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Abstract. Computed tomography was one of the first imaging modalities to require a comput-
erized solution of an inverse problem to produce a useful image from the data acquired by the
sensor hardware. The computerized solutions, which are known as image reconstruction algo-
rithms, have thus been a critical component of every CT scanner ever sold. We review the history
of commercially deployed CT reconstruction algorithms and consider the forces that led, at vari-
ous points, both to innovation and to convergence around certain broadly useful algorithms. The
forces include the emergence of new hardware capabilities, competitive pressures, the availabil-
ity of computational power, and regulatory considerations. We consider four major historical
periods and turning points. The original EMI scanner was developed with an iterative recon-
struction algorithm, but an explosion of innovation coupled with rediscovery of an older liter-
ature led to the development of alternative algorithms throughout the early 1970s. Most CT
vendors quickly converged on the use of the filtered back-projection (FBP) algorithm, albeit
layered with a variety of proprietary corrections in both projection data and image domains
to improve image quality. Innovations such as helical scanning and multi-row detectors were
both enabled by and drove the development of additional applications of FBP in the 1990s and
2000s. Finally, the last two decades have seen a return of iterative reconstruction and the intro-
duction of artificial intelligence approaches that benefit from increased computational power to
reduce radiation dose and improve image quality. © 2021 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI1.8.5.052111]
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1 Introduction

The algorithms deployed on commercial CT scanners have evolved significantly over the last
fifty years, with periods of relative algorithmic stability punctuated by occasional rapid transi-
tions in response to changes in scanner hardware, computational hardware, and clinical needs. In
this historical review, we trace the evolution of commercially deployed CT reconstruction algo-
rithms over the last fifty years and connect these advancements to the forces that continue to
drive innovation.

The forces that led to the evolution of CT scanners and their embedded reconstruction algo-
rithms were numerous and interrelated. Put simply, there were pressures to scan patients better,
faster, and cheaper, all while controlling or reducing radiation dose. The source of this pressure
was multifold: clinicians seeking to increase the clinical applications of CT; hospitals and ven-
dors wanting to increase the revenue generated by CT; vendors competing for market share and
seeking to increase the market size; regulatory agencies encouraging reduction of dose from
ionizing radiation due to increasing clinical usage of CT; and competitors and public and private
health insurers seeking reductions in the cost of the equipment and its operation.

These forces led to scanners that could collect sufficient data to satisfy the mathematics of
the reconstruction algorithms using a single x-ray source and an array of detectors configured
as a fan-beam, as well as higher-power x-ray sources, slip-ring gantries, faster and higher-
resolution detectors, multi-row detectors, and more powerful reconstruction computers.
This evolution of CT scanner hardware and the resulting new clinical applications necessitated

*Address all correspondence to Patrick J. La Riviere, pjlarivi@uchicago.edu

Journal of Medical Imaging 052111-1 Sep/Oct 2021 « Vol. 8(5)


https://orcid.org/0000-0002-2366-0111
https://doi.org/10.1117/1.JMI.8.5.052111
https://doi.org/10.1117/1.JMI.8.5.052111
https://doi.org/10.1117/1.JMI.8.5.052111
https://doi.org/10.1117/1.JMI.8.5.052111
https://doi.org/10.1117/1.JMI.8.5.052111
https://doi.org/10.1117/1.JMI.8.5.052111
mailto:pjlarivi@uchicago.edu
mailto:pjlarivi@uchicago.edu

La Riviere and Crawford: From EMI to Al: a brief history of commercial CT reconstruction algorithms

parallel improvements of image reconstruction algorithms, with innovation in image recon-
struction sometimes leading the improvements in image quality, as in the development
artifact-reduction algorithms, and sometimes following the lead of the hardware, as when
multi-row detectors were developed.

The paper is organized as follows. Section 2 describes the beginning of medical x-ray CT by
reviewing the work done at EMI by Hounsfield; in addition, that part also looks at the precursors
to his work. Section 3 describes how the clinical usefulness of CT was increased through the
1970s and 80s using algorithmic improvements to improve image quality; in that era, the algo-
rithms were based on the assumption that the patient had to be static during data acquisition.
Section 4 deals with relaxing the assumption of a static patient; this work led to helical scanning
and improved cardiac scanning through motion compensation in the 1980s and 1990s. Finally,
Sec. 5 deals with image quality improvement and dose reduction using iterative algorithms and
emerging approaches in artificial intelligence and machine learning that have taken place in the
last twenty years.

The details behind our high-level overview can be found in several seminal and excellent
publications by Newton and Potts,' Kak and Slaney,” Webb, Kalender,* and Hsieh.’ We provide
citations for key advancements in the field. However, we note that there may be controversies,
which we will not address, on who deserves credit for initiating these advancements due in part
to proprietary vendor information and the vagaries of the patent process. We also note that we
may not know exactly how the vendors reconstructed their images at various points; instead, we
assume that publications and patents written by their employees and their external collaborators
reflect their reconstruction algorithms.

