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Abstract. Al-doped ZnO (AZO) films were deposited on glass and polycarbonate (PC) at room
temperature by using pulsed Nd:YAG laser at 355 nm. AZO thin films were obtained for both
substrates at laser fluences from 2 to 5 J∕cm2 in O2 partial pressure of 2.1 Pa. The effects of laser
fluence on the structural, electrical, and optical properties of the films were investigated. The
films with lowest resistivity and highest transmittance have been obtained at 2 J∕cm2. The
resistivities were 2.29 × 10−3 Ω cm for AZO on glass and 1.49 × 10−3 Ω cm for AZO on PC.
With increasing laser fluence, the deposited films have lower crystallinity, higher resistivity, and
smaller optical bandgap. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JNP.8.084091]
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1 Introduction

Al-doped ZnO (AZO) films are promising transparent conducting oxides (TCOs) that can be
used in optoelectronics devices. Among the various deposition methods, pulsed laser deposition
(PLD) offers the capability to produce vapor/species with a wide range velocity and energy for
films growth. This is achieved by using lasers with different photon energy and fluence for abla-
tion. Subsequently, the generated plasma plume can be regulated by controlling the background
gas or applying external magnetic field. Finally, materials growth by the impinging species pro-
gresses with or without additional thermal energy. In addition, heating of substrate during PLD
enables crystalline ZnO nanostructures or nanorod formation from 550°C to 700°C.1,2 AZO
nanostructure films were reported to achieve resistivity in the order of 10−4 Ω cm at about
300°C to 400°C.3,4 However, low substrate temperature is desired to enable the growth of
TCO on polymer substrates for flexible electronics. At the temperature range <300°C, crystal-
linity of the films decreases, although often accompanied by an increase in optical transparency.5

Thus, optimization in deposition conditions at a low substrate temperature will be needed to
preserve the resistivity and optical transparency of AZO films. First, the type of dopant and
its concentration play a major role; a resistivity of 10−4 Ω cm has been reported with Al- or
Ga-doped ZnO films when deposited at 230°C.6 The same range of resistivity has been achieved
by carefully optimizing the background pressure at 200°C,7 at 300°C,8 or by use of an oxygen
radical in place of oxygen gas for deposition at room temperature.9 In addition, regulating
the content of the laser produced plasma plume externally has enabled the growth of the
lowest resistivity AZO film (8.54 × 10−5 Ω cm).10 External magnetic field was applied to the
plume during deposition. On the other hand, several attempts have been reported in order to
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accommodate polymer substrates. One of the best results for the growth of AZO on polyethylene
terephthalate (PET) and polyethersulfon (PES) polymer substrate was obtained by using PLD
with added beam-rastering function, where the resistivities in the range of 10−4 Ω cm are
achieved.11 Recently, AZO films with resistivity ∼10−3 Ω cm have also been achieved by pulsed
excimer laser deposition on PET substrates at room temperature at laser fluence range of 1.5 to
3.2 J∕cm2.12 As laser fluence increased, the roughness increased and the optical bandgap
decreased. To date, most of the depositions were performed with 193 and 248 nm lasers;
there were only a few reports on Nd:YAG laser deposition of AZO. AZO thin films on poly-
carbonate (PC) were grown by using Nd:YAG laser (1064 nm) at room temperature and 100°C.13

In total, 75% transmittance was obtained for the films, but the resistivity was not measured. In
another report, 355-nm laser was used for deposition of AZO on a glass substrate at 25°C and
200°C, but the films have higher resistivity than those deposited at shorter wavelength, attributed
to lower absorption at 355 nm.14 However, no in-depth studies have been reported.

In addition to substrate temperature, polymeric substrate subjected to growth conditions is
more susceptible to damage by the impinging species as compared with glass substrate. For
example, femtosecond laser has been reported to produce highly energetic species that can
disrupt the film property.15 Thus, room temperature deposition together with low to moderate
energetic plasma condition would be ideal for deposition on polymer substrates. In this work,
a 355-nm laser, which is expected to produce less energetic plasma, was used for deposition of
AZO thin films onto glass and PC substrates. A fluence range (1 to 5 J∕cm2) was investigated to
complement the reported work. In addition, the beam-rastering method was used for deposition.
The structural, optical, and electrical properties of AZO films were analyzed and discussed with
respect to the deposition conditions.

