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Abstract

Purpose: Rapid prognostication of COVID-19 patients is important for efficient resource allo-
cation. We evaluated the relative prognostic value of baseline clinical variables (CVs), quanti-
tative human-read chest CT (qCT), and AI-read chest radiograph (qCXR) airspace disease (AD)
in predicting severe COVID-19.

Approach: We retrospectively selected 131 COVID-19 patients (SARS-CoV-2 positive, March
to October, 2020) at a tertiary hospital in the United States, who underwent chest CT and CXR
within 48 hr of initial presentation. CVs included patient demographics and laboratory values;
imaging variables included qCT volumetric percentage AD (POv) and qCXR area-based per-
centage AD (POa), assessed by a deep convolutional neural network. Our prognostic outcome
was need for ICU admission. We compared the performance of three logistic regression models:
using CVs known to be associated with prognosis (model I), using a dimension-reduced set of
best predictor variables (model II), and using only age and AD (model III).

Results: 60/131 patients required ICU admission, whereas 71/131 did not. Model I performed the
poorest (AUC ¼ 0.67 [0.58 to 0.76]; accuracy ¼ 77%). Model II performed the best (AUC ¼
0.78 [0.71 to 0.86]; accuracy ¼ 81%). Model III was equivalent (AUC ¼ 0.75 [0.67 to 0.84];
accuracy ¼ 80%). Both models II and III outperformed model I (AUCdifference ¼ 0.11 [0.02 to
0.19], p ¼ 0.01; AUCdifference ¼ 0.08 [0.01 to 0.15], p ¼ 0.04, respectively). Model II and III
results did not change significantly when POv was replaced by POa.

Conclusions: Severe COVID-19 can be predicted using only age and quantitative AD imaging
metrics at initial diagnosis, which outperform the set of CVs. Moreover, AI-read qCXR can
replace qCT metrics without loss of prognostic performance, promising more resource-efficient
prognostication.
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1 Introduction

Since its emergence in December 2019 in Wuhan, China, the global outbreak of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated disease—COVID-19—
has accrued over 2160 million confirmed cases and over 4,500,000 confirmed deaths.1 To reduce
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the overall burden of COVID-19 on healthcare systems, especially in the face of additional var-
iants, diagnosis and prognostication should be accurate, efficient, and accessible. For diagnosis,
the reference standard is reverse-transcriptase polymerase chain reaction (RT-PCR). This can be
aided by imaging modalities such as computed tomography (CT) and chest radiography (CXR),
which have been studied for diagnosis and for monitoring progression using AI methods.2–6

The most common thoracic imaging manifestations of COVID-19 pneumonia are reported
as peripheral, bilateral ground glass opacities with or without consolidation or visible interlob-
ular lines.7,8

Because COVID-19 can vary widely in initial presentation and disease progression—from
asymptomatic to multiorgan failure and death—much research has focused on finding clinical
and imaging prognostic indicators.9,10 These studies have used a variety of endpoints, such as
mortality, intensive care (ICU) admission, length-of-stay, and disease severity rating.10,11 Some
studies have identified clinical and demographic factors associated with more severe outcomes,
and prognostic algorithms based on these variables have been proposed for clinical use.12 For
prognosis prediction based on imaging, visual semiquantitative scoring systems of CT and CXR
have been proposed.3,13,14 Others have applied AI to CT images for prognosis prediction.15–18

Due to the large number of potential predictors, machine learning/artificial intelligence methods
are used extensively in these studies for feature extraction and classification, with potential for
more rapid results over human readers.11

However, there is scarce literature on direct comparisons of relative prognostic abilities
between clinical, quantitative CXR, and quantitative CT variables using multiparametric stat-
istical models. Due to inconsistencies in clinical and laboratory data gathered and availability
of various imaging modalities across different healthcare systems, such a comparison is crucial
in working toward not just an accurate prognostic model but a maximally resource-efficient one.