2 Beginning: Hounsfield and Precursors

In the late 1960s, as Hounsfield was developing the EMI scanner, there was an outburst of
research activity in tomographic image reconstruction, in fields ranging from radio astronomy
to electron microscopy, but there is no evidence that Hounsfield was aware of any of these devel-
opments or, indeed, that most of these researchers in disparate disciplines were aware of each
other. In radio astronomy, Bracewell derived the central slice theorem using Fourier-space argu-
ments to show that two-dimensional (2D) functions can be reconstructed from a set of one-
dimensional line integrals and proposed a direct-Fourier algorithm for reconstruction.® This was
applied to reconstructing images from radio telescope data that could sample astronomical
objects like the sun with long, narrow sensing functions. Bracewell was a leading expert on
Fourier transforms, and published a classic text on them in 1965,7 but he also understood that
they were computationally expensive at the time, as the fast Fourier transform algorithm of
Cooley and Tukey was not published until 1965.% As an alternative, Bracewell and Riddle’ devel-
oped a convolution-back-projection style image reconstruction algorithm that avoided the use of
Fourier transforms. Electron microscopists also traversed much of this same intellectual ground,
with De Rosier and Klug using Fourier-based methods to reconstruct 3D images of viruses while
Ramachandran and Lakshminarayanan derived the same convolution-back-projection algorithm
as Bracewell and Riddle.'®!" As noted by Webb in his seminal history of tomography,® only
Gilbert,'” who also derived convolution-back-projection in the electron microscopy context,
seemed to be aware of its independent discovery in radio astronomy and by Ramachandran and
Lakshminarayanan.

Hounsfield’s seminal patent, however, cites only two predecessors: William Oldendorf and
Alan Cormack."® Oldendorf was a UCLA neurologist who took pioneering steps toward trans-
axial tomography using combinations of linear and rotational motion to isolate focal changes in
attenuation in the interior of an object, but the method does not involve computational
reconstruction.* In the EMI patent, Hounsfield remarks that Oldendorf’s scanning scheme
is slow and dose inefficient relative to the one he is proposing. Cormack was a physicist at the
University of Cape Town who became interested in radiation therapy and the need for improved
multidimensional maps of tissue attenuation properties. In the mid-1950s, he conceived an
approach to tomography similar to Hounsfield’s but developed a somewhat cumbersome
approach to reconstruction involving expansions of functions in Chebyshev polynomials.'®
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The EMI patent suggests that Cormack’s reconstruction approach is computationally inefficient
and subject to noise amplification. It is perhaps worth noting, however, that in the early 1970s,
Cormack became aware of some of the related work in image reconstruction in radio astronomy,
electron microscopy, and even the older mathematical work of Radon and deployed some of it in
the context of proton tomography.'®

For his part, in developing the EMI scanner in the late 1960s, Hounsfield pursued a very
different approach to reconstruction based on framing the problem discretely as one of solving
a large system of linear equations. On an EMI prototype, Hounsfield implemented a relaxed
iterative reconstruction algorithm that is outlined in some detail in the seminal EMI patent.
He describes reconstructing images with 100 X 100 pixels from 400 views, each involving
100 line integral samples and thus needing to solve a system of 40,000 equations with
10,000 unknowns. Hounsfield employed an iterative update scheme to solve the equations but
also a number of clever implementation details, such as cycling through the projections, not
sequentially but with large 40-deg steps; a step that improves convergence speed and may antici-
pate the ordered subsets approach of Hudson and Larkin."”

While the iterative algorithm implemented for the EMI prototype scanner at the Atkinson
Morley Hospital worked well and produced the world-changing image (Fig. 1) of a brain tumor
acquired on October 1, 1971, computational considerations prevented its deployment with the
commercial scanner. The computational expense of the iterative algorithm required that scan data
be transported from the hospital back to EMI on tape so that it could be processed overnight on a
mainframe computer, the ICL 1905. The reconstructed images were then returned to the hospital
on tapes to drive a cathode-ray tube (CRT) display, or as polaroid pictures taken of a CRT display
at EML'8 This kind of centralized image reconstruction was obviously not practical for the com-
mercial units EMI hoped to sell, but the advent of the minicomputer provided hope of scanner-
side reconstruction. However, the minicomputers of the day were not able to run the iterative
algorithm in clinically useful time frames, so reconstruction shifted to a filtered back-projection
(FBP) style method, developed and patented by EMI’s Chris Lemay.'” This allowed for recon-
struction of a 160 X 160 image in 30 s on the minicomputer.'®

In the development and evolution of reconstruction algorithms for the first commercial CT
scanner, we see at play several of the forces described in the Introduction. The advent of novel
computational hardware, in the form of the minicomputer, made scanner-side image recon-
struction possible and thus the first scanner a viable commercial product, while the computa-
tional limits of that hardware quickly led to a change in the algorithm deployed. All of this was
driven by the anticipated clinical demand for the first cross-sectional images of human
neuroanatomy.

Fig. 1 First EMI image of first patient scan demonstrating a cystic astrocytoma.
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3 Clinical Applications and the Market Conquers Reconstruction

The algorithms in the early CT literature mostly assumed that perfect line integrals of the x-ray
linear attenuation coefficient could be obtained from a cross-section of a patient. Furthermore,
these line integrals were assumed to be obtained from a perfectly static patient. To increase the
clinical efficacy of CT, the hardware was improved to scan more rapidly and the reconstruction
algorithms were improved because perfect line integrals could not be measured.

