Whitney U test for continuous variables. Significance was assessed at the 0.05 level after
correcting for multiple comparisons using Bonferroni (p < 0.006).

The pre-RT, post-RT, and treatment planning CT scans were segmented using a semiauto-
mated lung segmentation method and manually modified if necessary. Segmented post-RT scans
were deformably registered to the pre-RT scans using the demons-based Plastimatch v1.5.12-
beta software,24 resulting in a vector map that matched corresponding anatomy between image
acquisitions. The post-RT CT scans were not deformed themselves to preserve the texture of
the captured tissue structure.

Table 1 Patient, treatment, and image characteristics represented as the number of patients
belonging to that category and the relative number of patients belonging to that category
represented as a percentage in parentheses.

Parameter total With RP Without RP

No. of patients 105 (100%) 20 (19%) 85 (81%)

Gender

Male 88 (84%) 17 (85%) 71 (84%)

Female 17 (16%) 3 (15%) 14 (16%)

Median age (range; years) 63 (27 to 81) 65 (48 to 81) 62 (27 to 79)

Smoking history

Current 15 (14%) 2 (10%) 13 (15%)

Former 68 (65%) 13 (65%) 55 (65%)

Never 22 (21%) 5 (25%) 17 (20%)

Treatment modality

IMRT 56 (53%) 9 (45%) 47 (55%)

3D-CRT 17 (16%) 4 (20%) 13 (15%)

Proton 32 (31%) 7 (35%) 25 (30%)

Treatment dose parameters

Median prescribed dose (range; Gy) 50.4 (45 to 66) 50.4 (48.6 to 63) 50.4 (36 to 66)

Median no. of fractions (range) 28 (25 to 33) 28 (27 to 28) 28 (25 to 33)

Median MLD (range; Gy) 9.6 (2.5 to 18.7) 10.5 (2.9 to 15.2) 9.4 (2.5 to 18.7)

Median lung V20 (range; %) 16.6 (3.7 to 38.4 17.5 (4.8 to 31.3 16.3 (3.7 to 38.4

Median MRD (range; Gy) 37.9 (31.2 to 44.7) 38.2 (34.7 to 42.6) 37.8 (31.2 to 44.7)

Incidence of RP

Grade 0 38 (36%) — —

Grade 1 47 (45%) — —

Grade 2 11 (10%) — —

Grade 3 5 (5%) — —

Grade 4 3 (3%) — —

Grade 5 1 (1%) — —

Note: MLD, mean lung dose; MRD, mean ROI dose.
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2.2 Feature Calculation

Regions of interest (ROIs) of 32 × 32 pixels in size (range in physical size: 20.0 × 20.0 to
31.3 × 31.3 mm2) were randomly placed in the lung volume of the pre-RT scan for each patient
without overlap and with a maximum of 10 ROIs placed in each axial slice. Corresponding ROIs
were anatomically matched in the post-RT scan using the vector map obtained from deformable
registration as has been outlined in our previous studies (Fig. 2).22,23,25 In other words, the post-
RT scan was not deformed thus preserving the texture of the image, but the vector map obtained
from registration was used to anatomically match corresponding ROIs between time points.

In addition, the treatment planning scan was deformably registered to match the correspond-
ing dose map to the pre-RT scan and enable calculation of the average planned radiation doses
within each pre-RT ROI. Only ROIs placed in high-dose regions (≥30 Gy) were extracted, given

Fig. 2 (a) ROIs are randomly placed in the lung volume of the pre-RT scans, and (b) the vector
map obtained from deformable registration anatomically matches ROIs in the post-RT scan.
(c) The vector map obtained from deformably registering the treatment planning scan is used
to match ROIs in the pre-RT scan to the anatomical locations in the treatment planning dose map,
assigning a dose distribution to each ROI. Only ROIs placed in high-dose regions (≥30 Gy) were
used. Reprinted with permission from Ref. 22.

