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Abstract. Pattern roughness is a major problem in advanced lithography for semiconductor manufacturing,
especially for the insertion of extreme ultraviolet (EUV) lithography as proposed in the coming years.
Current approaches to roughness reduction have not yielded the desired results. Here, a global optimization
approach is proposed, taking advantage of the different strengths and weaknesses of lithography and etch.
Lithography should focus on low-frequency roughness by minimizing both the low-frequency power spectral
density (PSD) and the correlation length. Etch should focus on high frequency roughness by growing the
correlation length. By making unbiased measurements of the roughness, including the PSD, the parameters
needed to guide these optimization efforts become available. The old approach, of individually seeking to reduce
the 3σ roughness of pre- and postetch features, is unlikely to lead to the required progress in overall roughness
reduction for EUV. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of
this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMM.17.4.041006]
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1 Introduction
Stochastic-induced roughness continues to be a major con-
cern in the implementation of extreme ultraviolet (EUV)
lithography for semiconductor high-volume manufacturing,
potentially limiting product yield or lithography throughput
or both. For this reason, considerable effort has been made in
the last 10 years to characterize, understand, and reduce sto-
chastic-induced roughness of postlithography and post-etch
features. Despite these efforts, far too little progress has been
made in reducing the effects of stochastics, such as linewidth
roughness (LWR), line-edge roughness (LER), and local
critical dimension uniformity (LCDU).1

Reducing roughness requires a thorough understanding of
roughness and its causes.2,3 And understanding roughness
requires, among other things, trustworthy measurements
of roughness. Further, roughness measurement must include
frequency characterization in order to understand fully the
nature of the roughness behavior at various length scales.
This paper will begin by reviewing the frequency characteri-
zation of roughness using the power spectral density (PSD),
then describe how to make unbiased measurements of the
PSD (where noise coming from the SEM imaging is sub-
tracted out). Finally, a simple model of roughness that makes
use of the unbiased PSD will be presented. This model, and
further insights about the role of etch processes in modifying
the roughness coming from lithography, will lead to impor-
tant conclusions about resist and etch process design for
reduced roughness of the after-etch features.4

2 Frequency Dependence of Roughness
Rough features are most commonly characterized by the
standard deviation of the edge position (for LER), linewidth
(for LWR), or feature centerline for pattern placement
roughness (PPR). But describing the standard deviation is
not enough to fully describe the roughness. Figure 1 shows

four different rough edges, all with the same standard
deviation. The obvious differences visible in the edges make
it clear that the standard deviation is not enough to fully
characterize the roughness. Instead, a frequency analysis of
the roughness is required.

The standard deviation of a rough edge describes its varia-
tion relative to and perpendicular to an ideal straight line. In
Fig. 1, the standard deviation describes the vertical variation
of the edge. But the variation can be spread out differently
along the length of the line (in the horizontal direction
in Fig. 1). This line-length dependence can be described
using a correlation function such as the autocorrelation func-
tion or the height–height correlation function. Alternatively,
the frequency f can be defined as one over a length along the
line (Fig. 2). The dependency of the roughness on frequency
can be characterized using the PSD. The PSD is the variance
of the edge per unit frequency (Fig. 2) and is calculated as
the square of the coefficients of the Fourier transform of the
edge deviation. The low-frequency region of the PSD curve
describes edge deviations that occur over long length scales,
whereas the high-frequency region describes edge deviations
over short length scales. Commonly, PSDs are plotted on
a log–log scale.

