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Abstract

Purpose: Muscle, bone, and fat segmentation from thigh images is essential for quantifying
body composition. Voxelwise image segmentation enables quantification of tissue properties
including area, intensity, and texture. Deep learning approaches have had substantial success
in medical image segmentation, but they typically require a significant amount of data. Due
to the high cost of manual annotation, training deep learning models with limited human label
data is desirable, but it is a challenging problem.

Approach: Inspired by transfer learning, we proposed a two-stage deep learning pipeline to
address the thigh and lower leg segmentation issue. We studied three datasets, 3022 thigh slices
and 8939 lower leg slices from the BLSA dataset and 121 thigh slices from the GESTALT study.
First, we generated pseudo labels for thigh based on approximate handcrafted approaches using
CT intensity and anatomical morphology. Then, those pseudo labels were fed into deep neural
networks to train models from scratch. Finally, the first stage model was loaded as the initial-
ization and fine-tuned with a more limited set of expert human labels of the thigh.

Results: We evaluated the performance of this framework on 73 thigh CT images and obtained
an average Dice similarity coefficient (DSC) of 0.927 across muscle, internal bone, cortical bone,
subcutaneous fat, and intermuscular fat. To test the generalizability of the proposed framework,
we applied the model on lower leg images and obtained an average DSC of 0.823.

Conclusions: Approximated handcrafted pseudo labels can build a good initialization for deep
neural networks, which can help to reduce the need for, and make full use of, human expert
labeled data.
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1 Introduction

Estimating volumes and masses of total body components is important for research of cancer,
joint replacement, and exercise physiology.' Full body CT scans can be used to calculate whole
body compositions directly. However, it is hard to acquire a typical full body CT in the usual
medical context due to the intense radiology dose. Mourtzakis et al.” proposed that body com-
ponents measured on abdomen or thigh slices are highly correlated with the mass of whole-body
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tissues. Thus, accurate segmentation of thigh slices can quantify tissue area properties to estimate
body composition without requiring additional irradiation or examinations. Thus, this paper aims
to segment muscle, fat, and bones from 2D thigh and lower leg CT slices.

Several recent techniques have been proposed to address thigh and lower leg segmentation on
CT images. Senseney et al.’ proposed an automatic region growing method using a morphology
operation and threshold to extract bone muscle and fat in CT thigh and abdomen images. Tan
et al.* proposed using a variational Bayesian Gaussian mixture model to cluster fat, marrow,
muscle bone, and air on three-dimensional (3D) CT scans. Felinto et al.’> proposed using a
Gaussian mixture model and relative position to cluster similar tissues for intermuscular fat and
muscles segmentation. With impressive performance of the deep neural network-based segmen-
tation, Zhu et al.® applied the H-DenseU-Net on MRI lower leg data of children with and without
cerebral palsy. Rohm et al.” created a 3D heterogeneous MRI lower leg dataset and trained a
convolution network to segment muscle.

Deep learning methods show impressive performance in segmentation tasks. However, this
performance depends on sufficient human annotation.® In the medical imaging field, human
annotation requires professional knowledge, which is very time-consuming and thus expensive.
To avoid annotating new data, many researchers used common data augmentation methods such
as rotation, intensity shift, and scaling to artificially enhance the diversity and quality of the
training data.’ Image synthesis is another data augmentation method. Generative adversarial net-
works (GANSs)'? have been utilized to synthesize new labeled data for segmentation. However,
GAN is notorious for training and is hard to implement in practical tasks.'' The main limitation
of data augmentation is data bias generated during data augmentation process. To preserve origi-
nal data distribution, leveraging the power of unannotated data is another solution to train a
model with limited annotation data. Chen et al. proposed using self-supervised learning with
image context restoration to achieve brain tumor segmentation with a limited dataset.'”
Instead of self-supervised learning, transfer learning is another way to train with limited label
data. First, a model is trained from scratch on a large-scale dataset with a similar task. Then, the
model is fine-tuned with human annotated data. Tajbakhsh et al.'* showed that a fine-tuned net-
work could outperform networks that were trained from scratch with better robustness.