The hardware changes included the development of rotate-rotate scanners (also known as
third-generation scanners) with x-rays delivered by higher-power x-ray sources and detected
by a single row of detectors configured as a fan-beam. To combat motion, manufacturers added
breathing lights to instruct patients on when to hold their breath and cardiac monitoring sensors.
These hardware changes enabled a host of transformative clinical applications. Rather than
acquiring a series of slices suffering from motion and misregistration artifacts due to patient
breathing, it was now possible to acquire a number of consistently registered slices. Cardiac
imaging was enabled by cardiac gating that could be synchronized with acquisition. Finally,
exogenous contrast agents could now be used in more sophisticated ways due to increased speed
and timing precision. The forces that drove these changes included increased clinical demand,
especially for body scanning, and competition among the vendors. Most of this work took place
beginning after the EMI scanner was introduced in the early 1970s through the middle 1980s.

To improve image quality, the reconstruction algorithms had to address the reality that real
measurements were not perfect line integrals. The resulting reconstruction algorithms were
required to correct the imperfections in the line integrals and these corrections often required
calibrations to be performed. A block diagram of the resulting reconstruction algorithm is shown
in Fig. 2. The corrections addressed imperfections in physics, instrumentation, patient, and math-
ematics. The corrections for physics sought to address x-ray scatter and beam-hardening, which
is caused by the interaction of polychromatic x-ray beams with materials having different energy

Scanner
Dose
. | a—
Reduction
. DAS — Data
Gantry High Voltage . L
. —> —> X-ray Source — Patient —» Acquisition
Mechanics Power Supply
System
Heat
Time
Vibration
Line -
L. Reconstruction Algorithm
variations
X-ray Pre- Inverse Radon Post
measure- processing - —*  Transform & > X — Image
. . processing
ments Correction Corrections

Calibration
X-ra .
Y o Correction
measure- Calibration ViEaEEs
ments

Fig. 2 Block diagram of a reconstruction algorithm before the advent of helical and multi-slice CT.
The top row shows the key elements of the scanner and the patient that need to be addressed in
the reconstruction algorithm. The middle row shows the reconstruction algorithm. The step labeled
inverse Radon transform is the mathematical step of reconstructing an image from its projections.
The additional steps in the middle row are used to correct for imperfections in the x-ray measure-
ments. The bottom row indicates that the scanner has to be calibrated to correct the x-ray mea-
surements as shown in the middle row.
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(a)

(b)

Fig. 3 An example of early progress in ring artifact suppression. The display window is —120 to
149 HU and the arrow points to the center of rotation.?*

dependence. The corrections for instrumentation address non-idealities in the source such as
power fluctuations and off-focal radiation; non-idealities in the detector such as electronic noise,
crosstalk, nonlinear response, radiation damage, afterglow, and temperature drift; and non-ideal-
ities in the gantry, which can suffer imperfections in its mechanical motion. The corrections for
the patient seek to address respiration and cardiac motion as well as the presence of metal due to
prosthetics and dental fillings. Finally, the corrections for mathematics sought to address aliasing
and the effects of a finite number of projections and detectors. The details of these corrections are
presented by Hsieh.’

These algorithmic advancements were described in a series of papers and patents emerging
from major vendors, academic medical centers, and U.S. federal organizations like the National
Institutes of Health. An effort to correct the blooming artifacts at the bone-brain interface was
made using a second pass reconstruction algorithm to correct for the beam hardening caused by
bone, which is different than the beam hardening caused by soft tissue.”’ Aliasing artifacts
caused by under-sampling the fan beam detector were mitigated by interlacing the fan-beam
projections by displacing the detector array by a quarter of the detector spacing,”’ although
in practice the transition to smaller detector cells and the introduction of flying focal spots have
come to play an equally important role.?” Scatter artifacts were reduced by subtracting a scaled
and low-pass filtered version of projections from the original projections.”® Ring artifacts were
suppressed in projection space or image space,’*” as seen in Fig. 3. Metal artifacts were reduced
by estimating the correct values of the samples of projections that passed through the metal.”®
Patient motion during body scanning was reduced by smoothing the discontinuity caused by
motion between the first and last projections in a scan.?’ Initial attempts to scan the heart were
accomplished by scanning the heart through multiple cardiac cycles and then sorting the pro-
jections according to the cardiac cycle.”® Cardiac scanning was also enabled by using less than a
full rotation of the scanner using a method denoted half-scan.”’

4 Overcoming the Assumption of a Static Patient

Through the middle 1980s, scanners were improved to decrease scan time to reduce patient-
induced motion artifacts. However, this required patients to hold their breath multiple times,
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e.g., during a chest scan, to scan a complete organ or section of the body. The multiple breath
holds led to registration errors and limited the axial extent that could be scanned and the ability to
display artifact-free sagittal and coronal slices. Scanners on the market at this time used cables to
power the x-ray source and download data that led to turning off the x-ray source when the gantry
reversed direction.