To compare these many variables efficiently, feature selection is required. Embedded meth-
ods, such as random forest, are popular in feature selection due to their robustness to noise and
resistance to overfitting.19 However, both wrapper and embedded methods become computation-
ally intensive with higher feature datasets, lack interpretability as “black box”methods, and have
been found biased by correlated features.20 To address these weaknesses, embedded methods
can be combined with filter methods, such as minimum redundance-maximum relevance
(mRMR) which quickly culls variables by their relevance while penalizing redundancy to other
variables.21 mRMR has the additional advantage of interpretability of the features filtered.
Developed for and applied to genomics analysis, mRMR in combination with advanced
embedded/wrapper methods has been found more accurate than using classifiers alone, with
lower computational cost.22 Here, we use mRMR in conjunction with random forest for simul-
taneous feature selection and inferences on the relative prognostic strength of variables.

Our goals in this study were to assess whether severe COVID-19, which we defined as requir-
ing ICU admission, can be accurately predicted using a set of demographics, clinical, qCXR, and
qCT variables at initial presentation. ICU admission was chosen to address serious disease man-
ifestations, including but not limited to respiratory failure. Our secondary goal was to assess if
AI-read qCXR was a more cost- and time-efficient, noninferior predictor compared with human-
read qCT, acknowledging that a direct measure of any efficiency gains in radiologists’ interpre-
tation is beyond the scope of this study. Moreover, we assessed the relative performance of
models incorporating subsets of clinical and imaging variables with cross-validation, to rank
the most valuable predictors and arrive at a parsimonious optimal model with a minimum set
of variables.

2 Materials and Methods

2.1 Patient and Image Selection

This single institution, retrospective study obtained IRB approval with waiver of informed con-
sent and was HIPAA compliant. We randomly selected 131 patients with the following inclusion
criteria: positive RT-PCR for SARS-CoV-2, a pair of CXR, and chest CT performed within 48 h
of each other and within 48 h of presentation, and age older than 18. All scans were obtained
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within the following date range: March to October, 2020. Figure 1 details study design, inclu-
sion, and exclusion criteria.

CXR and CT images were de-identified using a standard anonymization profile in Sectra
PACS and transferred through a secure file exchange to a computational cluster for imaging
processing. Table 1 lists all variables included for analysis for each patient.

2.2 Clinical and Demographic Variables

We collected the following demographic variables from the EMR (electronic medical record):
age, sex, race, employment, and insurance status, smoking/alcohol/drug use history, and marital
status. In addition, we collected the following CVs, as close to initial presentation as possible,
through EMR chart review:

• Vital signs and biometrics: BMI, heart rate, blood pressure, temperature, and respira-
tory rate.

• Laboratorial values: white blood cells (WBC), red blood cells (RBC), hemoglobin (Hgb),
red cell distribution width (RDW), mean cell hemoglobin (MCH), mean corpuscular
hemoglobin concentration (MCHC), mean corpuscular volume (MCV), platelets (Plt),
aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, erythrocyte
sedimentation rate (ESR), D-dimer, lactate dehydrogenase (LDH), ferritin, C-reactive
protein (CRP), troponin T.

Fig. 1 Flow diagram with inclusion and exclusion criteria in our study cohort (n ¼ 131).
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• Presenting symptoms: dyspnea, chest pain, fever, loss of taste/smell, other neurologic, and
GI symptoms.

• Co-morbidities organized by organ system: immunologic/inflammatory, respiratory,
cardiovascular, neurologic, gastrointestinal, genitourinary, and diabetes.

Oxygen saturation as measured by pulse oximetry (SpO2) and partial pressure oxygen on
venous or arterial blood gas labs were not used for several reasons. Patients brought in by
Emergency Medical Services (EMS) were often already on supplemental oxygen, artificially
elevating their SpO2 and pO2. SpO2 especially is heavily dependent on patient activity and
position, and two patients with the same degree of poor oxygenation can measure significantly
different SpO2 if one is at rest and the other just transferred in or out of bed. Furthermore, venous
pO2 and arterial pO2 carry different interpretations (tissue oxygen use and cardiovascular
oxygen output, respectively), and many patients lacked one or both. Like SpO2, pO2 is also
confounded by any use of supplemental oxygen.