To better segment muscle, cortical bone, internal bone, subcutaneous fat, and intermuscular
fat with limited annotated data, we propose a two-stage transfer learning-based framework. We
use an approximate handcrafted method to generate pseudo labels for 1883 thighs to train the
model in the first stage and fine-tune it with 125 human label thighs in the second stage to
achieve segmentation. We test the model on the thigh slice and use the lower leg slice as external
data to demonstrate the generalizability of the proposed framework. The target tissue and cor-
responding legend are shown in Fig. 1. This paper is the significant extension of our prior
accepted work'* of SPIE 2022.
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Fig. 1 The first row and second row of (a) represent the middle thigh and lower leg from the same
subject, respectively. The left column is the original CT image, and the right column is the target
tissues label. Each tissue has a different area, and the imbalance of area makes the segmentation
of sparse tissue (intermuscular fat) challenging. The area of each tissue is shown in (b).
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2 Material and Methods

We designed a two-stage coarse-to-fine deep learning method to achieve thigh and lower leg
segmentation on low-dose CT slices with deep learning. We first split a CT thigh slice into single
left and right thigh images. In the first stage, we train the deep neural network with approximate
handcrafted labels. In the second stage, we fine-tune the model from the first stage with human
expert labels to recover more details.

2.1 Preprocessing

The preprocessing pipeline works for both thigh and lower leg images with minor difference. For
each thigh image, we first set the field of view of the CT thigh slice to include the left thigh, right
thigh, table, and phantom. Next, we use the threshold of —500 Hounsfield unit (HU) to binarize
the input thigh slice. We use a square kernel 25 X 25 to erode binary images and create three
independent eroded masks. Then, we choose the left thigh and right thigh according to the area
size (the area of the table mask should be smaller than that of the thigh mask) and center position
(the centers of the left thigh mask and the right thigh mask should be at an approximate hori-
zontal axis). After picking the eroded mask of two thighs, we dilate the chosen mask with the
same kernel size. Based on those two masks, we find the maximal bounding box for each thigh
and crop the original CT slice from 512 x 512 to 256 X 256 without changing the pixel reso-
lution and intensity range of the whole CT slice. Different from preprocessing on the thigh, we
use a kernel size of 10 X 10 to erode and dilate the mask of the lower leg. Finally, we manually
review all of the thighs and lower legs and exclude cropped image including other tissue
(e.g., Table 1).

2.2 Create Pseudolabel for Thigh

Each CT slice has specific intensity units for each tissue. We use a CT window of [—190, —30]
HU for fat, [30,80] HU for muscle, and [1000,00] HU for bones."> We propose the following
pipeline with seven steps to extract five target tissues coarsely using CT intensity and
morphology.

(1) Create a cortical bone binary mask image with a threshold of 1000.

(2) Invert the cortical bone mask and find the connected region with an area that is smaller
than the half image (256 X 256/2) as the internal bone mask.

(3) Use a threshold of 0 HU to binarize the thigh image and create a muscle mask.
(4) Fill the holes for result (3).

(5) Subtract the muscle mask from step (4) to create an intermuscular fat mask based on the
assumption that intermuscular fat is within the muscle.

(6) Binarize the thigh image with a threshold of —500 HU.

Table 1 The number of slices, thighs, lower legs, labeled thighs, and lower legs for each cohort.

All thighs or Pseudo labels/

Study name Cohort Subjects Slices lowerlegs  human labels
BLSA First stage thigh training 671 944 1883 1883/0
BLSA and GESTALT Second stage thigh training 86 117 125 0/125
BLSA and GESTALT Second stage thigh validation 22 26 31 0/31
BLSA and GESTALT Second stage thigh test 47 65 73 0/73
BLSA Second stage external lower 1435 8939 17878 0/39
leg test
BLSA and GESTALT Second stage external thigh test 800 1991 3982 0/0
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Fig. 2 The proposed hierarchical coarse-to-fine thigh segmentation including three parts: (1) Use
the threshold and morphology to generate coarsely segmented pseudo labels. (2) Feed pseudo
labels into deep learning model, and train the model from scratch. (3) Use the optimized model
from previous stage as initialization, and fine-tune the model with limited expert labels. The model
from the first and second stages is optimized separately.

(7) Subtract the result of step (4) from step (6) to create a subcutaneous fat mask. Five coarse
approximate segmentation masks are shownin Fig. 2. They are fused into one mask
before fed into the deep neural network.

2.3 Two Stage Training

U-Net++'° is an encoder—decoder network in which the encoder and decoder are connected
through a series of nested, dense skip connections. The nested skip connections can help bridge
the semantic gap between the feature maps of the encoder and decoder, which is helpful for
segmenting fine-grain details of target tissues such as intermuscular fat in our case. Thus,
we use U-Net++ as our backbone for inference segmentation results. Transfer learning refers
to reusing a model developed for a task as the starting point for a model on a different or same
task, which alleviates the challenge of limited training data. Thus, we design a two-stage transfer
learning strategy. In the first stage, we use approximate pseudo labels to train U-Net++ from
scratch and choose the best model according to the performance on the validation dataset. Then,
the best model is loaded as the initialization. Human expert labeled data are used to fine-tune the
model until it converges. The whole pipeline is shown in Fig. 2.

