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Abstract

Purpose: Utilization of computer-aided diagnosis (CAD) on radiological ultrasound (US) im-
aging has increased tremendously. The prominent CAD applications are found in breast and
thyroid cancer investigation. To make appropriate clinical recommendations, it is important
to accurately segment the cancerous object called a lesion. Segmentation is a crucial step but
undoubtedly a challenging problem due to various perturbations, e.g., speckle noise, intensity
inhomogeneity, and low contrast.

Approach: We present a combinatorial framework for US image segmentation using a bilateral
filter (BF) and hybrid region-edge-based active contour (AC) model. The BF is adopted to
smooth images while preserving edges. Then the hybrid model of region and edge-based
AC is applied along the scales in a global-to-local manner to capture the lesion areas. The frame-
work was tested in segmenting 258 US images of breast and thyroid, which were validated by
manual ground truths.

Results: The proposed framework is accessed quantitatively based on the overlapping values of
the Dice coefficient, which reaches 90.05� 5.81%. The evaluation with and without the BF
shows that the enhancement procedure improves the framework well.

Conclusions: The high performance of the proposed method in our experimental results indi-
cates its potential for practical implementations in CAD radiological US systems.
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1 Introduction

Imaging modalities play a critical role in radiological procedures as they strive to achieve early
disease detection. Among the existing modalities, ultrasound (US) is mostly utilized to inves-
tigate abnormalities of the glands such as in breast and thyroid screening.1 US is real time, low
cost, non-invasive, and user friendly.2 The gold standard report of Breast Imaging Reporting
and Data System (BIRADS)3 or Thyroid Imaging Reporting and Data System (TIRADS)4 is
commonly used by radiologists to analyze US images. These quality assurances consist of valu-
able points describing shape, margin, orientation, and textural echo of suspicious lesions or
nodules. It is worth noting that US visual analysis is expert dependent, which leads to high
variabilities in interpretation and clinical recommendations.5 Therefore computer-aided diagno-
sis (CAD) systems have become a second-opinion reader by implementing appropriate image
processing algorithms to improve radiologists’ diagnoses. All BIRADS and TIRADS features
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can be extracted properly only after the US objects are correctly segmented.6 Thus, the right
segmentation method is a crucial part of accurate diagnosis in CAD systems.

Referring to the latest scientific reviews,6–9 each US segmentation approach has its own pros
and cons, but accuracy, automation, and adaptability are the most important in creating an
advanced CAD system.8,9 Among the existing methods, active contour (AC) models have been
the preferred and most widely used methods due to many advances.10–13 They are self adapting to
various object shapes,13 have high potential for automatic11,12 and adaptive adjustment,14 and can
be flexibly integrated into any framework.15 Other methods can be ruled out considering some
disadvantages such as requiring a lot of intervention, inevitable manual tuning, and strict param-
eter control. In fact, learning-based methods—even the most advanced ones—depend on the
availability of datasets to get their best models. Fortunately, this is not a serious obstacle in
developing AC-based segmentation techniques. Edge-based geodesic active contour (GAC)16