Laboratorial values were binarized to 0/1 (1 = abnormal, 0 = normal) with missing values
imputed to 0 = normal due to a lack of established evidence of the relative impact of different
value ranges. No demographics, symptoms, or comorbidities datum was missing for any of
the 131 patients, and these were also binarized to 0/1 (1 = comorbidities/symptom present,
0 = comorbidities/symptom absent).

2.3 Airspace Disease Quantification on CXR and Chest CT

All CXRs were performed with AP (anterior posterior) technique and digital acquisition.
Chest CTs were performed with variable protocols (on Siemens or GE scanners); however,
every scan included contiguous 1-mm axial slices without interslice gap, obtained with iterative
reconstruction using high spatial resolution algorithms (tailored for lung evaluation).

Table 1 Variables by category.

Demographics Vital signs Laboratory AD metrics

Age Respiratory rate AST (abnormal) POa CXR CNN

Cardiovascular comorbidities Symptom-neurologic ESR (abnormal) POa DRR CNN

Gender Temperature CRP (abnormal) POv CT ground-truth

Renal comorbidities BP_abnormal Creatinine (abnormal) —

BMI Symptom-fever D.Dimer (abnormal) —

Immunologic comorbidities Symptom-GI MCHC (abnormal) —

Diabetes Heart rate ALT (abnormal) —

Other comorbidities Symptom-respiratory RDW (abnormal) —

Respiratory comorbidities — MCV (abnormal) –

— — Hct (abnormal) —

— — Hgb (abnormal) —

— — Ferritin (abnormal) —

— — WBC (abnormal) —

— — MCH (abnormal) —

— — Troponin.T (abnormal) —

— — Plt (abnormal) —

— — RBC (abnormal) —
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Airspace disease (AD) was quantified on CT and on CXR utilizing a combination of expert
human annotations on CT and an AI method on CXR, detailed on a previous publication.23

Two deep convolutional neural networks (CNNs) are used, one for lung segmentation
and one for segmentation of airspace opacity from chest DRR and x-ray. Both networks are
based on a residual U-net architecture, with the encoder layers initialized from the ResNet18
architecture.24,25 This results in a nine-layer deep network with 64, 64, 128, 256, and 512 feature
maps in the encoding layers (following the ResNet18 structure). Skip connections based on
feature map concatenation are used. The final layer is a mapping to two-channel output, describ-
ing foreground (i.e., airspace opacity area) and background.

CT images have been annotated at raw resolution and without preprocessing. DRRs are gen-
erated as integrals over synthetic projection lines through the CT volume under a parallel pro-
jection geometry. Using a deep CNN, we enhance the resolution of the resulting DRR to achieve
isotropic resolution that is higher, closer to typical chest radiographs (CXR). DRRs and x-rays
(during inference) are feed to both segmentation networks at a resolution of 512 × 512 pixels.
More details can be found in Ref. 23. In terms of preprocessing, for x-ray processing during
inference we use the robust intensity normalization technique described in Ref. 26.

Figure 2 shows our method. Figure 3 provides an example of AD quantification on CT.
Figure 4 demonstrates a patient example of multiple types of AD quantification according
to our method, on CT, CXR, and DRR, by the CNN algorithm, validated by human expert
readers.

The metrics used to assess the severity of AD are as follows:

• Percentage of opacity–volume (POv): The POv is measured on CT scans and quantifies
the percent volume of the lung parenchyma that is affected by AD

EQ-TARGET;temp:intralink-;sec2.3;116;451POv ¼ 100 ×
Volume of Airspace Disease

Total Lung Parenchyma Volume
:

• Percentage of opacity – area (POa): The POa is measured on CXRs and quantifies the
percent area of the lung parenchyma that is affected by AD:

Fig. 2 Schematic illustration of our method, which generates quantitative AD annotation on CXR
by a CNN algorithm, leveraging paired CT POv AD (ground-truth) and validated by two indepen-
dent expert readers. The set of imaging variables were fed into our statistical models, in conjunc-
tion with CVs. Light blue color reflects expert human annotation of AD (two expert readers). Color
coded heat map (predominantly red) reflects the CNN prediction of AD, with red in the center
representing the highest confidence level, and blue at the edges the lowest.
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EQ-TARGET;temp:intralink-;sec2.3;116;165POa ¼ 100 ×
Area of Airspace Disease

Total of Lung Parenchyma Area
:

The Appendix describes characteristics of AI CNN training datasets.