It was obvious at that time that more scans per unit time could be obtained if the cables were
replaced with a slip ring to supply power and transfer data so that the gantry could be rotated
continuously during data acquisition. The continuous rotation combined with translating the
patient on the patient table continuously during data acquisition would allow more efficient use
of time but violated the assumption of a static patient. This type of scanning became known as
helical (or spiral) scanning.*® The reconstruction algorithms were based on the observation that
multiple sets of projections exist and can be interpolated in each rotation of the gantry as shown
by Crawford and King and Kalender.*'*> The interpolation algorithms reduced most of the arti-
facts caused by translating the patient but led to a degraded slice-sensitivity profile (SSP).
Because whole organs could be now be scanned without registration errors, the slightly degraded
image quality was tolerated because it led to greatly increased clinical utility. These initial helical
scanners used a single row of detectors.

The development of helical scanning happened in parallel at most of the major CT vendors
and eventually led to all scanners having helical capability. It seems to be an illustration of the
adage that necessity is the mother of invention, as all vendors felt the clinical and financial pres-
sure to increase scanning speed, and converged on the same technical solution in similar time-
frames. For example, GE and Siemens presented their initial work on helical scanning at the
same RSNA meeting in 1990. At GE, Crawford and King built on other work dealing with
helical scanning by Toshiba and at the University of Illinois.>>** The use of slip rings for
CT scanning was demonstrated by the Mayo Clinic in their multi-source cardiac scanner, which
was known as the Dynamic Spatial Reconstructor (DSR), by Varian, and by Artronix in their
hybrid fourth-generation body scanner and discussed in an earlier patent.*>>” More background
information about simultaneous inventions as related to helical scanning is described by
Schwartz.*®

It was again evident after the advent of helical CT with a single row of detectors that more
slices per unit time could be collected by replacing the single row of detectors in the fan-beam
with multiple rows of detectors. This configuration is also known as helical multi-slice, which
was inspired by EMI’s use of multiple detectors to scan multiple slices of the skull at the same
time. The initial multi-slice scanners used a small number of rows (e.g., four) and the divergence
of the beam in the axial direction, which is also known as cone-beam divergence, was ignored.*

The interpolation methods used for single-slice CT were extended to multiple slices and the
number of slices doubled annually over this era, from 4 to 256. The reconstruction algorithms
corrected the cone-beam divergence by back-projecting along the paths over which the rays were
collected. For the 16-slice scanners, approximate methods based on rebinning and reconstructing
tilted slices were used.***> Among other benefits, these single-slice rebinning approaches
allowed continued use of the dedicated 2D back-projection hardware that had been developed
and optimized for single-slice CT scanners.

As the number of slices reached 64, these approximations began to fail and new approaches
were needed. From 2001 to 2008, there were numerous breakthroughs in analytic CT helical
cone-beam reconstruction, kicked off by Katsevich’s**** announcement of an exact solution to
the helical cone-beam problem at the 2001 meeting on Fully 3D image Reconstruction in
Nuclear Medicine and Computed tomography. The original formulation of the Katsevich algo-
rithm placed somewhat rigid requirements on scan geometry, choice of helical pitch and did not
fully use all collected data. Many of these issues were addressed in a series of other advances
pioneered by the groups of Pan at the University of Chicago,* Noo at the University of Utah,*¢
and others.*”** However, it seems that these exact approaches did not find their way directly into
commercial use for a variety of reasons, including implementation complexity and noise uni-
formity issues.**> In practice, most commercial systems used approximate methods based on
extending the Feldkamp-Davis—Kress®' reconstruction to helical cone-beam scanning trajecto-
ries initially formulated by Wang et al.’>>* All of these algorithms shared some similar features,
including filtering in the detector plane along lines that are tilted with respect to the canonical
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(b)

’ (]
64 channel scanner

Fig. 4 The clinical benefit of increasing the speed of CT scanners through increasing the number
of rows. With this change, CT made the transition to a truly volumetric modality, able to render the
body with isotropic resolution. (a) The 16-slice coronal image shows motion inconsistencies in the
heart. These are greatly reduced in (b) the coronal image acquired with a 64-slice scanner.

coordinates. At root, the mathematical exactness of analytical algorithms held only in the case of
continuous, consistent, noiseless data. When faced with sampled, inconsistent, noisy data, the
analytical algorithms had to compete with approximate algorithms that proved to be robust in the
face of these non-idealities. Figure 4 shows the clinical benefit of the move to increasing num-
bers of detector rows: CT became a truly volumetric modality, able to be reformatted into sagittal
and coronal cross-sections with minimal motion artifacts.

Patient motion continued to be addressed through the middle 1990s by reducing scan times
and, in the case of cardiac scanning, triggering data acquisition to occur during the quiescent
cardiac phases.54 FBP was also extended, based on developments from MRI reconstruction, to
compensate for patent motion if the patent motion is known.>>-

5 Back to the Future: The Return of Iterative Algorithms
and the Ascent of Artificial Intelligence

The hegemony of FBP and its variants was finally challenged in 2009 with the FDA’s approval of
the first iterative reconstruction algorithm, Siemens’ iterative reconstruction in image space
(IRIS). This represented something of a return to the roots of commercial CT, since
Hounsfield’s EMI scanner was originally developed using iterative reconstruction, as described
already. However, IRIS was a small step back to the future, since the iteration takes place in
image space to reduce the noise in an image initially reconstructed using an FBP-like algorithm
and can be viewed in some ways simply as a sophisticated, noise-reducing post-processing step
applied to FBP.