and region-based Chan–Vese (CV)17 are two fundamental AC models. The GAC model employs
the local edge information to stop contour evolution so that it is possible to segment the specific
lesion among the heterogeneous objects.18 However, as the GAC model relies on the edge-
function which depends on the image gradient, this model can detect only objects with edges
defined by strong gradients.19 In fact, if the radiological US images are blurry, then the stopping
function is never zero on the edges and the leakage problem may occur through the lesion boun-
daries. Moreover, GAC is sensitive to the determination of the initial contour. By contrast, the
CV model is insensitive to the initialization and independent of the image gradient.19 The CV
stopping term is derived from the Mumford–Shah energy functional20 based on global region
information. In this way, the initial contour can be anywhere and the model can quickly detect
contours both with or without gradient even for objects with discontinuous boundaries. It should
also be noted that CV always considers images as two homogeneous regions, which makes this
model fail when dealing with inhomogeneous situations. In cases in which the targeted objects
cannot be easily distinguished by global statistic terms, region-based CV may lead to erroneous
segmentations.18 The problem with this CV model further limits its application in US images as
radiological cancerous objects tend to have heterogeneous intensities. GACV21 and its modifi-
cations14,22 are combined models that seek to integrate advantages of local edge-based GAC and
global region-based CV. Unfortunately, as long as noisy US images are not enhanced well, inho-
mogeneity is still a problem and the generated edge-stopping function remains weak, so the
failure of AC evolution continues. Speckle is a major factor that limits the contrast and homo-
geneity in US imaging, thereby reducing the effective application of image segmentation
algorithms.23 More specifically, inhomogeneity and weak edges are the basic factors causing
improper AC evolution. It may be that the evolution is stuck in the false area (false positive
and false negative) or falls into the leakage problem. Hence, integrating local and global infor-
mation in the AC model supported by an appropriate speckle reduction technique is a significant
consideration to obtain accurate US segmentation.

Many efforts have been made in US image enhancement, and a bilateral filter (BF) is effec-
tive for speckle reduction compared with other techniques.23–25 The BF was introduced by
Tomasi and Maduchi26 in which every value of output pixel in the whole image is a weighted
Gaussian average of its neighbors in both intensity and spatial range. Based on our preliminary
studies,27,28 the BF can effectively increase homogeneity, enhance object boundary, and preserve
useful information in the US images. Moreover, the newest modified BF is fast and robust at
large noise levels, thus making it work better and have more power.29 In this paper, a combi-
natorial framework of a region-edge based hybrid AC model with a BF enhancement called
active contour bilateral filter (ACBF) is proposed for US image segmentation. The level set
approach30 is adopted to represent hybrid AC evolution due to its superiority in handling top-
ology changes such as merging and splitting for multiple object segmentation. Avoiding trouble-
some operator intervention, a simplified CV composition is introduced in this proposed hybrid
AC. Employment of the BF is the reliable first stage to suppressing speckle and increasing pixel
homogeneity so that the global statistical term in the simplified CV works effectively. A binary
stopping function (BSF) is then generated through the zero-level set of the simplified CVafter it
converges. The robustness of the BSF provides certainty that local evolution of GAC is pre-
vented from leaking and is kept away from being trapped into local minimal. A convergence
criterion based on tolerable error area and contour length is also embedded so that the switching
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evolution from global to local takes place adaptively. In this way, the ACBF optimally combines
the advantages of the BF, GAC, and CV. Furthermore, the reaction diffusion (RD) concept is
applied to maintain stability of the level set evolution as it is simple, practical, and provably more
effective than other regularization according to an experimental study by Zhang et al.31 And to
demonstrate the performance of the proposed method, the ACBF was tested to segment 258 US
breast and thyroid images. It is also compared with several AC models and evaluated quanti-
tatively by the Dice coefficient (DC) metric.

The rest of this paper is structured as follows. In Sec. 2, we first review the fundamental
concepts of GAC, CV simplification, and BF followed by an explanation of the proposed
ACBF. Results and discussion are described in Sec. 3, including the advantages of the proposed
ACBF over other models. Comparison of the segmentation performance with and without the BF
is also clearly discussed in this section. Then, our work is concluded in Sec. 4.