2.4 Outcome

A binary outcome of requiring ICU was chosen, such that all deaths were counted under requir-
ing ICU, and nonadmissions or admissions to a regular ward were counted as not requiring ICU.

Fig. 3 CT derived three-dimensional volume (POv) airspace quantification (ground truth), on (a, e)
axial, (b, f) sagittal, (c, g) coronal MPRs, and on (d, h) VR masks, in two patients in our cohort.
Light blue lines reflect the contours of the segmented AD.

Fig. 4 (a) DRR, (b) AP intensity thickness AD mask from CT, (c) DRR with projected AD mask,
(d) DRR CNN prediction, (e) CXR, (f), (g) CXR expert readers for validation, (h) CXR CNN pre-
diction, in a patient example in our cohort. Light blue color reflects expert human annotation of AD
[(f) and (g)] two expert readers]. Light blue color in (c) reflects the DRR with projected AD mask
from CT ground-truth. Color coded heat map (predominantly red) reflects the CNN prediction of
AD, with red in the center representing the highest confidence level, and blue at the edges the
lowest (d and h).
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All deaths on chart review that occurred out of the ICU were due to do-not-resuscitate orders or
patient family decisions for palliative care. Otherwise, these patients would have required ICU
due to their clinical condition. This outcome also allows our models to capture the risk of all
serious outcomes, not just ventilation or intubation. Of the 131 patients, 71 required admission to
the ICU, and 60 did not.

2.5 Statistical Analysis

Dimension reduction was conducted by first filtering all variables using a classic mRMR ensem-
ble filter in the mRMRe package in R, with the main outcome described already as the target
variable.27 100 random forests, each with 1000 trees, were then fit on the top 10 variables
from mRMR filter using the randomForest package in R.28 Mean accuracy decrease (MAD)
importance rankings were averaged across the runs, and the top few variables were statistically
tested and fit using logistic regression. Logistic regression was chosen as the classification
algorithm due to better interpretability of individual predictors over random forest modeling.
The area under the curve (AUC) of a receiver operating curve (ROC) for the model was
used to assess prognostic value of the logistic model using leave-one-out cross-validation
(LOOCV) approach using the cvAUC package in conjunction with the pROC package in R.29,30

In the LOOCV approach, the data were partitioned into folds where one participant’s data had
been withheld—thus, the number of folds was equal to the number of participants. For each
fold, the empiric AUC was calculated, and an LOOCV AUC was estimated by the mean of
these empiric AUC. The ROC was plotted using a vertical average from the LOOCV runs.
Prediction accuracy for each logistic model was also calculated using LOOCV with the cvAUC
package.

Three logistic models were fit and compared: (1) A base model based solely on CVs found
consistently associated with COVID-19 prognosis in the literature (model I); (2) a model fit
using the highest-yield variables from dimension reduction (model II); and (3) a model fit only
on age and imaging (qCT or qCXR) variables (model III). Parallel versions of models II and III
were also fit, replacing POv CT with POa from AD on CXR calculated by CNN. The AUC of
models I, II, and III was compared pairwise using the paired Delong Test for correlated ROC,
included in the pROC package. The paired Delong Test was also used to compare the AUC of the
parallel models of models II and III. ANOVAwas not conducted as the ROC for these models are
correlated, and repeated measures ANOVA was not possible due to the inability to calculate
subject-specific AUC.

These statistical analyses were conducted on a single computer with 16 GB of RAM and
an i7-4790 CPU. We define statistical significance at p < 0.05.