IRIS did, however, represent an important shift in approach that would soon accelerate as all
major vendors introduced multiple generations of iterative algorithms over the next few years.
Following Willemink and Noel,” it is helpful to distinguish among algorithms that (1) iterate
only in image space (image-restoration algorithms), (2) iterate only in data space (sinogram-
restoration algorithms), (3) iterate in both spaces (sinogram- and image-restoration), and, finally,
(4) iterate fully between the two spaces with multiple forward and back-projections (fully iter-
ative algorithms). Most vendors developed algorithms in the third category (GE’s ASIR, Phillips
iDOSEA4, and Siemens’ SAFIRE), which allowed for a good balance between image quality and
computational burden. However, GE eventually pioneered a fully iterative reconstruction algo-
rithm called VEO.
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VEO represented an algorithm that sought to model the geometry of source and detector in an
effort to improve spatial resolution and reduce partial volume artifacts. It was developed through
a long and fruitful industrial-academic partnership between GE and researchers at Purdue and
Notre Dame. Figure 5 reproduces a figure from a key joint paper.’® While a significant amount of
research on iterative reconstruction for CT was taking place separately in universities and at the
major CT vendors, it is significant that a collaboration between the two brought the first algo-
rithm to commercial fruition. The reasons for this are well captured by the influential article,
“Why do commercial CT scanners still employ traditional, FBP for image reconstruction?” by
Pan et al.,”” published appropriately enough just as the FBP era began to wane. The article argues
that industrial engineers needed to see evidence that new algorithms would work well on real CT
data before investing time in developing such algorithms for commercial use. However, most real
commercial CT data are inaccessible to academic researchers, because it requires numerous pro-
prietary corrections to account for system imperfections. To move forward required a true part-
nership, in which academic researchers with novel algorithms were allowed to open the hood of
a CT scanner and work with industry employees to model its geometry and apply proprietary
corrections.

VEO struggled to find market traction, however, in part because of very long reconstruction
times, and eventually GE offered a hybrid algorithm called ASIR-V, while other vendors devel-
oped their own fully-iterative and hybrid model-based approaches, struggling to balance image
quality improvements with computational burden. In a related vein, some vendors are moving
towards so-called artificial-intelligence (AlI)-based approaches in which large neural networks
are trained to reconstruct low-noise CT images from relatively high-noise raw data using large
sets of training pairs.®*®! This might involve, for example, pairing high-dose gold standard
images with matched low-dose images so that the system can learn to produce high-quality
images from low-dose data. While the training process is very computationally expensive, the
process of reconstructing an image using a trained network is non-iterative and can be made
efficient depending on the architecture of the network. This relies on the advent of modern
GPUs, another example of computational hardware enabling a shift in reconstruction algorithm.

What took so long for iterative algorithms to make their way into clinical use? While com-
putational power had obviously grown exponentially since the advent of the EMI Mark I, so too
had CT data sizes, with images of 10,000 pixels described in the Hounsfield patent having grown
to be image volumes of more than 100 million voxels. Likewise, as scanning grew faster, the
number of patients who could be scanned on a given machine grew, increasing the number of
scans that needed to be reconstructed. The complexity of iterative reconstruction scales as the
square of the image array size since the raw data size typically scales similarly and the size of the
system matrix is given by their product. This translates into a 100-million fold increase in CT
reconstruction complexity, which turns out to be nearly identical to the growth in computing
power over the same period of 1970-2020. Moreover, the growth in CT data size was uneven,

(a)

Fig. 5 An example of the dose-reduction and resolution-enhancement capabilities of iterative,
model-based image reconstruction (MBIR) algorithms. Reconstructed by (a) FBP and (b) MBIR
algorithm.58
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with one especially rapid acceleration coming during the “slice wars” of 1998-2004, when the
number of rows in multi-slice CT scanners doubled every year, growing 64-fold as scanners
evolved from 4 to 256 rows in six years. Computational power only grew about 8 fold in that
same six-year period, in line with Moore’s law that computational power doubles every
two years.