2 Methods

2.1 Edge-Based GAC Model

Implementation of the level set-based AC model for image segmentation is implicitly expressed
by the Lipschitz function as

EQ-TARGET;temp:intralink-;e001;116;501ϕðx; y; tÞ
8<
:

< 0 for ðx; yÞ ∈ Ω−

¼ 0 for ðx; yÞ ∈ Φ
> 0 for ðx; yÞ ∈ Ωþ

; (1)

where Φ is a closed contour dividing the image domain Ω, Ω− describes the area inside Φ, and
Ωþ describes the area outside Φ. The dynamic level set function ϕ evolves following time t.
Segmentation is expressed by the zero-level set ðϕ ¼ 0Þ at t > 0. The GAC model is a local
segmentation method constructed by elastic curvature motion divð ∇ϕ

j∇ϕjÞ, constant speed move-

ment v, and the edge stopping function (ESF) g. The level set evolution of GAC is formulated as
follows:

EQ-TARGET;temp:intralink-;e002;116;365

∂ϕ
∂t

¼
�
div

�
g
∇ϕ
j∇ϕj

�
þ vg

�
j∇ϕj; (2)

where ∇ is the geometric gradient operator and j∇ϕj drives the normal direction for contour
deformation. The initial level set ðϕ0Þ at t ¼ 0 is given as

EQ-TARGET;temp:intralink-;e003;116;296ϕ0ðx; yÞ
�
−1 if ðx; yÞ ∈ C0

þ1 otherwise
; (3)

where C0 is any kind of closed region in domain Ω. The constant v is an adjustable control
deformation depending on whether the GAC shrinking (v > 0) or expanding (v < 0). The con-
ventional g is originally given as

EQ-TARGET;temp:intralink-;e004;116;215g ¼ 1

1þ j∇ðGσ � IÞj2
; (4)

where (�) is the smoothing convolution operation of image I using Gaussian kernel G with
deviation σ. The local evolution ability of GAC is indeed advantageous for segmenting specific
lesions. However, generating a powerful ESF through Eq. (4) is hard to achieve. If the discrete
gradients of US images are bounded, then ESF g is rarely zero on the object boundaries. So,
manually tuning σ is a time-wasting task as shown in Figs. 1(b)–1(d). Two undesired conditions
are always prone to occur, i.e., the leakage problem and being trapped into local minimal.
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2.2 Simplified CV Model as Binary Stopping Function

CV is a global segmentation method driven by updating the average value of pixel intensities
inside (c1) and outside (c2) the contour.

EQ-TARGET;temp:intralink-;e005;116;463

∂ϕ
∂t

¼
�
μ:div

�
∇ϕ
j∇ϕj

�
− λ1ðI − c1Þ2 þ λ2ðI − c2Þ2

�
δðϕÞ; (5)

where λ1; λ1, and μ are the adjustable constants. As proposed by CV,17 variational Dirac δðϕÞ is
any function that follows the following:

EQ-TARGET;temp:intralink-;e006;116;394δðϕÞ ¼ d
dϕ

HðϕÞ and HðϕÞ ¼
�
1 if ϕ < 0

0 if ϕ > 0
; (6)

where HðϕÞ is called the Heaviside function. Considering Eqs. (1) and (6), updated c1 and c2 in
practice are obtained as

EQ-TARGET;temp:intralink-;e007;116;325c1ðϕÞ ¼
R
Ω Iðx; yÞ:HðϕÞdx dyR

Ω HðϕÞdx dy and c2ðϕÞ ¼
R
Ω Iðx; yÞ:½1 −HðϕÞ�dx dyR

Ω½1 −HðϕÞ�dx dy : (7)

By eliminating g and substituting v with region intensity approximation as the fitting term,
initialization C0 in the CVmodel can be placed in any position. Furthermore, CV is able to obtain
indistinct contours inside or outside the object and shrink or expand simultaneously as shown in
Figs. 1(e) and 1(f). All of these capabilities do not work well in the GAC. It can also be observed
that CVevolution works like an unsupervised clustering algorithm with two classes c1 and c2. So
adjustable μ, λ1, and λ1 are not influential. If all of these constants are set with the same fixed
values equal to 1, then Eq. (5) is expressed as

EQ-TARGET;temp:intralink-;e008;116;194

∂ϕ
∂t

¼
�
div

�
∇ϕ
j∇ϕj

�
þ 2ðc1 − c2Þ½I − 0.5ðc1 þ c2Þ�

�
δðϕÞ: (8)