The PSD of lithographically defined features generally
has a shape similar to that shown in Fig. 2. The low-
frequency region of the PSD is flat (so-called “white noise”
behavior), then above a certain frequency it falls off as
a power of the frequency (a statistically fractal behavior).
The difference in these two regions has to do with correla-
tions along the length of the feature. Points along the
edge that are far apart are uncorrelated with each other
(statistically independent), and uncorrelated noise has a
flat PSD. But at short length scales, the edge deviations
become correlated, reflecting a correlating mechanism in the
generation of the roughness, such as acid reaction-diffusion
for a chemically amplified resist.5 The transition between
uncorrelated and correlated behaviors occurs at a distance
called the correlation length. Note that the exact definition of*Address all correspondence to: Chris A. Mack, E-mail: chris@Lithoguru.com
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the correlation length is arbitrary to within a multiplicative
constant.5

Figure 3 shows that a typical PSD curve can be described
with three parameters. PSD(0) is the zero frequency value of
the PSD. While this value of the PSD can never be directly
measured (zero frequency corresponds to an infinitely long
line), PSD(0) can be thought of as the value of the PSD in
the flat low-frequency region. The PSD begins to fall at
a frequency of 1∕ð2πξÞ, where ξ is the correlation length.
In the fractal region, we have what is sometimes called
“1∕f” noise and the PSD has a slope (on the log–log plot)
corresponding to a power of 1∕f. The slope is defined
as 2H þ 1, where H is called the roughness exponent
(or Hurst exponent). For example, H ¼ 0.5 for a purely
reaction-diffusion process causing the correlation.5,6 Each
of the parameters of the PSD curve has important physical
meaning for a lithographically defined feature, and more
about that meaning will be discussed in a subsequent
section. The variance of the roughness is the area under
the PSD curve and is derived from the other three PSD
parameters.

A useful model for fitting the shape of a PSD curve
was proposed by Palasantzas7 and has been used extensively
to fit after-lithography and after-etch roughness results.
A modified version of that model, however, has proven to
be more useful in my experience

EQ-TARGET;temp:intralink-;e001;326;529PSDðfÞ ¼ PSDð0Þ
1þ j2πfξj2Hþ1

: (1)

The exact relationship between variance and the other three
PSD parameters depends on the exact shape of the PSD
curve in the midfrequency region (defined by the correlation
length), but an approximate relationship based on Eq. (1)
shows the general trend

EQ-TARGET;temp:intralink-;e002;326;438σ2 ¼ PSDð0Þ
ð1.2H þ 1.4Þξ : (2)

The differences observed in the four rough edges of Fig. 1
can now be easily seen as differences in the PSD behavior of
the features. Figure 4 shows two PSDs, corresponding to
edge (a) and edge (c) from Fig. 1. While the two edges have
the same variance (the same area under the PSD curve), they
have different values of PSD(0) and correlation length (in
this case the roughness exponent was kept constant). As
we shall see, the different PSD curves will result in different
roughness behavior for lithographic features of finite length.

Fig. 1 These four randomly rough edges all have the same standard
deviation of roughness, but differ in the frequency parameters of cor-
relation length (ξ) and roughness exponent (H): (a) ξ ¼ 10, H ¼ 0.5,
(b) ξ ¼ 10, H ¼ 1.0, (c) ξ ¼ 100, H ¼ 0.5, and (d) ξ ¼ 0.1, H ¼ 0.5.

Fig. 2 An example of a rough edge and its corresponding PSD.

Fig. 3 A typical PSD can be described by three parameters: PSD(0),
the low-frequency value of the PSD, the correlation length ξ, and
the roughness exponent H. The variance of the roughness is the
area under the PSD curve.
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3 Device Impact of the Frequency Behavior of
Roughness

The roughness of lines and spaces is characterized by meas-
uring very long lines and spaces, long enough so that the flat
region of the PSD becomes apparent. For a sufficiently long
feature, the measured LWR can be thought of as the LWR
of an infinitely long feature, σLWRð∞Þ. But semiconductor
devices are made from features that have a variety of lengths
L. For these shorter features, stochastics will cause within-
feature roughness, σLWRðLÞ, and feature-to-feature variation
described by the standard deviation of the mean linewidths
of the features, σCDUðLÞ. This feature-to-feature variation is
called the local critical dimension uniformity, LCDU, since it
represents CD variation that is not caused by the well-known
“global” sources of error (scanner aberrations, mask illumi-
nation nonuniformity, hotplate temperature variation, etc.).8