2 Experiment

A Nd:YAG laser (third harmonic, 355 nm, 3.49 eV, 4.7 ns; EKSPLA, NL301), 10-Hz repetitive
rate was used for the ablation of the AZO target (Kurt J. Lesker, Pittsburgh, 99.99% purity, 98%
ZnO + 2wt. % Al2O3) in a stainless steel vacuum chamber. Corning glass slides (Corning
#26003, Ted Pella Inc., California) and PC (Goodfellow Ls401316, Huntingdon, England) sub-
strates with the dimension of 1.5 × 1.5 cm2 were ultrasonically cleaned and placed at 5-cm dis-
tance from the target. The deposition chamber was first evacuated to 5 × 10−4 Pa, and O2 gas
was subsequently introduced into the chamber to obtain the partial pressure of 2.1 Pa for thin
film deposition. The laser beam was focused to a size of ∼0.007 cm2, and this resulted in laser
fluences from 1 to 5 J∕cm2. The laser beam was steered by a motorized mirror to raster an area of
0.6 × 1.0 cm2 on the target during ablation, while the target and substrates were fixed in position.
The films were deposited for 54,000 pulses at room temperature. No postgrowth annealing was
performed. The thickness of the films was measured by using a stylus profilometer, whereas
the structural, optical, and electrical properties of the films were characterized by using x-ray
diffraction (XRD) with CuKα line at 1.5418 Å (Bruker, Massachusetts, D5000), UV-vis-NIR
spectrophotometer (AvaLight-DHc and Oceanoptics S2000), four-point probe (Keithley 236 and
probe station, Ohio), atomic force microscopy (Nanosurf, Liestal, Switzerland), and scanning
electron microscope (Hitachi, Tokyo, Japan).

3 Results and Discussions

AZO thin films of ∼130 to 180 nm were deposited onto glass and PC substrates at laser fluences
of 2 to 5 J∕cm2. At 1 J∕cm2, the thickness of the deposited film was only 40 nm, which suggests
that the laser fluence was close to the ablation threshold of 355 nm of AZO. As such, only
samples deposited at 2 to 5 J∕cm2 will be discussed in details in this paper. Figure 1 shows
the atomic force microscope (AFM) images of the substrates and AZO films on glass and
PC. The root-mean-squared roughnesses (Rrms) of the substrates were typically <2 nm. The
lateral grain size in AZO films was ∼100 nm for the both substrates. Rrms for AZO films is
tabulated in Table 1. The values are slightly higher for PC substrate as compared with glass
substrate.
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Figure 2 shows the XRD pattern of the AZO films deposited at 2 to 5 J∕cm2. A sharp and
most intense (002) and a small (103) reflection were observed for AZO deposited at 2 J∕cm2.
The sharp (002) reflection broadened with increasing laser fluence and diminished from AZO
deposited at 5 J∕cm2. The crystallinity of the films was highest for the sample deposited with
2 J∕cm2, although the film is the thinnest. A slight shift was also observed when laser fluence
increases. The broadening of the peak at higher fluence can be caused by smaller crystallite size
and/or higher strain in the films.

Figure 3 shows the optical transmittance spectra for AZO thin films on the glass and PC
substrates at various laser fluences. The average transmittance of the films from 400 to

Substrate
Fluence 
J/cm2

Glass Polycarbonate 

Uncoated substrate

2

3

4

5

Fig. 1 Atomic force microscope (AFM) images for Al-doped ZnO (AZO) thin films deposited on
glass and polycarbonate (PC) at different laser fluence.
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750 nm was about 80% on the glass substrate as compared with 75% on PC. The optical
bandgap, Eg, is deduced from a Tauc plot of ðαhυÞ2 versus hυ based on Eq. (1)

αhυ ¼ Aðhυ − EgÞm; (1)

where A is the constant and m is the one-half for direct transition. Eg for an AZO deposited at a
different laser fluence on glass and the PC is shown in Fig. 4 and Table 1. There is a consistent
decrease of Eg when the laser fluence increased for AZO deposited on both substrates.

Table 1 Themorphology, optical, and electrical properties of Al-doped ZnO (AZO) films deposited
on glass and polycarbonate (PC) at 2 to 5 J∕cm2.

Fluence
(J∕cm2)

Thickness
(nm)

Rrms
a

(nm)
Lateral grain
size (nm)

Transmission
@600 nm

Optical
bandgap (eV)

Four-point
probe

resisitivity
(Ω cm)

Glass PC Glass PC Glass PC Glass PC Glass PC

2 130 5.55 6.01 105 105 90 75 3.48 3.45 2.29
×10−3

1.49
×10−3

3 150 3.83 4.83 103 105 80 80 3.35 3.3 4.36
×10−3

3.50
×10−2

4 170 2.95 5.62 88 103 82 82 3.3 3.28 2.16 15.4

5 180 3.00 6.24 90 94 78 70 3.28 3.23 8.54 38.4

aFrom AFM.
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Fig. 2 X-ray diffraction (XRD) pattern obtained from AZO films deposited at 2 to 5 J∕cm2.
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Fig. 3 Transmittance of AZO on (a) glass and (b) PC at different laser fluence.