The key success of CV is actually determined by the intensity threshold mechanism
½I − 0.5ðc1 þ c2Þ� that changes ϕ at every point pixel during the evolution. By eliminating
2ðc1 − c2Þ and maintaining the curvature used, similar performance can still be obtained using
a simplified formulation, i.e.,

Fig. 1 (a). Ground truth. (b)–(d) GAC with (G ¼ 3 × 3; σ ¼ 1; v ¼ −1), (G ¼ 5 × 5; σ ¼ 3; v ¼ −1),
and (G ¼ 7 × 7; σ ¼ 5; v ¼ 1), respectively. (e) and (f) CV with (μ ¼ 0.9, λ1 ¼ 0.8, and λ2 ¼ 0.85
and ðμ ¼ λ1 ¼ λ2 ¼ 1Þ, respectively. (g) and (h) Simplified CV.
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EQ-TARGET;temp:intralink-;e009;116;735

∂ϕ
∂t

¼
�
div

�
∇ϕ
j∇ϕj

�
þ ½I − 0.5ðc1 þ c2Þ�

�
δðϕÞ: (9)

Figs. 1(g) and 1(h) show the US segmentation using simplification CV that yields the same
visualization as its original model.

Utilizing the advantages of simplified CV evolution, the concept of the BSF is proposed to
replace the unreliable ESF g. Referring back to Eqs. (1), (3), and (6), two types of BSF κ can be
generated as

EQ-TARGET;temp:intralink-;e010;116;639κ

�
HðϕÞ for expandingGAC; i:e:; v < 0 and C0 inside the object

1 −HðϕÞ for shrinkingGAC; i:e:; v > 0 and C0 outside the object
; (10)

where ϕ is the level set function of Eq. (9) after it converges. We can see Fig. 2 for the illustration
of both BSF κ. Compared with g, the stopping function κ in the form of a binary image is more

Fig. 2 (a) Ground truth. (b) ESF g. (c) GAC using g. (d)–(f) Simplified CV, BSF, and GAC on noisy
image. (g)–(i) Simplified CV, BSF, and GAC expanding mode on filtered image. (j)–(l) Simplified
CV, BSF, and GAC shrinking mode on filtered image.
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robust to providing edge gradient. GAC precisely evolves in the white region and stops in the
black region of the related binary image. Unfortunately, the global intensity threshold is only
effective for clustering two homogeneous regions. As mentioned in the previous section, noisy
US images due to speckle are a major factor in pixel heterogeneity that causes erroneous seg-
mentation, so the mainstay despeckling technique becomes necessary.

2.3 Speckle Reduction Bilateral Filter

Based on the investigation of speckle properties by Eom,32 it can be transformed in the additive
noise model given as

EQ-TARGET;temp:intralink-;e011;116;615gði; jÞ ¼ fði; jÞ þ hði; jÞ � wði; jÞ; (11)

where gði; jÞ is the noised image, fði; jÞ is the original input image, and hði; jÞ and wði; jÞ are the
function of point spreading and the Gaussian white noise, respectively. The BF consists of a
computational moving window in every image pixel that substitutes the intensity value of the
central pixel under the window. A mathematic formulation of the BF is briefly expressed as

EQ-TARGET;temp:intralink-;e012;116;536hðpÞ ¼ Γ−1ðpÞ
Z
ΩðpÞ

fðζÞsðζ; pÞi½fðζÞ; fðpÞ�dζ; (12)

where

EQ-TARGET;temp:intralink-;e013;116;479ΓðpÞ ¼
Z
ΩðpÞ

sðζ; pÞi½fðζÞ; fðpÞ�dζ; (13)

where f and h are the input and output image, respectively. ΩðpÞ is the neighborhood of spatial
coordinate pixel p in the image, and ζ is a variable of integration pixel coordinates in Ω. sðζ; pÞ
and i½fðζÞ; fðpÞ� are defined as

EQ-TARGET;temp:intralink-;e014;116;398sðζ; pÞ ¼ exp

�
−kp − ζk2

2σ2s

�
; (14)

EQ-TARGET;temp:intralink-;e015;116;340i½fðζÞ; fðpÞ� ¼ exp

�
−
½fðpÞ − fðζÞ�2

2σ2i

�
; (15)

where σs and σi are the Gaussian standard deviation values on the spatial and range domains,
respectively. Equation (14) spatially weights the Euclidean distance between s and ζ, and
Eq. (15) operates on the intensity domain.