For a line of length L, the within-feature variation and
the feature-to-feature variation can be related to the LWR of
an infinitely long line (of the same nominal CD and pitch)
by the conservation of roughness principle9

EQ-TARGET;temp:intralink-;e003;63;300σ2CDUðLÞ þ σ2LWRðLÞ ¼ σ2LWRð∞Þ: (3)

The conservation of roughness principle says that the
variance of a very long line is partitioned for a shorter line
into within-feature variation and feature-to-feature variation.
How this partition occurs is determined by the correlation
length, or more correctly by L∕ξ. Using a basic model for
the shape of the PSD, we find that10

EQ-TARGET;temp:intralink-;e004;63;202σ2CDUðLÞ ¼
PSDð0Þ

L

�
1 −

ξ

L
ð1 − e−L∕ξÞ

�
: (4)

Thus, Eqs. (1)–(3) show that a measurement of the PSD
for a long line, and its description by the parameters PSD(0),
ξ, and H, enables one to predict the stochastic influence on
a line of any length L. It is interesting to note that the LCDU
does not depend on the roughness exponent, making H less
important than PSD(0) and ξ. For this reason, it useful to
describe the frequency dependence of roughness using an
alternate triplet of parameters: σLWRð∞Þ, PSD(0), and ξ.

Note that these same relationships apply to LER and PPR
as well.

Examining Eq. (4), the correlation length is the length
scale that determines whether a line of length L acts
“long” or “short.” For a long line, L ≫ ξ and the local
CDU behaves as

EQ-TARGET;temp:intralink-;e005;326;490σCDUðLÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSDð0Þ

L

r
when L ≫ ξ: (5)

This long-line result provides a useful interpretation for
PSD(0): it is the square of the LCDU times the length of
the line. Reducing PSD(0) by a factor of 4 reduces the
LCDU by a factor of 2, and the other PSD parameters have
no impact (so long as L ≫ ξ). Typically, resists have yielded
correlation lengths on the order of one-third to one-half of
the minimum half-pitch of their lithographic generation.
Etch processes often increase the correlation length by
50% to 100%. Thus, when features are longer than about
5 to 10 times the minimum half-pitch of the technology
node we are generally in this long line length regime. For
shorter line lengths, the correlation length begins to matter
as well.

Equations (3)–(5) show a trade-off of within-feature
variation and feature-to-feature variation as a function of
line length. Figure 5 shows an example. For very long lines,
LCDU is small and within-feature roughness approaches its
maximum value. For very short lines the LCDU dominates.
However, due to the quadratic nature of the conservation
of roughness, σLWRðLÞ rises very quickly as L increases,
but LCDU falls very slowly as L increases. Thus, there is
a wide range of line lengths where both feature roughness
and LCDU are significant.

4 Unbiased Measurement of PSD
By far the most common way to measure feature roughness
is the top-down critical dimension scanning electron micro-
scope (CD-SEM). CD-SEMs have been optimized for meas-
uring mean critical dimension with high precision but have
proven very useful for measuring LER, LWR, PPR, and their
PSDs as well. However, some errors in the SEM images
can have large impacts on the measured PSD while having
almost no impact on the measurement of mean CD.11

For this reason, the metrology approach needed for PSD

Fig. 4 Two edges from Fig. 1, edge (a) and edge (c), are shown to
have different PSD behavior even though the standard deviations of
the roughness are the same.