Fig. 1 CT scans illustrating the differences in texture for patients (a) without symptomatic RP (RP
grade: 0) and (b) with symptomatic RP (RP grade: 5), which appears as higher-intensity pixels.
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the previous results that showed that ROIs extracted from these regions were more predictive of
RP development.22,23

Three radiomics packages were used for analysis: one in-house package (A1) (developed at
The University of Chicago)22 and two open-source packages, IBEX v1.0 beta (The University of
Texas MD Anderson Cancer Center)26 and PyRadiomics v.2.0.0.27 These packages were used
because they were the only packages that were freely available with source code at the initiation
of this study. Each package could also be automated to process multiple ROIs in a single setting,
and these packages had been cited in the literature. Each radiomics package was used to calculate
all two-dimensional features common among the three packages that were also previously shown
to be robust to deformable registration.28,25 These features consisted of four first-order histogram
features and four second-order gray-level co-occurrence matrix (GLCM) features (Table 2).
While first-order features quantify the various attributes of the gray-level histogram of the pixel
values, GLCM features characterize the spatial distribution of pixels within an ROI. The con-
struction of the GLCMs prior to feature calculation can vary with the parameters used to describe
these matrices, such as the gray-level limits, the number of gray levels, and the pixel binning.29,30

Given that many radiomics studies do not report the GLCM parameters used, GLCM features
were computed using the package-specific default parameters (Table 3). For every feature com-
puted with each radiomics packages, a logistic regression model was constructed classifying
patients with RP.

2.3 Single-Feature Logistic Regression Modeling (MAvg)

For each feature, the differences in feature values between image acquisitions were calculated
using similar methods to those used in our previous studies22,23

EQ-TARGET;temp:intralink-;e001;116;293ΔFVF;S;p ¼ 1

Np

XNp

r¼1

ðFVpost−RT
F;S;p;r − FV

pre−RT
F;S;p;r Þ; (1)

where ΔFVF;S;p is the average change in feature F calculated using software package S over all
ROIs in patient p, Np is the total number of ROIs placed in high-dose regions for patient p, and

Table 2 First- and second-order radiomics features common
among all three packages and also robust to deformable
registration.

First-order histogram features Second-order GLCM features

Mean Sum average

Median Sum entropy

Min Difference entropy

Entropy Entropy

Table 3 Package-specific default GLCM parameters. Pyradiomics designates 25 pixels for each
bin of the GLCM, whereas A1 and IBEX designate the number of bins that compose the GLCM
and the pixels are distributed evenly among the bins.

GLCM parameter A1 IBEX Pyradiomics

Gray-level limits (−1500, 1500) (Min, max) (Min, max)

Number of gray levels 3001 (Max − min + 1) Variable

Gray levels per bin Variable Variable 25

Number of directions 4 8 4
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FV
pre−RT
F;S;p;r and FV

post−RT
F;S;p;r are the feature values computed in ROI r in the pre- and post-RT scans of

patient p, respectively.
Using the dose map and the corresponding vector maps obtained from deformable registra-

tion, the mean ROI dose (MRD) for each patient was calculated using

EQ-TARGET;temp:intralink-;e002;116;684MRDp ¼ 1

Np

XNp

r¼1

Dp;r; (2)

whereDp;r is the average planned radiation dose within the pre-RT ROI r of patient p, and Np is
the total number of ROIs placed in the high-dose region of patient p. This resulted in one value of
MRD for each patient.

A logistic regression model was developed using the pROC package in R v3.3.3 classifying
patients with and without RP. Previous studies have reported that treatment-specific dose param-
eters are correlated with RP development; however, these results vary across institutions.31,32

Therefore, logistic regression models were constructed using MRD alone, and individual fea-
tures were added to this model to determine whether the addition of these features significantly
improved classification ability using receiver operating characteristic (ROC) analysis, with the
area under the ROC curve (AUC) as the performance assessment metric. Individual radiomics
features calculated using each package were then added to the logistic regression model

EQ-TARGET;temp:intralink-;e003;116;500RP ∼MRDþ ΔFVF;S; (3)

where RP is a binary classifier indicating whether or not a patient develops RP (grade ≥ 2),
MRD is the mean ROI dose for each patient, and ΔFVF;S is the mean change in each of the
eight radiomics features (F) calculated using each of the three radiomics software packages
(S). Models of this form using a single feature with changes in feature values averaged over
all ROIs for each patient are referred to as MAvg for clarity. Analysis of variance (ANOVA)
was used with chi-squared tests to determine whether the addition of each feature to the logistic
regression significantly improved classification ability over using MRD by itself. The parameter
MRD was also replaced in the regression model with the mean lung dose (MLD) and the relative
volume of the lung that received at least 20 Gy (V20) to determine whether these parameters
resulted in a different set of features that were significantly associated with RP. Significance
was assessed at the α ¼ 0.05 level after correcting for multiple comparisons using Bonferroni
test (p < 0.002).