A speckle reduction BF as preprocessing step is employed here for accurate US segmenta-
tion. A BF26 is a kind of smoothing low-pass filter that is able to enhance lesion boundaries
without destroying important features.23 It is a non-linear filter that uses a range filter along
with a spatial filter. The segmentation of simplified CV on the BF filtered image produces a
better BSF. As shown in Figs. 2(g)–2(l), GAC evolution that applies the BSF from filtered
images is kept from leaking and is free from being trapped into local minimal. While GAC that
implement the BSF created from noisy images is still prone to leakage such as in Figs. 2(d)–2(f).

2.4 Proposed ACBF, Combinatorial Active Contour with Bilateral Filter

In short, the aforementioned descriptions show that US segmentation is obtained through three
steps, i.e., image enhancement by the BF, BSF creation using simplified CV, and local object
delineation with GAC. To integrate all of these main procedures, a combinatorial hybrid model
of an active contour BF called the ACBF is introduced in this paper. Given that the variational
Dirac δðϕÞ works similar to j∇ϕj,19,31 then the proposed ACBF hybrid model is formulated by
combining the simplified CV in Eq. (9) with the GAC model in Eq. (2) as
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EQ-TARGET;temp:intralink-;e016;116;735

∂ϕ
∂t

¼
�
div

�
κ
∇ϕ
j∇ϕj

�
þ ð1 − jαjÞ

�
IBF −

�
c1 þ c2

2

��
þ ακ

�
j∇ϕj; (16)

where IBF denotes the enhanced US image by the BF. In addition to having the same role as v to
determine the deformation mode, α is also a switch control from global into local evolution.

EQ-TARGET;temp:intralink-;e017;116;676α

8<
:

0 initial value to start global evolution forcreating κ

−1 local evolution for expanding mode i:e:
P

ϕð∇C0Þ < 0ðC0 inside the objectÞ
þ1 local evolution for shrinking mode i:e:

P
ϕð∇C0Þ > 0ðC0 outside the objectÞ

:

(17)

For the initial condition, the values of κ ¼ 1 and α ¼ 0 are used, considering that BSF can
only be created if global evolution has converged. Returning to the base definition in Eq. (1), the
sum pixels of inside the zero-level set contour is negative and that outside is positive. Thus, the
deformation mode can automatically be determined using the edge pixel location of initial region
(∇C0) in the level set function. Furthermore, the convergence criterion based on tolerable error
area and contour length is also established so that the switching mechanism from global (α ¼ 0)
to local (α ¼ �1) evolution takes place adaptively. Utilizing Eq. (6), the perimeter length and
object area are represented as

EQ-TARGET;temp:intralink-;e018;116;506Lengthfϕ ¼ 0g ¼
Z
Ω
j∇H½ϕðx; yÞ�jdx dy ¼

Z
Ω
δ½ϕðx; yÞ�j∇½ϕðx; yÞ�jdx dy; (18)

EQ-TARGET;temp:intralink-;e019;116;450Areafϕ < 0g ¼
Z
Ω
H½ϕðx; yÞ�dx dy; (19)

then convergence criterion is expressed as

EQ-TARGET;temp:intralink-;e020;116;416Error Length ¼ Lengthðϕiþ1Þ − LengthðϕiÞ ≤ θ; (20)

and

EQ-TARGET;temp:intralink-;e021;116;373Error Area ¼ Areaðϕiþ1Þ − AreaðϕiÞ ≤ θ; (21)

where θ ≈ 0 to specify the small change in tolerable contour deformation. Computational effi-
ciency is indicated by the minimal iteration i to achieve convergence. Trends in error length and
area during ACBF evolution are shown in Fig. 3. Adaptive alpha switching is shown by a green

Fig. 3 (a) and (e) ACBF shrinking (first row) versus expanding (second row) mode. (b) and (f) Final
level set. (c) and (g) Trend of error area. (d) and (h) Error length.