Fig. 5 The conservation of roughness principle showing how the
within-feature roughness σLWRðLÞ and the local CDU σCDUðLÞ vary
as a function of the line length L for a pattern of long lines and/or
spaces.
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measurement may be quite different than the approach com-
monly used for mean CD measurement.12

The biggest impediment to accurate roughness measure-
ment is noise in the CD-SEM image. SEM images suffer
from shot noise, where the number of electrons detected for
a given pixel varies randomly. For the expected Poisson
distribution, the variance in the number of electrons detected
for a given pixel of the image is equal to the expected number
of electrons detected for that pixel. Since the number of
detected electrons is proportional to the number of electrons
that impinge on that pixel, noise can be reduced by increas-
ing the electron dose that the sample is subjected to. For
some types of samples, electron dose can be increased with
few consequences. But for other types of samples (especially
photoresist), high electron dose leads to sample damage
(resist line slimming, for example). Thus, to prevent sample
damage electron dose is kept as low as possible, where the
lowest dose possible is limited by the noise in the resulting
image. Figure 6 shows portions of three SEM images of
nominally the same lithographic features taken at different
electron doses.

Making the very reasonable assumption that the amount
of edge detection noise in a SEM is independent of the
amount of actual roughness of the feature, SEM image noise
adds to the roughness of the patterns on the wafer to produce
a measured roughness that is biased higher13

EQ-TARGET;temp:intralink-;e006;63;283σ2biased ¼ σ2unbiased þ σ2noise; (6)

where σbiased is the roughness measured directly from
the SEM image, σunbiased is the unbiased roughness (that
is, the true roughness of the wafer features), and σnoise is
the random error in detected edge position (or linewidth)
due to noise in the SEM imaging. Since an unbiased estimate
of the feature roughness is obviously what is desired, the
measured roughness must be corrected by subtracting an
estimate of the noise term.

While several approaches for estimating the SEM noise
and subtracting it out have been proposed,13–17 these
approaches have not proven successful for today’s small fea-
ture sizes and high levels of SEM image noise. The problem
is the lack of edge detection robustness in the presence of
high image noise: when noise levels are high, edge detection
algorithms often fail to find the edge. The solution to this
problem is typically to filter the image, smoothing out the
high frequency noise. For example, if a Gaussian 7 × 3 filter

is applied to the image, then for each rectangular region of
the image 7 pixels wide and 3 pixels tall, the grayscale values
for each pixel are multiplied by a Gaussian weight and then
averaged together. The result is assigned to the center pixel
of the rectangle. This smoothing makes edge detection sig-
nificantly more robust when image noise is high. Figure 7
shows an example of using a simple threshold edge detection
algorithm with and without image filtering.18 Without image
filtering, the edge detection algorithm is mostly detecting
the noise in the image and does not reliably find the edge.

The use of image filtering can have a large effect on the
resulting PSD. Figure 8 shows the impact of two different
image filters on a collection of 30 images.18 All images
were measured using an inverse linescan model for edge
detection (as described later). Obviously the high-frequency
region is greatly affected by filtering. But even the low-
frequency region of the PSD shows a noticeable change
when using a smoothing filter. Filtering in the y-direction

Fig. 6 Portions of SEM images of nominally identical resist features with 2, 8, and 32 frames of
integration (respectively, from left to right). Doubling the frames of integration doubles the electron
dose per pixel. Since the dose is increased by a factor of 4 in each case, the noise goes down by
a factor of 2. (Images provided in collaboration with imec.)

Fig. 7 Detecting edges in a noisy SEM image with and without the
use of an image filter. From Ref. 18.

Fig. 8 Power spectral densities from many rough features with
images preprocessed using a 7 × 2 or 7 × 3 Gaussian filter, or not
filtered at all. From Ref. 18.
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throws away high-frequency information, whereas filtering
in the x-direction lowers the linescan slope and can change
the low-frequency behavior. As will be described next, the
use of image filtering makes measurement and subtraction
of image noise impossible.