During logistic regression, patient data were randomly sampled so that 50% of the patients
were used for training the regression model, whereas the remaining 50% were reserved for
validation. Sampling was performed to maintain the ratio of RP-positive to RP-negative patients
in both the training and validation sets. Random sampling was performed 1000 times, and an
AUC value was calculated for each iteration, resulting in a mean AUC value across iterations
along with the corresponding 95% confidence intervals.

2.4 Multifeature Logistic Regression Modeling

To determine whether combinations of features significantly improved classification ability and
whether feature combinations differed among packages, an additional feature was added to
the logistic regression model using the following equation:

EQ-TARGET;temp:intralink-;e004;116;175RP ∼MRDþ ΔFVF1;S þ ΔFVF2;S; (4)

where the subscripts F1 and F2 refer to the first and second features added to the model, respec-
tively, and S refers to the software package used to calculate these features, similar to that shown
in Eq. (3). Models were first created using each of the eight individual features, and the seven
remaining features were added to each of these models, resulting in a total of 56 total feature
combinations. Significance was assessed at the 0.05 level after correcting for the 56 comparisons
per package (p < 0.0009). Because of the limited number of RP-positive patients in this dataset,
the potential for overfitting was a concern. Therefore, the Akaike information criterion (AIC)
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was used to assess the relative quality of the models when the first and second features were
included in the model compared with when only the first feature was included. The AIC
quantifies model quality by balancing the potential for improved goodness of fit due to additional
feature inclusion with the deficit introduced by the potential for overfitting.33 The AIC was
calculated using the following equation:

EQ-TARGET;temp:intralink-;e005;116;675AICF1;F2;S ¼ −2ðlog−likelihoodÞ þ 2ðnparÞ; (5)

where AICF1;F2;S is the AIC value when feature F2 was added to a model that included the first
feature, F1 and MRD when both features were calculated using software package S. The log-
likelihood reflects how well the model fits the data and npar is the number of parameters. The
absolute value of the AIC is arbitrary but feature combinations that result in smaller AIC values
compared with models including one feature correspond to models of greater relative quality;
in other words, the potential for overfitting due to the increased number of parameters in the
regression is outweighed by the improved model fit reflected by the log-likelihood.

2.5 Single-Feature Individual ROI Pair Modeling (MInd )

Averaging the difference in feature values over all ROIs for each patient could potentially
dampen the impact of ROI pairs that demonstrate larger texture differences and therefore may
be less indicative of RP development. Therefore, an additional set of models was constructed
using each ROI pair as a distinct analyzable unit when training the logistic regression model
(Fig. 3).

EQ-TARGET;temp:intralink-;e006;116;463ΔFVF;S;p;r ¼ FV
post−RT
F;S;p;r − FV

pre−RT
F;S;p;r : (6)

Similar to what is shown in Eq. (1), FVpost−RT
F;S;p;r and FV

pre−RT
F;S;p;r are the values for feature F com-

puted using software S in ROI r in the pre- and post-RT scans of patient p, respectively. For these
models, ΔFVF;S;p;r was included in the logistic regression for each feature along with the mean
dose to the corresponding ROIs [Dp;r in Eq. (2)], resulting in a total of 4474 analyzable units
instead of the 105 units used previously.

Fig. 3 Flowchart depicting regression models trained using individual ROI pairs (M Ind models) as
well as averages over ROI pairs for each patient (MAvg models). Both models are validated using

ΔFVF;S;p values but were trained differently.
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EQ-TARGET;temp:intralink-;e007;116;735RP ∼ Dþ ΔFVF;S: (7)

Models using a single feature (F) and individual ROI pairs are referred to as MInd models.
ANOVA was used to determine whether the addition of each feature to logistic regression sig-
nificantly improved model fit over using just the mean dose to the ROIs. During the validation
process, both MInd and MAvg models were assessed using the changes in feature value averaged

over all ROIs for each patient [ΔFVF;S;p from Eq. (1)] so that both models were assessed using

the same patient data while also validating theMInd models using uncorrelated ΔFVF;S;p values.
In other words, ROIs from the same patient cannot be used to validate classification models,
given that ROIs extracted from the same patient scans are likely to have feature values that are
correlated with one another. In addition, if each patient contributes a different number of ROIs,
this would skew the classification ability of the model. It should be noted that for both models,
patients were split into training and validation sets, such that ROIs from the same patient were
not used in both training and validation sets during the same sampling iteration. Half of the
patients were sampled for training and all individual ROIs corresponding to those patients were
used for training while the remaining ROIs were averaged for each patient and used for vali-
dation, resulting in one value ofΔFVF;S;p for each feature for a given patient. Sampling, training,
and validation were performed in the same way as described in Sec. 2.3. MInd and MAvg models
were compared using Vuong’s closeness test of non-nested model comparison.34

3 Results

Patient- and treatment-specific variables shown in Table 1 were not significantly correlated with
RP status.