2.4 Data Distribution

We use 3022 de-identified CT thigh slices from the Baltimore Longitudinal Study of Aging
(BLSA)'” and 121 de-identified thigh slices from the Genetic and Epigenetic Signatures of
Translational Aging Laboratory Testing (GESTALT) study as well as 8939 de-identified lower
leg slices from the BLSA. All data are under Institute Review Board approval. The image size is
512 x 512. In the preprocessing and quality assurance stages, five thigh images are discarded
since they include other structures (e.g., the table). Note that, for some thigh slices, only the left
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thigh is manually labeled instead of both thighs. For labels of the lower leg image, a single
experienced graduate student labeled the lower leg image from the CT image under supervision
of a muscle physiologist with more than 10-years of research experience. The graduate student
traced each lower leg CT image using a computer visualization tool (FSLeyes'”). The student
annotated the contour of each tissue by human eye from scratch (i.e., starting on an image with
no labels). The process minimized potential visual bias from a prior computer-aided algorithm.
Region filling was used once contours were closed. This process was repeated for each of the
following with labeling in the order of internal bone, cortical bone, muscle, subcutaneous fat, and
intermuscular fat. We perform pseudo labels creation on 1883 thighs as the first stage thigh
training cohort. We divide 229 labeled thigh images into training (125 thighs), validation
(31 thighs), and testing (73 thighs) cohorts for stage 2, respectively. No subject had images
in both the training and validation or testing cohorts.

2.5 Implementation Details

Our experiments are implemented in Python 3.7 with PyTorch 1.7. We apply a window of [—150,
100] HU to normalize each input image. In the first stage, the initial learning rate for U-Net and
U-Net++ is 0.002 and 0.0002, respectively. In the fine-tuning stage, the initial learning rate for
both U-Net and U-Net ++ is 0.0001. We conduct the experiment to train only with human expert
labels using U-Net and U-Net++. The learning rate for U-Net is 0.01, and the learning rate for
U-Net++ is 0.001. The learning rate decayed to O linearly until the end of the training epoch in
both stages. Resize and crop are used as online data augmentation. The max-training-epoch is set
to 200 with the batch size of 8. The optimizer used in training is stochastic gradient descent.

2.6 Baseline Method and Metrics

The U-Net'® is considered to be an alternate architecture since its impressive performance on
medical image segmentation. To validate the effectiveness of the transfer learning strategy, both
U-Net and U-Net++ training with human labels only are regarded as baseline methods.

To evaluate the accuracy of our proposed method, we compare the segmentation results
against the ground truth provided by expert labels. To quantify the agreement between segmen-
tation and truth, we use the Dice similarity coefficient (DSC) as the main evaluation measure-
ment for inference results by comparing each binary tissue against the ground truth voxel-by-
voxel:

2IRNT|

DSC =+t
Rl +|T

. 6]

where R represents the segmentation result generated by the deep learning model and T
represents the corresponding ground truth.

3 Results

Figure 3 compares the DSC of the muscle, cortical bone, inner bone, subcutaneous fat, and
intermuscular fat between U-Net++ and U-Net using only human labels, in stage 1 and
stage 2. The boxplots presented are evaluated across 73 single thighs. Table 2 shows the mean
DSC of each tissue for all six methods. Overall, the average DSC across all five tissues of U-Net
++ in the second stage is significantly better than the other five methods. Except for subcuta-
neous fat, the proposed method has the highest mean DSC of the remaining tissues. The pro-
posed method makes the largest improvement from 0.681 to 0.782 on mean DSC for sparse and
small intermuscular fat compared with U-Net trained only with human labels. Figure 4 compares
the qualitative result produced by all six methods. Compared with U-Net in stage 2, the proposed
method yields superior performance and segments more details of intermuscular fat.

To test the generalizability of the proposed methods, we applied the model on preprocessed
lower leg images. The experimental setting is the same as in the thigh experiment. Figure 5
compares the performance of all six methods on lower leg images. Table 3 shows the mean
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Fig. 3 The DSC comparison of thigh images using U-Net trained only with human labels, U-Net++
trained only with human label, U-Net in stage 1, U-Net++ in stage 1, U-Net in stage 2, and U-Net++
in stage 2 in boxplots of five target tissues.