3 Results

Of the 131 total patients, 48% (63) were male, and 52% (68) female, with a mean age of 60.3 and
standard deviation of 18.0. Of the 60 patients who required ICU care, 48% (29) were male, 52%
(31) were female, with a mean age of 67.1 and standard deviation of 16.4. Of the 71 patients who
did not require ICU care, 48% (34) were male, 52% (37) were female, with a mean age of 54.4
and standard deviation of 17.3 (Table 2).

In the dimension reduction, age, respiratory rate, abnormal creatinine, POv on CT, and abnor-
mal MCHC were identified as the top five variables by random forest among the top 10 variables
filtered by mRMR (Table 3).

The CVs only model (model I) had the poorest performance and accuracy: diabetes, cardio-
vascular comorbidities, respiratory comorbidities, and BMI were insignificant, only age was
significant (AUC ¼ 0.67 [0.58 to 0.76]; accuracy ¼ 77%). In the logistic model fit using
variables selected from mRMR and random forest dimension reduction (model II), all variables
but respiratory rate were significant predictors of ICU (AUC ¼ 0.78 [0.70 to 0.86]; accuracy ¼
81%). A parsimonious model with only age and affected volume on CT (model III) performed
similarly without need of laboratory tests (AUC ¼ 0.75 [0.67 to 0.84]; accuracy ¼ 80%;
AUC difference to model II = 0.03 (95%: −0.02 to 0.07, p ¼ 0.27)). Both models II and III
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Table 2 Demographics of cohort (n ¼ 131).

Total (n ¼ 131) ICU (n ¼ 60) Non-ICU (n ¼ 71)

Age (mean ± SD, range) 60.3 ± 18.0 (20 to 98) 67.2 ± 16.4 (25 to 97) 54.4 ± 17.3 (20 to 98)

Gender

Male 48% (63/131) 48% (29/60) 48% (34/71)

Female 52% (68/131) 52% (31/60) 52% (37/71)

Race/ethnicity

White non-Hispanic 20% (26/131) 20% (12/60) 17% (14/71)

White Hispanic 0.8% (1/131) 1% (1/60) 0% (0/71)

Black or African American 69% (91/131) 68% (41/60) 70% (50/71)

Black Hispanic 0.8% (1/131) 0% (0/60) 1% (1/71)

Asian 1.5% (2/131) 3% (2/60) 0% (0/71)

East Indian 0.8% (1/131) 0% (0/60) 1% (1/71)

Other/unknown 6% (8/131) 7% (3/60) 7% (5/71)

Smoking status

Never smoked 59% (77/131) 45% (27/60) 70% (50/71)

Former/current smoker 30% (40/131) 40% (22/60) 20% (16/71)

Unknown 11% (14/131) 15% (9/60) 3% (5/71)

Outcome

Discharged 80% (105/131) 57% (34/60) 100% (71/71)

Ventilation 21% (28/131) 47% (28/60) 0% (0/71)

Deceased 19% (26/131) 43% (26/60) 0% (0/71)

Table 3 Top 10 variables identified by mRMR, ranked by MAD on
random forest (MCHC, mean corpuscular hemoglobin concentration;
CRP, C-reactive protein; AST, aspartate aminotransferase).

mRMR score MAD score

Age 0.069 20.067

Respiratory rate 0.007 12.823

Abnormal creatinine 0.034 11.216

POv 0.042 10.319

Abnormal MCHC 0.026 7.087

Abnormal CRP 0.025 6.822

Abnormal AST 0.032 5.208

Renal comorbidities 0.012 4.754

Cancer comorbidities 0.018 2.891

Neurologic symptoms 0.010 2.530
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had significantly higher AUC compared to model I (AUCdifference ¼ 0.11 (95%: 0.02 to
0.19, p ¼ 0:01); AUCdifference ¼ 0.08 (95%: 0.01 to 0.15, p ¼ 0.04), respectively). Neither
models II nor III performed significantly differently when POv CT was swapped out for AI
CNN-obtained POa on CXR (AUCdifference ¼ 0.01 (95%: −0.01 to 0.02, p ¼ 0.23);
AUCdifference ¼ 0.01 (95%: −0.01 to 0.03, p ¼ 0.45), respectively) (Figs. 5 and 6).
Tables 4 and 5 contain variable coefficient summaries for all models fit as well as results of
the Delong tests comparing correlated AUC’s.