Another potential hurdle to adoption of iterative algorithms was regulatory: a change in
reconstruction algorithm requires review and approval by regulatory agencies such as the
Food and Drug administration (FDA) in the United States, a somewhat time-consuming and
expensive step that is only worth pursuing if the algorithms are likely to give some commercial
advantage to the vendor and, better yet, if the vendor can gain approval to make marketing claims
about the algorithm’s advantages. This required novel approaches on the part of both vendors
and regulators, since the new algorithms were non-linear and existing image quality metrics
regarding noise, resolution, and dose reduction were of questionable value in the face of
non-linearity. The issues and proposed solutions are well explained in an article by scientists
from the FDA’s Center for Devices and Radiological Health, which describes a variety of objec-
tive task-based metrics that can be assessed and compared for the purposes of making claims
about either image quality improvements or radiation dose reduction under conditions of fixed
image quality.”> A wide variety of studies, using physical measures of noise and resolution, radi-
ologists’ subjective assessment of image quality, and more objective measures based in signal
detection theory have shown that iterative reconstruction approaches allow image quality and
diagnostic performance to be preserved while reducing radiation dose.®*®*

6 Conclusion

A high-level review of the history of CT reconstruction algorithms has been presented. These
reconstruction algorithms were developed in part to increase the clinical usefulness of CT. The
image quality of CT slices is significantly better than the image quality in EMI’s first scanner and
many more slices can be collected per unit time allowing whole-body scanning and snapshot
imaging of rapidly moving organs. While it may seem that CT has reached maturity as an
imaging modality, all the forces that led to the developments described here are still in play and
we expect that they will continue to drive additional improvements in scanner hardware and
algorithms to further increase the clinical utility of CT.

Disclosures

Patrick La Riviere has received past research funding from Toshiba Medical Research
Institute USA and current research funding from Accuray Inc. Carl Crawford has been
an employee of Elscint, GE Medical Systems, and Analogic, and has been a consultant to
GE Healthcare, Toshiba Medical Systems, Philips Medical Systems, Mobius Imaging, and
Tribogenics.

Acknowledgments

The authors acknowledge helpful discussions from Harry Martz, Ge Wang, and Norbert Pelc,
as well as very constructive comments from three anonymous reviewers.

References

1. T. H. Newton and D. G. Potts, Eds., Radiology of the Skull and Brain: Technical Aspects of
Computed Tomography, Vol. 5, C.V. Mosby Company (1981).

2. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press
(1988).

3. S. Webb, From the Watching of Shadows: The Origins of Radiological Tomography, IOP
Publishing (1990).

Journal of Medical Imaging 052111-9 Sep/Oct 2021 « Vol. 8(5)



4

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

La Riviere and Crawford: From EMI to Al: a brief history of commercial CT reconstruction algorithms

. W. Kalendar, Computed Tomography: Fundamentals, System Technology, Image Quality,

Applications, 3rd ed., Publicis Corporate Publishing (2005).

J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances,

3rd ed., SPIE Press (2015).

. R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys. 9, 198-217
(1956).

. R. N. Bracewell, The Fourier Transform and its Applications, McGraw-Hill (1965).

. J.W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19, 297-301 (1965).

. R. N. Bracewell and A. C. Riddle, “Inversion of fan-beam scans in radio astronomy,”

Astrophys. J. 150, 427-434 (1967).

R. A. Crowther, D. J. De Rosier, and A. Klug, “The reconstruction of a three-dimensional

structure from projections and its application to electron microscopy,” Proc. Roy. Soc. Lond.

A 317, 319-340 (1970).

G. N. Ramachandran and A. V. Lakshminarayanan, “Three-dimensional reconstruction

from radiographs and electron micrographs: application of convolutions instead of

Fourier transforms,” PNAS 68, 2236-2240 (1971).

P. Gilbert, “The reconstruction of a three-dimensional structure from projections and its

application to electron microscopy II. Direct methods,” Proc. R. Soc. Lond. B Biol. Sci.

182, 89-102 (1972).

G. N. Hounsfield, “A method of and apparatus for examination of a body by radiation such

as X or gamma radiation,” U.K. Patent No. 1,283,915 (1968/1972).

A. M. Cormack, “Representation of a function by its line integrals, with some radiological

applications,” J. Appl. Phys. 34(9), 2722-2727 (1963).

W. H. Oldendorf, “Isolated flying spot detection of radiodensity discontinuities-displaying

the internal structural pattern of a complex object,” IRE Trans. Bio-Med. Electron. 8, 6872

(1961).

A. M. Cormack, “Reconstruction of densities from their projections, with applications in

radiological physics,” Phys. Med. Biol. 18, 195-207, (1973).

H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction using ordered subsets of

projection data,” IEEE Trans. Med. Imaging 13, 601-609 (1994).

E. C. Beckmann, “CT scanning the early days,” Br. J. Radiol. 79, 5-8 (2006).

C. A. G. Lemay, “Method and apparatus for constructing a representation of a planar’s slice

of body exposed to penetrating radiation,” U.S. Patent No. 3,924,129 (1975).

M. Joseph and R. D. Spital, “A method for correcting bone induced artifacts in computed

tomography scanners,” J. Comput. Assist. Tomogr. 2, 100-108 (1978).

R. A. Brooks et al., “Aliasing: a source of streaks in computed tomograms,” J. Comput.

Assist. Tomogr. 3, 511-518 (1979).

A. R. Sohval, “X-ray tube having an adjustable focal spot,” U.S. Patent No. 4,689,809

(1987).

G. H. Glover, “Compton scatter effects in CT reconstructions,” Med. Phys. 9, 860-867

(1982).

G. Kowalski, “Suppression of ring artifacts in CT fan-beam scanners,” IEEE Trans. Nucl.

Sci. 25, 1111-1116 (1978).