Table 2 The mean DSC for each tissue of each method for the thigh CT image. The highest result
is bolded.

Cortical Internal Subcutaneous Intermuscular
Method Muscle bone bone fat fat Average
U-Net only with 0.967* 0.958 0.852* 0.977* 0.681* 0.887*
human labels
U-Net++ only with 0.966* 0.947* 0.919* 0.967* 0.695* 0.899*
human label
U-Net in the 0.960* 0.915* 0.868* 0.955* 0.609* 0.841*
first stage
U-Net++ in 0.957* 0.898* 0.865* 0.949* 0.481* 0.830*
the first stage
U-Net in the 0.971 0.946* 0.932* 0.970 0.762* 0.916*
second stage
U-Net++ in the 0.973 0.960 0.951 0.969 0.782 0.927

second stage

*The method is significantly different from U-Net++ in the second stage (p value < 0.05, Wilcoxon signed
rank test).

DSC of each tissue of all six methods on lower leg images. The average DSC of all tissues of the
proposed method decreased from 0.927 to 0.823 when compared with the thigh experiment, but
significantly outperformed all other methods except U-Net in the second stage. The U-Net
trained only with human labels has the highest mean DSC 0.922 in cortical bones, and the
U-Net++ trained only with human labels has the highest mean DSC 0.9 in internal bones.
Figure 6 shows the confidence level of the bone result with qualitative representations.

After training on pseudo labels, we want to investigate the relationship between the number
of human expert data and performance of the model in the second (fine-tune) stage. We fed 1, 5,
10, 20, 30, 60, 90 and all expert human label thighs to fine-tune the model from the first stage.
The fine-tuning process is repeated 10 times. Each time the data are randomly picked from
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Fig. 4 Qualitative representation of the thigh slice segmentation. (a) Three randomly selected
source CT images after applying window [-150,100]. (b) The segmentation from U-Net only
trained with human labels. (c) The segmentation from U-Net++ only trained with human labels.
(d) and (e) The segmentation using network U-Net and U-Net++ in stage 1, respectively. (f) and
(g) The segmentation by network U-Net and U-Net++ in stage 2, respectively. (h) The ground truth.
The yellow arrow points to the large difference across the methods and ground truth. The DSC
values only show intermuscular fat segmentation performance for reference.
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Fig. 5 The DSC comparison of the lower leg image among using U-Net trained only with human
labels, U-Net++ trained only with human labels, U-Net in stage 1, U-Net++ in stage 1, U-Net in
stage 2, and U-Net++ in stage 2 of five target tissues.

training cohort (125 thighs) and inference on the test cohort (73 thighs). The distribution of the
mean dice of each retraining is shown in Fig. 7. When only feeding one thigh to the model, the
variance of the mean DSC is largest compared with the others. Also, the variance becomes
smaller when increasing the feeding data. When feeding 30 thighs, the mean DSC of 10 retrain-
ing is 0.924, almost equivalent to the mean DSC 0.931 of feeding all training data.

Journal of Medical Imaging 052405-7 Sep/Oct 2022 « Vol. 9(5)



Yang et al.: Label efficient segmentation of single slice thigh CT with two-stage pseudo labels

Table 3 The mean DSC for each tissue of each method for the lower leg CT image. The highest
result is bolded.

Cortical Internal  Subcutaneous Intermuscular

Method Muscle bone bone fat fat Average
U-Net only with 0.944*  0.922* 0.786* 0.876* 0.494* 0.805*

human labels

U-Net++ only with 0.941*  0.900*  0.901* 0.857* 0.469* 0.814*

human label

U-Net in the first stage 0.945 0.843*  0.708* 0.850* 0.443* 0.758*

U-Net++ in the first stage 0.939* 0.828*  0.791* 0.852* 0.393* 0.761*

U-Net in the second stage 0.946*  0.901* 0.787* 0.891* 0.590* 0.823

U-Net++ in the second stage  0.945 0.893 0.836 0.870 0.573 0.823

*The method is significantly different from U-Net++ in the second stage (p value <0.05, Wilcoxon signed
rank test).