Nugroho et al.: Combinatorial active contour bilateral filter for ultrasound image segmentation

Journal of Medical Imaging 057003-7 Sep∕Oct 2020 • Vol. 7(5)



line. Two peak error lines indicate a transition from global to local evolution marked by alpha
changes from 0 to �1.

In the traditional level set, the evolution is initialized by the signed distance function to
its contour interface to prevent it from being too flat or steep near its contour; then the re-ini-
tialization procedure is required in AC evolution. However, many existing reinitialization tech-
niques have an unexpected side effect of moving the AC from its contour interface. Moreover,
the re-initialization procedure is an expensive computation.33 Here, we adopt an efficient regu-
larization method,31 which applies an RD concept to penalize the binary level set function during
evolution of the ACBF. The main steps of the proposed ACBF are detailed as follows:

1. Apply the BF to enhance the US images according to Eq. (12). Examples of filtered
images are shown in Figs. 3(a) and 3(e).

2. Set values κ ¼ 1, α ¼ 0 and initial level set ϕ0 by Eq. (3). More C0 can be made for
segmenting multiple lesions as shown by the initial green contours in Figs. 2 and 3(e).

3. Evolve the ACBF hybrid formulation in Eq. (16). Illustration of the process and results can
be seen in Fig. 3.

4. Let level set ϕ ¼ 1 if ϕ > 0; otherwise, ϕ ¼ −1. Then do reaction-diffusion regularization
ϕ ¼ ϕþ 0.2Δϕ, where Δ is the discrete Laplacian operator. Regularized level set func-
tions are depicted in Figs. 3(b) and 3(f).

5. Check convergence criterion by Eqs. (20) and (21). If not yet converged, go back to step 3.
Convergent level set evolution is indicated by the both blue and red lines ending straight at
score Error ¼ 0 in Figs. 3(c) and 3(d) and 3(g) and 3(h).

6. Generate BSF κ in Eq. (10) and switching control α in Eq. (17) adaptively. The BSF is
visualized in Figs. 2(e), 2(h), and 2(k) while the change of α is shown by green lines in
Figs. 3(c) and 3(d) and 3(g) and 3(h).

7. Return to steps 3 to 5 and stop if it converges.

3 Results and Discussion

3.1 Comparative Results

All of the descriptions above have clearly shown the advantages of the proposed method over CV
and GAC. As for demonstrating the performance of the proposed method to the other two, we
compare it with the LBF,33 hybrid LGBF,34 and GACV14,21 models. Segmentation results are
visualized for different real US images in Fig. 4. The same level-set initializations and regulari-
zation technique31 are applied in each method for objective comparison purposes. LBF and
LGBF are AC models based on Gaussian localization to overcome image inhomogeneity.
However, severe heterogeneity on US images is more effectively solved by a reliable evolution-
ary stop function. As can be seen in the second and third rows, these two models fail to achieve
convergence. Instead of contour localization, these models actually spread like a global segmen-
tation approach. In line with the authors, efforts to combine CV and GAC are also taken on the
GACV model. However, the weakness of ESF g which is based on trial and error has become a
failure factor for the GACV model in segmenting US images. With the failure of this function,
the GACV works just like a global CV segmentation. It can be seen that Fig. 4(m) gives a similar
visualization as Figs. 1(e)–1(h). The role of the BSF in the proposed model is able to localize the
contour evolution well. Rows 5 and 6 show that the BF is quite effective at improving the BSF to
prevent the possibility of leakage and local-minimal traps.