Fig. 5 Vertically averaged LOOCV ROC of models I to III, with parallel models II and III using POa
(CXR CNN, model “a”) and POv (CT, model “b”), respectively.

Fig. 6 Vertically averaged LOOCV ROC of model II, with different imaging variables (POa CXR
CNN, POv CT, and POa DRR CNN).
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4 Discussion

Our study demonstrates that COVID-19 requiring ICU can be accurately predicted at presen-
tation with just age and extent of lung parenchyma affected by AD, either % volume on CT
(POv) or % area on CXR (POa). The noninferiority of this parsimonious model to the complete
model with laboratory values and the relatively poor performance of the prediction model
based only on comorbidities suggests that imaging—especially the faster and cheaper AI-read
qCXR—may be a more resource-efficient way to assess prognosis than obtaining many
laboratorial values. It also suggests that imaging may be a better prognostic predictor than some
predictors commonly evaluated in literature, such as BMI, diabetes, or cardiovascular and
respiratory comorbidities.

These conclusions are corroborated by both mRMR and random forest dimension reduc-
tion, where most nonimaging variables were ranked lower. From mRMR, we can infer that
these variables were either not as relevant at predicting ICU admission, contained redundant
information, or both. This is reflected in the logistic regression coefficients, where AD
coefficients are consistently of higher magnitude than other predictors—this implies that
while age is a powerful prognosticator in the elderly, in younger COVID-19 patients their

Table 5 Individual variable coefficients, confidence intervals, and p-values from model II with
different imaging variables (ROC, receiver operating curve; AUC, area under the curve;
LOOCV, leave-one-out cross-validation; BMI, body mass index (Kg∕m2), CV comorbidities,
cardiovascular comorbidities (0/1 binary, 1 = comorbidities present); CRP, C-reactive protein;
POv, percent of opacity-volume; CT, computed tomography; POa, percent of opacity-area; CXR,
chest x-ray; DRR, digitally reconstructed radiographs; CNN, convolutional neural network).

POa CXR CNN POv CT ground-truth POa DRR CNN

ROC AUC 0.77 (95%:
0.69 to 0.85)

0.78 (95%:
0.70 to 0.86)

0.77 (95%:
0.69 to 0.85)

Difference in
AUC compared to
POa CXR CNN

— 0.01 (95%: −0.01 to
0.03, p = 0.45)

0.001 (95%: −0.03 to
0.03, p = 0.94)

Difference in AUC
compared to POv CT
ground-truth

— — −0.01 (95%: −0.04 to
0.02, p = 0.63)

LOOCV accuracy 81% 81% 81%

Age 0.041 (95%:0.015 to
0.070, p = 0.003)

0.041 (95%:0.015 to
0.070, p = 0.003)

0.045 (95%:0.018 to
0.074, p = 0.002)

Respiratory rate 0.03 (95%: −0.030 to
0.12, p = 0.41)

0.03 (95%: −0.031 to
0.12, p = 0.42)

0.02 (95%: −0.033 to
0.11, p = 0.53)

Abnormal creatinine 0.98 (95%:0.03 to
1.98, p = 0.046)

1.02 (95%:0.07-2.02,
p=0.04)

0.92 (95%:0.026 to
1.91, p = 0.05)

Abnormal MCHC 1.72 (95%:0.25 to
3.48, p = 0.03)

1.73 (95%:0.28 to
3.47, p = 0.03)

1.73 (95%:0.30 to
3.47, p = 0.03)

POa CNN 2.90 (95%:0.78 to
5.33, p = 0.011)

— —

POv CT GT — 3.23 (95%:0.95 to
5.82, p = 0.009)

—

POa DRR CNN — — 3.62 (95%:0.99 to
6.50, p = 0.009)
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AD on imaging is the strongest prognosticator of ICU admission. Moreover, the coefficients
suggest that older patients tend to require ICU admission with less AD than younger
patients.