3.1 Single-Feature Logistic Regression Modeling

Four first-order gray-level features and four second-order GLCM features were calculated using
three different radiomics packages and using ROIs extracted from the CT scans. For each feature,
ΔFVF;S;p values were added to a logistic regression model including only MRD (MAvg models)
to determine whether the addition of the feature significantly improved the classification ability
of that model (Table 4). Packages typically agreed regarding the features that were significantly
correlated with RP other than GLCM difference entropy and GLCM entropy, which only showed
significant correlation for features extracted using Pyradiomics. Dosimetric parameters alone

Table 4 The p values indicating whether the addition of a particular feature significantly improved
classification ability over using the MRD alone. Features that were considered significantly asso-
ciated with RP did not change when the V20 or MLD was used in the regression instead of the
MRD. Each regression model was trained using averages in changes in feature values over all
ROIs for each patient (MAvg).

Feature A1 IBEX Pyradiomics

Mean p < 0.002 p < 0.002 p < 0.002

Min 0.593 0.133 0.593

Median p < 0.002 p < 0.002 p < 0.002

Entropy p < 0.002 p < 0.002 p < 0.002

GLCM sum average p < 0.002 p < 0.002 p < 0.002

GLCM sum entropy p < 0.002 p < 0.002 p < 0.002

GLCM difference entropy 0.008 0.010 p < 0.002

GLCM entropy 0.222 0.947 p < 0.002
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(MRD, V20, and MLD) were not found to be significantly associated with RP (p ¼ 0.19, 0.24,
and 0.10, respectively). Inclusion of any of the three dosimetric parameters into a regression
model did not change which features were significantly correlated with RP as shown in Table 4.

The mean AUC values along with the 95% confidence intervals for each of the eight features
are shown in Fig. 4.

3.2 Multifeature Logistic Regression Modeling

Figure 5 illustrates feature combinations in green that significantly improve model fit over using
the first feature and the MRD alone (p < 0.0009). Cells in red illustrate features that did not
improve model fit when added to the first feature in the model.

The addition of a second feature significantly improved model fit for most features for all
three packages. Feature combinations that significantly improved model fit tended to agree
among packages. Of the 56 feature combinations for each package, 40 (71%) combinations
resulted in significant improvement (green) in model fit for all three packages, 9 (16%) feature
combinations did not result in significant improvement (red) in all three packages, and the
remaining 7 (13%) combinations differed among packages. For example, when GLCM sum
entropy or GLCM difference entropy was added to a model already containing first-order
entropy, the effect on the model fit differed among the three packages as shown in Fig. 5.
There were multiple feature combinations that disagreed among packages when first-order
entropy was the first feature included in the model. When adding GLCM difference entropy
to a model using first-order entropy, the additional feature significantly improves model fit when
features are calculated using Pyradiomics but not for packages A1 or IBEX. When assessing
model quality based on AIC, all feature combinations shown in green had AIC values that were
lower (corresponding to higher model quality) than when just the first feature and MRD were
used in the model.

3.3 Individual ROI Pair Logistic Regression Modeling

When individual ROI pairs (ΔFVF;S;p;r) were used to train the logistic regression models instead

of the average of the differences in feature values across ROIs for each patient (ΔFVF;S;p),
a greater number of features were significantly correlated with RP status as shown in Table 5.
The bolded p values are features that were not considered to be correlated with RP status for
the MAvg models.

The mean AUC values and the corresponding 95% confidence intervals are shown in Fig. 6.
The same trends in mean AUC values arise forMInd andMAvg models, but the mean AUC values

Fig. 4 Mean AUC values along with the corresponding 95% confidence intervals for eight features
used to train MAvg models. While packages A1 and IBEX were not significantly >0.5 for GLCM
entropy, Pyradiomics was.
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were slightly greater when trained using MInd models rather than MAvg models for all packages
and for all features besides first-order and GLCM entropy from A1. However, the models con-
structed using the two methods (i.e., Mavg versus Mind) were not significantly distinguishable
based on Vuong’s closeness test.