D. A. Freundlich, “Ring artifact correction for computerized tomography,” U.S. Patent

No. 4,670,840 (1987).

G. H. Glover and N. J. Pelc, “An algorithm for the reduction of metal clip artifacts in

CT reconstructions,” Med. Phys. 8, 799-807 (1981).

N. J. Pelc and G. H. Glover, “Method for reducing image artifacts due to projection meas-

urement inconsistencies,” U.S. Patent No. 4,580,219 (1986).

S. C. Moore et al., “Prospectively gated cardiac computed tomography,” Med. Phys. 10,

846-855 (1983).

D. L. Parker, “Optimal short scan convolution reconstruction for fan-beam CT,” Med. Phys.

9, 254-257 (1982).

J. Hsieh and T. Flohr, “Computed tomography recent history and future perspectives,”

J. Med. Imaging, 8, 052109 (2021).

Journal of Medical Imaging 052111-10 Sep/Oct 2021 « Vol. 8(5)


https://doi.org/10.1071/PH560198
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1086/149346
https://doi.org/10.1098/rspa.1970.0119
https://doi.org/10.1098/rspa.1970.0119
https://doi.org/10.1073/pnas.68.9.2236
https://doi.org/10.1098/rspb.1972.0068
https://doi.org/10.1063/1.1729798
https://doi.org/10.1109/TBMEL.1961.4322854
https://doi.org/10.1088/0031-9155/18/2/003
https://doi.org/10.1109/42.363108
https://doi.org/10.1259/bjr/29444122
https://doi.org/10.1097/00004728-197801000-00017
https://doi.org/10.1097/00004728-197908000-00014
https://doi.org/10.1097/00004728-197908000-00014
https://doi.org/10.1118/1.595197
https://doi.org/10.1109/TNS.1978.4329487
https://doi.org/10.1109/TNS.1978.4329487
https://doi.org/10.1118/1.595032
https://doi.org/10.1118/1.595420
https://doi.org/10.1118/1.595078
https://doi.org/10.1117/1.JMI.8.5.052109

31

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

La Riviere and Crawford: From EMI to Al: a brief history of commercial CT reconstruction algorithms

. C.R. Crawford and K. F. King, “Computed tomography scanning with simultaneous patient

translation,” Med. Phys. 17, 967-982 (1990).

W. A. Kalender et al., “Spiral volumetric CT with single-breath-hold technique, continuous
transport, and continuous scanner rotation,” Radiology 176, 181-183 (1990).

I. Mori, “Computerized tomographic apparatus utilizing a radiation source,” U.S. Patent
No. 4,630,202 (1986).

Y. Bresler and C. J. Skrabacz, “Optimal interpolation in helical scan 3D computed tomog-
raphy,” in Proc. ICASSP, Vol. 3, pp. 1472-1475 (1989).

J. H. Kinsey et al., “The DSR: a high temporal resolution volumetric roentgenographic
CT scanner,” Herz 5, 177-188 (1980).

K. L. Dinwiddie, J. A. Racz, and E. J. Seppi, “Rotary feed for tomographic scanning appa-
ratus,” U.S. Patent No. 4,201,430 (1980).

G. A. Davis et al., “Axial tomographic apparatus,” U.S. Patent No. 4,093,859 (1978).

E. 1. Schwartz, Juice: The Creative Fuel That Drives World-Class Invention, Harvard
Business School Press (2004).

H. Hui, “Multi-slice helical CT: scan and reconstruction,” Med. Phys. 26, 5-18 (1999).
G. L. Larson, C. C. Ruth, and C. R. Crawford, “Nutating slice CT image reconstruction
apparatus and method,” US Patent No. 5,802,134 (1998).

F. Noo, M. Defrise, and R. Clackdoyle, “Single-slice rebinning method for helical cone
beam CT,” Phys. Med. Biol. 44, —561 (1999).

M. Kachelriess, S. Schaller, and W. Kalender, “Advanced single-slice rebinning in cone
beam spiral CT,” Med. Phys. 27, 754-772 (2000).

A. Katsevich, “Exact FBP-type inversion algorithm for spiral CT,” in Proc. Sixth
Int. Meeting Fully Three-Dimens. Image Reconstr. in Radiol. and Nucl. Med., pp. 1-4
(2001).

A. Katsevich, “Theoretically exact filtered backprojection-type inversion algorithm for
spiral CT,” SIAM J. App. Math. 62, 2012-2026 (2002).

Y. Zou and X. Pan, “Exact image reconstruction on PI-lines from minimum data in helical
cone beam CT,” Phys. Med. Biol. 49, 941-959 (2004).

F. Noo, R. Clackdoyle, and J. Pack, “A two-step Hilbert transform method for 2D image
reconstruction,” Phys. Med. Biol. 49, 3903 (2004).

Y. Ye et al., “A general exact reconstruction for cone-beam CT via backprojection-filtration,”
IEEE Trans. Med. Imaging 24, 1190-1198 (2004).