(a) (b) () (d) (e) V) (9) (h)
I U-Net with U-Net++ with U-Net in U-Net++in  U-Netin U-Net++ in Ground-
mage human labels human labels first stage first stage second stage second stage truth

Dice:0.768 Dice:0.912 Dice:0.628 Dice:0.690 Dice:0.734 Dice:0.742

Dice:0.871 Dice:0.930 Dice:0.752 Dice:0.755 Dice:0.833 Dice:0.758

Fig. 6 Qualitative representation of the lower leg slice segmentation. (a) The source CT image
after applying window [-150, 100]. (b) The segmentation from U-Net only trained with human
labels. (c) The segmentation from U-Net++ only trained with human labels. (d) and (e) The seg-
mentation using network U-Net and U-Net++ in stage 1, respectively. (f) and (g) The segmentation
by network U-Net and U-Net++ in stage 2, respectively. (h) The ground truth. The text below each
image is the internal bone DSC.

We apply the proposed models on additional CT scans of thighs and lower legs, which do not
have human generated label maps for comparison. We overlay the segmentation results on CT
images with a colormap of the human review of each segmentation result to find outliers. Ten out
of 3982 thigh images and 136 out of 17,878 lower leg images fail human review and are regarded
as outliers. Figure 8 shows four outliers from thigh and lower leg images, respectively.

4 Conclusion and Discussion

Herein, we proposed a transfer learning-based method to achieve accurate and robust thigh tissue
segmentation, focusing on muscle, cortical bone, internal bone, subcutaneous fat, and intermus-
cular fat. The proposed framework achieved accurate segmentation on thigh CT slices with lim-
ited human labels. Compared with the method only trained with human expert labels, the
superior performance of the proposed framework demonstrates the effectiveness of two-stage
training. We applied the model only trained on the thigh slice to the lower leg image. The results
show that our model still recognizes muscle and fat with high agreement, which demonstrates
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Fig. 7 The relationship between the mean DSC and added data for each fine-tuning. The violin

plot includes 10 data points. Each data point represents the mean DSC across all tissues of the
test cohort in one fine-tuning process.
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Fig. 8 The outliers from the thigh and lower leg. The first row and third row are segmentation result
on the thigh and lower leg, respectively. The second and fourth row are the CT image after apply-
ing the window. Each column represents an outlier from the thigh and lower leg, respectively.

that the proposed framework has the generalizability to similar anatomical structures of CT
images. Then, we analyzed the relationship between the size of the fine-tuning dataset and per-
formance. The result shows that the proposed framework can use a smaller size of training cohort
to keep the same performance as all training data, which indicates that the proposed framework
has the potential to fully exploit the data and increase data efficiency.

In the medical image segmentation, label annotation is always a challenging problem for the
deep learning methods. Similar to Ref. 18, the proposed work leverages the power of cheaper-to-
acquire pseudo labels to achieve high-performance segmentation. Both methods work on the
assumption that deep learning models can explore general patterns from pseudo labels and
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inference on unseen data. The primary difference between the approaches is that the proposed
method used limited human labels to fine-tune model to improve performance of tissue with an
appearance that is hard for pseudo labels to capture.

The proposed method can be extended to 3D CT images with target tissue that is strongly
related to intensity. The automatic method based on intensity can create pseudo labels for target
tissue. Different from 2D slices, 3D volumes require more data to train more parameters in the
deep neural network. We expect that the number of pseudo labels and human provided labels
needs to be increased for successful application of the method.

One major limitation of the proposed method is that the performance of bone structure is
inferior to models only trained with human labels. As shown in Fig. 7, the proposed method
might regard subcutaneous fat around cortical bone as internal bone, which leads to inferior
performance. Except for the domain shift between the thigh and lower leg, the reason could
be that the boundary of the pseudo label between cortical bone and internal bone is not clearly
defined, which made the model misclassify subcutaneous fat around cortical bones. Thus, how to
improve quality of the pseudo label is an important future research direction.

The training dataset is all mid-thigh images. The model is adapted to the anatomy of mid-thigh
and applies well on lower leg images because of the similar anatomy. The CT scans including the
femoral head have a different anatomy, bringing varied CT unit scales, particularly in the bone part.
The model may segment muscle, intermuscular fat, and subcutaneous fat. However, it cannot rec-
ognize targeted tissue from the femoral head correctly. Thus, how to develop a model that can
handle different positions of the lower limb will be an important future research direction.

Normal training images have a fixed anatomy pattern and classes of target tissues. The
pseudo labels are created with the assumption that there is no abnormal bone intensity or shape.
When applying the model on abnormal bones, the method is biased to recognize the bone path-
ology as the normal bone tissues and segment them into incorrect labels. In the future, the pseudo
labels method may be improved to segment the abnormal bone part and feed more abnormal
cases into the model, so the model may recognize the pathology part.

In summary, the proposed pipeline has potential to be applied on other medical scenes with
low human effort, which makes better use of human expert labels.
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