If edge detection without image filtering can be accom-
plished, noise measurement and subtraction can be achieved
by contrasting the PSD behavior of the noise with the PSD
behavior of the actual wafer features. We expect resist fea-
tures (as well as after-etch features) to have a PSD behavior
as shown in Fig. 3. Correlations reduce high-frequency
roughness so that the roughness becomes very small over
very small length scales. SEM image noise, on the other
hand, can be reasonably assumed to be white noise, so that
the noise PSD is flat. Thus, at a high enough frequency,
the measured PSD will be dominated by image noise and
not actual feature roughness (the so-called “noise floor”).19

Given the grid size along the length of the line (Δy), SEM
noise affects the PSD according to20

EQ-TARGET;temp:intralink-;e007;63;329PSDbiasedðfÞ ¼ PSDunbiasedðfÞ þ σ2noiseΔy: (7)

Thus, measurement of the high-frequency PSD (in the
absence of any image filtering) provides a measurement
of the SEM image noise. Figure 9 shows this approach.
Clearly, this approach to noise subtraction cannot be used
on PSDs coming from images that have been filtered
since the filtering removes the high-frequency noise floor
(see Fig. 8).

The key to using the above approach of noise subtraction
for obtaining an unbiased PSD [and thus unbiased estimates
of the parameters σLWRð∞Þ, PSD(0), and ξ] is to robustly
detect edges without the use of image filtering. This can
be accomplished using an inverse linescan model.18 A line-
scan model (such as the analytical linescan model21–23) pre-
dicts the SEM image linescan given a set of beam conditions
and the feature geometry on the wafer. Ideally, such a model
would be physically based, easily calibrated, and not com-
putationally intensive. An inverse linescan model runs this
linescan model in reverse: given a measured linescan, what
wafer feature edge positions produce a linescan that best
fits the data? Such an inverse linescan model can use the
physics of SEM image formation to constrain the possible

linescan shapes and reject the noise in the measured linescan
to extract its signal. An inverse linescan model was used to
generate the no-filter PSD data shown in Fig. 8.

Other SEM errors can influence the measurement of
roughness PSD as well. For example, SEM field distortion
can artificially increase the low-frequency PSD for LER and
PPR, although it has little impact on LWR.11 Background
intensity variation in the SEM can also cause an increase
in the measured low-frequency PSD, including LWR as
well as LER and PPR. If these variations can be measured,
they can potentially be subtracted out, producing the best
possible unbiased estimate of the PSD and its parameters.
As we will see in the following section, unbiased estimates
of the PSD parameters can be used in models for stochastic-
induced roughness, which in turn can be used to search for
ways to reduce roughness.

5 Model for Stochastic-Induced Roughness in
Lithography

A basic model for roughness has been proposed many times
before: an error in the final resist edge position is equal to
an error in the development rate R at the edge of the resist
(position x) divided by the gradient in development rate19,24

EQ-TARGET;temp:intralink-;e008;326;498Δx ¼ ΔR
dR∕dx

: (8)

For a random variation in development rate characterized by
a mean and standard deviation, the resulting edge position
will have a variation described by the 1-sigma LER

EQ-TARGET;temp:intralink-;e009;326;422σLER ¼ σR
dR∕dx

: (9)

In this simple model, variation in the development path is
ignored, which might be reasonable for small variations in
development rate.25–28

Development rate is determined by the level of remaining
protecting groups (m) for a chemically amplified resist. This,
in turn, is determined by the acid concentration (h) during
a process of reaction-diffusion. Acid concentration is deter-
mined by the intensity of absorbed light (Iabs). In other
words, an aerial image leads to an absorbed light image
that leads to an acid latent image that leads to a protecting
group latent image that leads to a development rate latent
image. In a standard chemically amplified resist process,
the only source of information about the correct position of
the resist feature edge comes from the aerial image. Thus, at
each step in this sequence, errors can increase the uncertainty
(noise) and decrease the gradient (signal), making their
ratio higher.29,30 This can be expressed as a propagation of
noise/signal ratios

EQ-TARGET;temp:intralink-;e010;326;188σLER ¼ σR
dR∕dx

≥
σm

dm∕dx
≥

σh
dh∕dx

≥
σIabs

dIabs∕dx
: (10)