T. Zhuang et al., “Fan-beam and cone beam image reconstruction via filtering the backpro-
jection image of differentiated projection data,” Phys. Med. Biol. 49, 5489-5503 (2004).
P. Biswal and S. Banerjee, “Implementation of Katsevich algorithm for helical cone-beam
computed tomography using CORDIC,” in Proc. Int. Conf. Syst. Med. and Biol., pp. 313—
317 (2010).

D. Xia et al., “Noise properties of chord-image reconstruction,” IEEE Trans. Med. Imaging
26, 1328-1344 (2007).

L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc.
Am. A 1, 612-619 (1984).

G. Wang et al., “Scanning cone beam reconstruction algorithms for x-ray microtomogra-
phy,” Proc. SPIE 1556, 99-112 (1991).

G. Wang et al., “A general cone beam reconstruction algorithm,” IEEE Trans. Med. Imaging
12, 486496 (1993).

C. J. Ritchie et al., “Predictive respiratory gating: a new method to reduce motion artifacts in
CT,” Radiology 190, 847-852 (1994).

E. M. Haacke and J. L. Patrick, “Reducing motion artifacts in two- dimensional Fourier
transform imaging,” Mag. Reson. Imaging 4, 359-376 (1986).

C. J. Ritchie et al., “Correction of computed tomography motion artifacts using pixel-
specific back-projection,” IEEE Trans. Med. Imaging 15, 333-342 (1996).

M. J. Willemink and P. B. Noél, “The evolution of image reconstruction for CT—from
filtered back projection to artificial intelligence,” Eur. Radiol. 29, 2185-2195 (2019).
J.-P. Thibault et al., “A three-dimensional statistical approach to improved image quality for
multislice helical CT,” Med. Phys. 34, 4526-4544 (2007).

Journal of Medical Imaging 052111-11 Sep/Oct 2021 « Vol. 8(5)


https://doi.org/10.1118/1.596464
https://doi.org/10.1148/radiology.176.1.2353088
https://doi.org/10.1109/ICASSP.1989.266718
https://doi.org/10.1118/1.598470
https://doi.org/10.1088/0031-9155/44/2/019
https://doi.org/10.1118/1.598938
https://doi.org/10.1137/S0036139901387186
https://doi.org/10.1088/0031-9155/49/6/006
https://doi.org/10.1088/0031-9155/49/17/006
https://doi.org/10.1109/TMI.2005.853626
https://doi.org/10.1088/0031-9155/49/24/007
https://doi.org/10.1109/TMI.2007.898567
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1117/12.134891
https://doi.org/10.1109/42.241876
https://doi.org/10.1148/radiology.190.3.8115638
https://doi.org/10.1016/0730-725X(86)91046-5
https://doi.org/10.1109/42.500142
https://doi.org/10.1007/s00330-018-5810-7
https://doi.org/10.1118/1.2789499

59

60.
61.

62.

63.

64.

La Riviere and Crawford: From EMI to Al: a brief history of commercial CT reconstruction algorithms

. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ
traditional, filtered back-projection for image reconstruction?” Inverse Prob. 25, 123009
(2009).

G. Wang, “A perspective on deep imaging,” IEEE Access 4, 8914-8924 (2016).

J. Hsieh et al., “A new era of image reconstruction: TrueFidelity technical white paper on
deep learning image reconstruction,” General Electric Company, https://www.gehealthcare
.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf (2019).

J. Y. Vaishnav et al., “Objective assessment of image quality and dose reduction in
CT iterative reconstruction,” Med. Phys. 41, 071904 (2014).

P. J. Pickhardt et al., “Abdominal CT with Model-Based Iterative Reconstruction (MBIR):
initial results of a prospective trial comparing ultralow-dose with standard-dose imaging,”
Am. J. Roentgenol. 199, 12661274, (2012).

J.G. Fletcher et al., “Observer performance with varying radiation dose and reconstruction
methods for detection of hepatic metastases,” Radiology 289, 455-464 (2018).

Patrick J. La Riviere is a professor in the Department of Radiology and the Committee on
Medical Physics at the University of Chicago. He received his AB degree in physics from
Harvard University and his PhD from the Graduate Programs in Medical Physics at the
University of Chicago. His research interests include tomographic reconstruction in computed
tomography, x-ray fluorescence computed tomography, and computational microscopy.

Carl R. Crawford is president of Csuptwo, a consulting company for medical imaging and
homeland security. Previously at Analogic, he developed the reconstruction and explosive
detection algorithms for a computerized tomographic (CT) scanner deployed in airports. At
General Electric Medical Systems he developed technologies for helical scanning and physio-
logical motion compensation. At Elscint he developed technology for cardiac CT scanners.
He has a PhD in electrical engineering from Purdue University.

Journal of Medical Imaging 052111-12 Sep/Oct 2021 « Vol. 8(5)


https://doi.org/10.1088/0266-5611/25/12/123009
https://doi.org/10.1109/ACCESS.2016.2624938
https://www.gehealthcare.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf
https://www.gehealthcare.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf
https://www.gehealthcare.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf
https://www.gehealthcare.com/-/jssmedia/040dd213fa89463287155151fdb01922.pdf
https://doi.org/10.1118/1.4881148
https://doi.org/10.2214/AJR.12.9382
https://doi.org/10.1148/radiol.2018180125