4 Discussion

This study demonstrated the variability in classification ability when radiomics features were
computed using three radiomics software packages and applied to a clinically relevant classi-
fication task. Previous studies have localized this variability in software to discrepancies in

Fig. 5 Green cells indicate the addition of a second feature in logistic regression that significantly
improved model fit over using the first feature andMRD alone when features were calculated using
package A1, IBEX, and Pyradiomics. Columns correspond to the first feature included in the
model, and rows correspond to the second feature added to the model. Significance was assessed
at the 0.05 level after correcting for the 56 different comparisons per package (p < 0.0009). Cells
labeled with an asterisk reflect feature combinations resulting in greater AIC values (lower model
quality) than when only the first feature was included in the model. Each regression model was
trained using averages of changes in feature values over all ROIs for each patient (MAvg).
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a number of aspects in the feature calculation pipeline including differences in image importation
and preprocessing, algorithm implementation, and feature-specific calculation parameters.7,35

Although many first-order features showed agreement in correlation with RP status, two of the
four GLCM features disagreed among the packages (Table 4). A similar trend was shown in the
mean AUC values plotted in Fig. 4; GLCM entropy was not significantly >0.5 for packages A1
and IBEX but was>0.5 for Pyradiomics. Our previous studies have reported that GLCM feature
values are dependent on the parameters used to construct the matrices prior to feature calculation,
and use of the default GLCM parameters unique to each package can alter the resultant feature
values.7 When the GLCM parameters were made to be consistent across the three packages
[gray-level limits: (min, max); number of gray levels: 64; number of directions: 8], all four
GLCM features were significantly correlated with RP status for all three packages. In addition,
all four GLCM features had AUC values that were significantly >0.5 for all three packages,
indicating that the parameters used to calculate various radiomics features can greatly affect the
agreement in classification ability among software packages. While modifying these parameters
may result in greater agreement among radiomics packages, many radiomics-based studies do
not report complete definitions of each feature. Consequently, independent investigators cannot
accurately recalculate these features, so package-specific default GLCM parameters are often

Table 5 The p values indicating whether the addition of a particular feature significantly improved
classification ability over using the MRD alone when individual ROI pairs were used in the training
of each model (M Ind). During validation, averages of changes in feature values were used.

Feature A1 IBEX Pyradiomics

Mean p < 0.002 p < 0.002 p < 0.002

Min 0.024 p < 0.002 0.024

Median p < 0.002 p < 0.002 p < 0.002

Entropy p < 0.002 p < 0.002 p < 0.002

GLCM sum average p < 0.002 p < 0.002 p < 0.002

GLCM sum entropy p < 0.002 p < 0.002 p < 0.002

GLCM difference entropy p < 0.002 p < 0.002 p < 0.002

GLCM entropy p < 0.002 p < 0.002 p < 0.002

Note: Bolded p-values indicate features that were considered significantly correlated with RP for M Ind models
but not for MAvg models.

Fig. 6 Mean AUC values along with the corresponding 95% confidence intervals for eight features
when individual ROI pairs were used in model training.
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used. When applied to the clinical task of classifying patients with RP, the effects of these
discrepancies are still noticeable: mean AUC values agreed much more among packages for
first-order features compared with GLCM features. Consequently, when investigators attempt
to reproduce, validate, or advance radiomics studies reported in the literature using different
radiomics software packages, they may identify a different set of correlated features or achieve
different levels of classification ability.

A common method of increasing AUC value for many radiomics-based classification
schemes is to combine features during model construction, if the dataset is large enough. In
this study, pairwise combinations of features were used in logistic regression, and the addition
of a second feature significantly improved the model fit over using the first feature alone for the
majority of combinations. While features that improved model fit over dose alone agreed among
packages, feature combinations varied from package to package as shown in Fig. 5. Furthermore,
feature combinations that significantly improved model fit differed more for GLCM features
than for first-order features because of the increased complexity of GLCM feature calculation
and the potential for larger discrepancies in GLCM feature values computed using different soft-
ware. Moreover, feature combinations that decreased the model quality based on AIC (Fig. 5)
showed very little agreement among packages, further illustrating that radiomics studies report-
ing promising features or combinations of features may not translate to other institutions using
different radiomics packages.