The driver for LER is the last term in Eq. (10), which is
also the minimum possible LER. Since the intensity of
absorbed photons is proportional to the number of absorbed
photons (Nabs), the minimum LER can also be expressed in
terms of the number of photons absorbed at the line edge.
Since the number of absorbed photons will follow a
Poisson distribution

Fig. 9 The principle of noise subtraction: using the PSD, measure the
flat noise floor in the high-frequency portion of the measured PSD,
then subtract the white noise to get the true PSD.
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EQ-TARGET;temp:intralink-;e011;63;752σNabs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hNabsi

p
: (11)

The aerial image log-slope (ILS) will equal the absorbed ILS
for a nonbleaching resist so that

EQ-TARGET;temp:intralink-;e012;63;705ILS ¼ d ln I
dx

¼ 1

hNabsi
dhNabsi

dx
: (12)

This then gives an alternate expression for the smallest
possible LER

EQ-TARGET;temp:intralink-;e013;63;640 min σLER ¼ σIabs
dIabs∕dx

¼ 1

ILS
ffiffiffiffiffiffiffiffiffiffiffiffiffihNabsi

p : (13)

The mean number of photons absorbed in some small
volume of resist V is determined by the mean incident
dose E (#photons∕nm2) and the absorption coefficient α

EQ-TARGET;temp:intralink-;e014;63;558hNabsi ¼ αVE: (14)

As a numerical example, consider a volume that is a cube
10 nm on a side, a dose at the line edge of 6 photons∕nm2

(corresponding to 8.8 mJ∕cm2 of EUV light), an absorption
coefficient of 0.007 nm−1, and a normalized image log-slope
(NILS) of 2 for a CD of 16 nm (ILS ¼ NILS∕CD). The mini-
mum σLER will be 1.1 nm.

For the above expressions, everything is well known for a
given lithographic case except the volume V. What is the
correct ambit volume to average over? A smaller volume
will produce a larger LER, so there must be some physical
reason for the volume chosen. The smallest volume that
might make sense is the size of one resist polymer molecule.
After all, one molecule either dissolves or does not, and it is
the sum of all the events that lead to dissolution that influ-
ence that dissolution. In general, however, the distance over
which an absorbed photon might influence the dissolution of
a resist molecule is larger than the size of the resist molecule.
For a chemically amplified resist, an absorbed photon can
lead to a generated acid which then diffuses some distance
before causing a deprotection reaction, thus changing the
solubility of the resist. The acid diffusion length, generally
larger than the size of a resist polymer molecule, thus deter-
mines the volume of influence of an absorbed photon.

Put another way, all mechanisms that spread the influence
of an absorbed photon through the resist determine the
influence range and the ambit volume needed in Eq. (14).
This spread is generally called the resist blur and includes
not only acid diffusion but also secondary electron blur for
an EUV resist. The ambit volume will then be proportional
to the cube of the total resist blur.31 In addition, this influence
range is also characterized by the resulting correlation length
of the roughness, so the correlation length is a measure of
the total resist blur. This means that

EQ-TARGET;temp:intralink-;e015;63;164V ∝ ξ3: (15)

Combining Eqs. (13)–(15) gives essentially Gallatin’s
classic LER model.19 The key insight here is the recognition
that the correlation length of resist features is a measure of
resist blur.

But blurring has another impact on lithography; it reduces
the effective ILS and the gradient in the various latent

images. Consider both a simple diffusion process (probably
appropriate for secondary electron blur) and a reaction-
diffusion process (appropriate for acid diffusion during
postexposure bake). The reduction in the effective ILS has
been previously derived for both cases24

EQ-TARGET;temp:intralink-;e016;326;499

Diffusion∶
∂ ln Ieff

∂x
≈
∂ ln I
∂x

½e−2ðπξ∕CDÞ2 �;

Reaction-diffusion∶
∂ ln Ieff

∂x
≈
∂ ln I
∂x

�
1 − e−2ðπξ∕CDÞ2

2ðπξ∕CDÞ2
�
;

(16)

where here the correlation length is assumed to be exactly
equal to the diffusion length, though in fact there is likely
some proportionality factor of order one, and CD is the half
pitch for a pattern of small lines and spaces.