Furthermore, it also shows that AI-derived AD quantification on CXR is as strong a prog-
nostic predictor of severe COVID-19 as AD quantification on CT (by expert annotators) and AD
quantification on DRR from CT. Moreover, imaging variables add information that improves
prognostic performance and is not redundant with other CVs. Using POa from CXR or POv
from CT, particularly if computed by AI algorithms, has the additional advantage of simplicity,
reproducibility, and speed over semiquantitative scoring systems, besides being applicable in
environments that may lack access to expert human radiologists.

Our study has several limitations. Given that we selected a subset of patients who fulfilled
multiple inclusion criteria (positive RT-PCR for SARS-CoV-2, and paired chest CT and CXR
performed within 48 h of each other and within 48 h of presentation) and due to the single center
design, we have a relatively small sample size compared with the total population of COVID-19
patients. Notwithstanding, our models generated statistically significant results and our random
sample is representative of the COVID-19 patients admitted to the hospital. The AD annotation
on CT was performed by two human readers, without automated algorithms; however, outlier
cases were secondarily reviewed by two additional expert radiologists and corrected. While
every patient in the cohort had COVID-19 at the time the CXR and CT were obtained, it is
possible that not all AD detected was a manifestation of COVID-19, though expert human
radiologists made their best effort to exclude likely chronic opacities on CT. Our sample
size limited the number of features which could be tested at once, either through random
forest or by logistic regression, which we addressed using dimension reduction techniques.
Furthermore, this study used binarized clinical laboratory values—as more research establishes
relative value ranges associated with severity of outcome, it would be feasible to more fairly
assess the relative prognostic value of laboratorial tests compared with imaging. However, given
the inconsistent panel of laboratory values obtained per patient—largely dependent on clinician
discretion—such binarized laboratory values allowed for better imputation of missing values.
Finally, our models’ AUC of 0.75 to 0.78 suggests the existence of other predictors of
COVID-19-related ICU admission not accounted for in this analysis. This performance may
also suggest that different transformations of existing data—such as the use of different thresh-
olds for laboratory values, as exist for example in other disease states—are more relevant for
prognostication.

A future direction of our research includes expanding the sample size to explore more poten-
tial predictors and their interactions, as well as expanding the dataset to cover multiple time-
points for longitudinal analysis, which will likely lead to more accurate predictive models.
Another direction is to include patients with CXR without CT to expand our sample size, as
we have demonstrated prognostic equivalence in imaging modalities.

5 Conclusions

In conclusion, our study demonstrates that prediction of severe COVID-19 with sufficient
accuracy as to be clinically relevant is attainable using only a small set of variables at initial
presentation, while emphasizing that quantitative imaging variables derived from CXR and CT
are superior to well established CVs without imaging, adding prognostic prediction accuracy
without being redundant. Our study also emphasizes the potential of statistical prognostication
models, which incorporate data from multiple modalities, including clinical, demographic,
laboratory, and imaging variables. Given that AI methods can obtain quantitative imaging
metrics with similar accuracy but much faster than expert human readers, AI methods for detec-
tion and quantification of AD, particularly when applied to much more widely available CXRs,
feeding statistical predictive machine learning models of severe COVID-19, may augment the
role of thoracic imaging and impact the management and prognostication of patients affected by
COVID-19, fostering better patient outcomes, improving resource allocation and potentially
increasing radiologists’ efficiency.

Jung et al.: Value of quantitative airspace disease measured on chest CT and chest radiography. . .

Journal of Medical Imaging 034003-12 May∕Jun 2022 • Vol. 9(3)



6 Appendix: Properties of the Training and Validation Data used
for Development of the AI Lung and Airspace Disease Segmentation
on CT and CXR, Compared to Our Study Cohort

Table 6 contains further details on the properties of the training and validation data used for
development of the AI lung and airspace disease segmentation on CT and CXR, compared
to our cohort.
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