When individual ROI pairs were used in model training (MInd models) instead of averages
over ROI pairs (MAvg models), more features were significantly correlated with RP status, and
seven out of eight features agreed among packages. The discrepancies in correlated features
between MInd and MAvg models illustrate that differences in model implementation can affect
the library of features capable of accurately classifying patients into various disease states.
Despite the set of correlated features differing between theMInd andMAvg models, the predictive
ability of the two models was not significantly distinguishable based on Vuong’s closeness test
for any feature computed using any package; however, when classifying other diseases or using
larger patient databases, MInd models may be more sensitive to changes in tissue structure and
result in greater classification ability.

Previously conducted studies have recognized and attempted to address the need for greater
standardization in radiomics research. The IBSI has combined the efforts of 19 institutions to
compile a comprehensive manual of feature definitions and image-processing protocols. These
institutions used their respective radiomics software to calculate various features on a small digital
phantom and subsequently on a CT scan from a patient with lung cancer. Each software package
was then iteratively modified and was considered “standardized” if at least half of them achieved
the same feature values. Through this process, 99.4% of features agreed when computed on the
digital phantom and 96.4% of features agreed when computed on the CT scan;20,21 however, com-
plete agreement among institutions was not achieved. This study illustrates that a broader stand-
ardization initiative must be conducted that includes both in-house and open-source radiomics
packages while also considering the effects of standardization on various clinically relevant tasks
(e.g., classification or segmentation task). While this study does not aim to offer recommendations
outside of those reported by the IBSI, it supports the notion that greater harmonization of radiomics
research must be achieved to obtain greater clinical implementation.

Our study also illustrates that the variation in feature values extracted from the same images
does not necessarily result in variation in classification ability. Our prior study found significant
differences in feature values among radiomics packages for all features extracted from head and
neck tumors in CT scans and mammography scans.7 In this study, all feature values also reflected
significant differences across packages, but the variability in feature values was much greater
than the variability in AUC values when assessed using the coefficient of variation (COV).
For example, when the mean of GLCM sum average is calculated across all ROIs for each
package, the COV among the three packages for the pre- and post-RT ROIs were 1.456 and
1.403, respectively. In comparison, the COV for the AUC values among the three packages was
0.006, indicating much less variability in AUC values than feature values across packages.

Despite the relatively large differences in the feature values themselves, when assessing
which features were significantly correlated with RP (Table 4), six of the eight features agreed
among packages. This is in part due to the inherent nature of delta radiomics schemes: variations
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in radiomics feature values introduced by each software package because of differences in image
preprocessing or algorithm implementation can be negated when assessing the changes in radio-
mics features over time. Therefore, it may not be sufficient to quantify only the differences in
radiomics features but also how these differences translate into clinical practice when applied to
a particular task.

This study contained a number of limitations in its methodology and areas that could be
improved upon in future studies. First, only three radiomics packages were used in this investi-
gation. Future studies could include additional radiomics packages or combinations of packages to
allow for evaluation of a greater number of features. This study was limited to only the eight
first-order and GLCM features that were common among the three packages; however, additional
feature categories, such as fractal, Fourier, or gray-level run-length matrix features, may display
variations in classification ability when computed using different software packages. Investigating
these additional feature categories may illustrate additional areas of discrepancy among radiomics
software, which will subsequently aid in the overarching aim of standardizing the radiomics work-
flow to make future research studies more reproducible and more translatable.20

Additional studies could also investigate the variability in classification ability when applied
to different diseases and imaging modalities. Previous studies have shown that the degree of
variability in raw feature values among packages can differ depending on the tissues being ana-
lyzed and the modalities used to image these tissues.7 Radiomics packages are often developed
and designed to analyze a particular range of pixel values or particular disease or tissue type.
When these packages are used to analyze images beyond those for which they were designed for,
the subsequent feature values may be meaningless and not reflective of the true texture.
Therefore, it may be beneficial for future studies to analyze images outside of normal lung
CT to determine if classification ability differs when applied to a different clinical task.

5 Conclusion

This study investigated the variability in classification ability among three radiomics packages
for distinguishing patients with and without RP. When assessing which features were signifi-
cantly correlated with RP, first-order features reflected greater agreement among packages,
whereas GLCM features reflected greater variation. When additional features were added to the
logistic regression models, feature combinations that improved classification ability over using
the first feature alone also differed among packages. Initiatives have worked toward standard-
izing the radiomics workflow across institutions; however, the present findings indicate that
additional effort must be put toward harmonizing radiomics research to achieve greater clinical
implementation of their results.
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