Furthermore, the performances of these models are measurably assessed by the DC6,12

given as

EQ-TARGET;temp:intralink-;e022;116;133DC ¼ 2jApm ∩ Agtj
jApmj þ jAgtj

x100%; (22)

where Apm is the area of pixels resulted by proposed method and Agt is the ground truth area.
The higher the DC value is, the more accurate the results are. Quantitative measurements in
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Fig. 5 show that the two proposed models have the highest scores. The computational cost of
segmentation in Fig. 4 is reported in Table 1. The proposed models consume the shortest com-
putational time as they are able to achieve convergence while other methods fail. As long as the
BSF works steadily, computational costs are determined more by how large the object that will
be segmented is. Evaluation on the larger scale image segmentation will provide a more objective
analysis.

Fig. 4 (a)–(d) Ground truth; (e)–(h) LBF; (i)–(l) LGBF; (o)–(p) GACV; (q)–(t) hybrid-AC; and
(u)–(x) ACBF.

Nugroho et al.: Combinatorial active contour bilateral filter for ultrasound image segmentation

Journal of Medical Imaging 057003-9 Sep∕Oct 2020 • Vol. 7(5)



3.2 Performance on a Larger Scale Segmentation

In this study, 258 radiological US images consisting of thyroid nodules and breast lesions were
used to validate the performance of the proposed method. All of these images were collected
from the Department of Radiology, National Central Hospital Sardjito,35 Air Force Central
Hospital Hardjolukito Yogyakarta, Indonesia, dataset of Thammasat University and Queen
Sirikit Center of Breast Cancer of Thailand, and Ultrasound Department Institute of
Fundamental Technological Research Polish Academy of Sciences. Each lesion is clinically out-
lined by radiologists, and manual segmentation is aided as ground truth for validation. Bland-
Altman plot36 and statistical boxplot are used to visualize data scatter of DC values among seg-
mentation results.

From the illustration of Fig. 6, the DC score on the segmentation of US images using the
hybrid-AC model is 87.94� 12.11%. The role of the BF increased the average performance of
DC scores into 90.05� 5.81%. Reduction in deviation value implies that the overall DC score is
closer to the mean. From the boxplot view, even though it looks the same, the BF provably
reduces the outlier data. This shows that the robustness of the BSF in the ACBF is proven.
The most important evaluation that needs to be addressed is the computational efficiency of
the proposed model. Although the implementation of the BF on hybrid-AC considerably reduces
the average CPU time from 35.65� 38.90 to 25.09� 29.50 s, this value is still quite high for
computing costs. Moreover, the high value of the deviation implies that there are many data that
are very different from the mean value. This is also shown by the many outliers in the boxplot
view. Overall, the proposed method works well. This achievement indicates that the proposed
ACBF is feasible to be implemented in a US CAD system.

Table 1 CPU computation time (in s) of the images in Fig. 4.

Related methods Image (a) Image (b) Image (c) Image (d)

LBF 90.16 165.52 476.69 92.78

LGBF 169.36 174.17 237.97 254.39

GACV 29.64 29.36 45.63 45.75

Hybrid-AC 25.41 12.05 14.16 24.98

ACBF 18.23 9.91 14.19 13.06

Fig. 5 DC values of different methods in Fig. 4.
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4 Conclusion

In this paper, a combinatorial framework called the ACBF is introduced for accurate segmen-
tation of radiological US images. The framework consists of a speckle reduction BF as prepro-
cessing followed by a hybrid AC model to segment the cancerous object both globally and
locally. The major benefits of ACBF is that it can effectively delineate multiple lesions in severe
speckle noised images, overcoming erroneous segmentation in other models. Increasing the effi-
ciency in this model is an urgent need to be done. Furthermore, how to make it fully automated is
also very challenging future work.
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