Tan et al.: Pulsed laser deposition of Al-doped ZnO films on glass and polycarbonate

Journal of Nanophotonics 084091-4 Vol. 8, 2014



The resistivity for the AZO films on glass and PC is shown in Fig. 5. The resistivities for
AZO on glass and the PC increased up to four orders of magnitude with laser fluence. At
high fluence, the resistivities of AZO on PC were higher than AZO on glass substrates. The
best resistivity was obtained at 2 J∕cm2 for both glass and PC, where the values were 2.29 ×
10−3 Ω cm for AZO on glass and 1.49 × 10−3 Ω cm for AZO on PC.

Laser parameters such as pulse length and wavelength influence the ablation process, and
subsequently the plume contents. Excimer lasers were normally used in deposition of ZnO, with
shorter wavelength/higher photon energy3,4,9–12 that is able to produce highly energetic species
than our current setup with a 355-nm laser. However, numerical results show that bombardment
of ions with energy ≫ 10 eV is capable to disturbed or displaced atoms in the growing films,
which can potentially lead to crystallographic defects to the films.15 The lower photon energy
and fluence in the current setup would minimize such an effect. In addition, rastering laser beams
instead of the common rotating target approach would reduce continuous direct bombardment of
ions onto the same spot. In a rastering laser beam, the laser beam and the created plasma plume
scan across the target; therefore, the most intense part of the plasma plume arrived on a different
part of the substrate. Whereas for a rotating target, only the target moves, the plasma plume will
arrive onto the same position on the substrate. The method was reported to improve the mor-
phology for the growth of AZO on polymer substrate, where the substrate is more susceptive to
damage.11 On the other hand, we observed a rather low growth rate of the films as compared with
deposition by excimer laser, which may be because of extensive optical excitation by a 355-nm
laser. It is noted that 355-nm laser excitation can induce room temperature photoluminescence
and even lasing action from a ZnO thin films or nanostructures.16–18 A 8-mm-thick bulk ZnO
target optically pumped by a pulsed 355-nm laser lased above 1500 kW∕cm2.18 The incident
laser energy of the current setup may contribute to optical excitation, which affects the deposition
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Fig. 4 Optical band gap of AZO on PC and glass at different laser fluence.
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Fig. 5 Resistivity of AZO films on PC and glass at different laser fluence.
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efficiency. The low growth rate of ∼0.03 nm∕s is comparable with the reported value by a 355-
nm deposition of ZnO.19

The deposited AZO films present satisfactory transmittance in the visible. The reduction of
Eg for AZO films deposited on glass and PC when fluence increased has also been observed in
248-nm deposition.12 The relation of the change in Eg with carrier concentration is given by

ΔEg ¼
h2

8m�

�
3

π

�
2∕3

n2∕3e ; (2)

wherem� is the effective mass for electrons and ne is the carrier concentration. Based on Eq. (2),
the carrier concentration decreases when the change in Eg with reference to an undoped ZnO film
reduced. In our results, Eg reduced with increasing laser fluence, and conductivity decreased
with increasing fluence. The results suggest that the carrier concentration of the deposited
AZO films, whether on glass or on PC, reduced when laser fluence increased, leading to
low Eg and low conductivity. In addition, based on the XRD results, crystallinity decreased
as a laser fluence was increased. The results obtained here are compared with those deposited
at similar conditions in Table 2. The best resistivities obtained here were one order of magnitude
lower than those deposited by 248 nm with rastering a beam on PES and PET substrates,11 but
close to those obtained on PET.12 It is also noted that the properties of AZO deposited by 355-nm
laser are highly dependent on laser fluence, unlike in the case of 248-nm laser, where resistivities
of 10−3 Ω cm can be obtained in a large fluence range of 1.5 to 3.2 J∕cm2.

4 Conclusion

In this work, AZO thin films were deposited on glass and PC substrates at room temperature by
using a 355-nm laser. The best films were obtained at 2 J∕cm2, where the resistivities were
2.29 × 10−3 Ω cm for AZO on glass and 1.49 × 10−3 Ω cm for AZO on PC. The properties
of AZO films on glass and PC were within the same range. At high fluence, AZO films
with lower optical bandgap and higher resistivity were obtained ascribed to lower crystallinity
and carrier density. The results also show a narrower fluence window for deposition of AZO
films with resistivity of 10−3 Ω cm as compared with deposition by excimer lasers.
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