Replacing the ILS in Eq. (13) with the effective ILS, there
will be an optimum correlation length balancing the compet-
ing factors of increasing the ambit volume and decreasing the
effective ILS with larger ξ.32 Figure 10 shows that the opti-
mum blur (correlation length) is about 20% of the half-pitch
CD for the case of pure diffusion, and 35% of the half-pitch
CD for the case of reaction-diffusion. As mentioned above,
however, there may be a proportionality factor involved in
the relationship between correlation length and diffusion
length different from the proportionality factor involved in
its use in the ambit value, so that we can only conclude
that the optimum correlation length is some fraction of the
minimum CD, probably in the 1∕6 to 1∕2 range.

If the total resist blur (correlation length) is optimized to
produce the minimum roughness, that minimum roughness
will scale as

EQ-TARGET;temp:intralink-;e017;326;190 min σLER ∝
1

NILS
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αECD

p ; (17)

where the NILS is the aerial ILS multiplied by the nominal
CD. This final result provides important scaling information
about roughness. First, as many others have noted, roughness
is inversely proportional to NILS. Since another important
lithographic metric, exposure latitude, is also proportional
to NILS, the long history of efforts in semiconductor lithog-
raphy to improve NILS and exposure latitude have the added

Fig. 10 Using the principles that the ambit volume and the effective
ILS are both affected by the total resist blur (which is proportional to
the correlation length of the roughness), there will be an optimum blur
as a fraction of the nominal CD to produce minimum roughness.
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benefit of reducing roughness. Unfortunately, the equally
long history of living with lower NILS by reducing the
sources of global variations (scanner aberrations, mask illu-
mination nonuniformity, hotplate temperature variation, etc.)
means that we are also living with higher roughness (since
the sources of stochastic variation are not being reduced).
Second, we can reduce the impact of photon shot noise
by increasing the product of resist absorption coefficient
and exposure dose.

Finally, optimizing the resist blur for minimum roughness
at each new generation of critical dimension will result, other
things being equal, in growing absolute roughness as feature
size decreases. The relative roughness (roughness as a per-
centage of the nominal CD) will grow even faster. Since
NILS is unlikely to increase as feature size decreases from
one lithography generation to the next (the opposite is usu-
ally the case), this unpleasant aspect of roughness scaling
means that exposure dose and/or absorption must grow
inversely to CD to keep the absolute roughness constant.
To keep the relative roughness constant from one lithography
generation to the next, αE must be kept proportional to
1∕CD3. If CD shrinks by 0.7, exposure dose must increase
by a factor of 3 (all other things being equal) to keep the
relative resist roughness constant.

6 Importance of Etch
The scaling result derived in the previous section only
applies to the roughness of resist features. In semiconductor
manufacturing, what is often most important is the roughness
of the after-etch features. It is well known that etch reduces
roughness, mostly through an increase in correlation
length.33 If this important feature of etch is combined with
the scaling relationship for resist roughness above, an inter-
esting opportunity arises. To keep roughness low, we must
scale the postlithography correlation length in proportion to
the CD. Further, current correlation lengths may in fact be
larger than optimum so that even more reduction in correla-
tion length could be helpful. But as Eq. (2) shows, a smaller
correlation length leads to higher roughness for a given
PSD(0). The difficulty comes from the coupling of correla-
tion length and PSD(0) as is common in most resists and as
described in the previous section. Higher correlation lengths
mean larger resist blur, with a negative impact on latent
image gradient and a corresponding increase in sensitivity
to stochastic noise. Thus, PSD(0) and correlation length
are generally not independent of each other.34

Etch provides an important optimization opportunity
since the growth in correlation length during etch comes
with no equivalent trade-off in “blur.” For an etch process,
PSD(0) and correlation length are not coupled. This leads
to a new and important approach to minimizing the after-
etch roughness. In lithography, we should optimize the resist
and its process for both minimum PSD(0) and minimum ξ.
This can be done without regard to minimizing the LER
(σLER or σLWR) per se. In fact, a lithography process with
minimum PSD(0) and minimum ξ will be unlikely to result
in minimum postlithography roughness standard deviation.
Then, we use the etch process to grow the correlation length,
improving the high-frequency roughness that was ignored
postlithography [while being sure not to worsen PSD(0),
or lowering it if possible]. The final after-etch features
will have minimum PSD(0), maximum correlation length,

and minimum σLER or σLWR. In other words, the lithography
process should be made responsible for low-frequency
roughness while the etch process is responsible for high-
frequency roughness. This combination produces minimum
roughness.

The proposed roughness optimization scheme involves
a very different mindset than is often exhibited today. It is
common today to “blame” the resist for roughness that is
too high, then give credit to the etch process for “fixing”
the roughness. It is also common today to attempt lithogra-
phy optimization considering only the 3σ roughness as
the metric to be reduced, ignoring the individual roles of
PSD(0) and ξ. Further, lithography and etch processes are
today typically optimized individually, without regard to
how one influences the other. All of these ideas are flawed.
Instead, lithography and etch should be optimized together,
playing to the constraints and strengths of each process to
individually optimize 3σ, PSD(0), and ξ. Several recent
efforts have begun to prove out the worth of this idea.34,35

It is worth noting that the discussion so far has focused
on resists and their influence on roughness. For EUV
lithography, underlayers interact with the resist (e.g., by
contributing secondary electrons during exposure) in a com-
plicated way.35

7 Conclusions
Reducing roughness in EUV lithography is extremely
important and also extremely difficult without fairly large
increases in exposure dose. In this paper, I have outlined
a new strategy for optimizing the after-etch roughness of fea-
tures by employing a synergy between etch and lithography.
Lithography should focus on low-frequency LER by mini-
mizing both PSD(0) and correlation length (a consequence
of the coupled nature of these two parameters for litho-
graphic features), or at least by minimizing PSD(0) without
regard to correlation length. This optimization may not
result in the lowest possible 3σ roughness for lithographic
features. The etch process is then employed to minimize
PSD(0) and maximize correlation length (a consequence of
the uncoupled nature of these two parameters for after-etch
features). Thus, etch is focused on improving the high-
frequency roughness that lithography should ignore. The
result should be a global optimum not obtainable by sepa-
rately optimizing lithographic and etched features for 3σ
roughness. This optimization scheme makes use of the
insight that the correlation length of resist features is a
measure of total resist blur.

Of course, in any regime where photon shot noise is an
important component of overall roughness, increasing the
dose is very effective at reducing roughness, though costly
in a regime of low source intensity. Another effective way to
increase the number of photons used to print a space without
increasing the dose is to use phase-shifting masks. For exam-
ple, a switch to the equivalent of a “chromeless” phase shift-
ing mask for a pattern of equal lines and spaces is the same as
doubling the exposure dose since the mask uses more of the
photons to form the image rather than absorbing them. For
contact holes, something like a factor of four increase in
mask efficiency is possible.36 While an absorberless EUV
phase shifting mask will be difficult to make and control,
it will likely be less difficult than another doubling or
quadrupling of the intensity of the EUV light source.

J. Micro/Nanolith. MEMS MOEMS 041006-7 Oct–Dec 2018 • Vol. 17(4)

Mack: Reducing roughness in extreme ultraviolet lithography



The proposed litho + etch roughness reduction approach
requires accurate measurement of unbiased values of
σLWRð∞Þ, PSD(0), and ξ. Relying solely on σLWRð∞Þ,
and especially its biased measurement, will be unlikely to
produce the information needed to guide resist, resist proc-
ess, etch tool, and etch process improvement.
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