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Abstract. Point-scanning-based microscopy systems require combination of axial and lateral
scanning to obtain three-dimensional (3D) data. Axial scanning was commonly achieved by
mechanical displacement of the objective or the sample. To improve, various adaptive lens-based
solutions have been reported to circumvent the need for mechanically moving parts. The lateral
scanning is predominantly implemented using galvanometric mirrors. Although the performance
of such devices is flawless, they require bulky, folded beam-paths that make their incorporation
in compact hand-held devices challenging. Recently, we introduced an adaptive prism as a trans-
missive device that enables lateral scanning. We demonstrate the first all-adaptive 3D scanning
in laser scanning microscopes employing a compact in-line transmission geometry without
mechanically moving parts and beam folding, combining an adaptive lens and a novel adaptive
prism. Characterization of the all-adaptive microscope performance shows a lateral tuning range
of approximately X ¼ Y ¼ 130 μm and an axial tuning range of about Z ¼ 500 μm. We suc-
cessfully demonstrate 3D raster scanning of the fluorescence of a thyroid of a zebrafish embryo.
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1 Introduction

Adaptive optics technology has been employed in various systems to improve imaging proper-
ties,1 correct aberrations,2 and perform self-calibration.3 Imaging techniques that acquire infor-
mation in a point-wise manner, such as confocal microscopy4,5 or optical coherence
microscopy,6,7 require point-scanning in three dimensions to obtain three-dimensional (3D) data.
One possible way to accomplish the axial scanning is to mechanically translate the sample8,9 or
the microscope objective10 in z-direction.

Several approaches employing adaptive lenses11,12 have been introduced to realize axial
scanning without the need for any mechanically moving parts in a variety of microscopes, such
as confocal microscopy,2,13 two-photon microscopy,14,15 light-sheet microscopy,16–18 structured
illumination microscopy,19,20 and standard wide-field microscopy.21,22 More sophisticated adap-
tive lenses with 2 degrees of freedom enabled simultaneously tuning the focal position and
correcting the spherical aberrations. This lens is committed to correct for specimen-induced
spherical aberrations that occur in deep tissue applications2 and systematic scan-induced
aberrations.12
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The lateral scan is accomplished by mechanical translation of the sample or by reflective
galvanometric mirrors.23 The direction of the reflected beam can be regulated by turning the
mirror. This type of scanner has a high resolution, good repeatability, and low drift values.
It can approach both static and dynamic angles and can be operated at comparatively high
speeds. However, galvanometer mirrors in reflective systems require a folded beam path, thus
resulting in bulky optical setups. Adaptive prisms have the potential to improve and to allow for
lateral scanning within an in-line compact setup. The first adaptive prisms reported were based
on electrowetting on dielectric.24–26 However, the scanning angle range of electrowetting-based
prisms is too narrow to achieve a large field of view. Recently, we introduced a piezo-actuated
adaptive prism with a large tuning range27,28 as a suitable alternative to galvanometer mirror that
enables an in-line transmissive configuration with large scanning angle range.

In this paper, we combine the adaptive prism with an adaptive lens, to realize the first
all-adaptive 3D scanning in an in-line transmission geometry. To demonstrate the ability for
biomedical 3D imaging of our approach, we conduct raster scanning of the thyroid of a cultured
zebrafish embryo.

2 Working Principles and Characteristics of Adaptive Elements

2.1 Adaptive Lens

The adaptive lens used in our all-adaptive scanning microscope consists of a transparent poly-
dimethylsiloxan membrane, which is embedded in an annular piezo-bending actuator. Between
the membrane and a glass substrate, an incompressible, transparent fluid is filled. When actuated,
the bending actuator displaces the fluid underneath which generates a pressure inside the lens
and deflects the membrane. We use a bimorph actuator (two piezo layers with opposite polari-
zation) that provides large deflections in both directions. Such lenses have already been used in
Refs. 13 and 19.

As the numerical aperture (NA) of the adaptive lens is small (maximum 0.2), it has to be used
in conjunction with an objective lens with high NA. The adaptive lens is imaged close to the
objective back aperture as this is the best compromise between a reduction of systematic aber-
rations and the axial tuning range of the system.29 The working principle of adaptive lens is
illustrated in Fig. 1(a).

2.2 Adaptive Prism

In Fig. 1(b), the working principle of adaptive prism is illustrated. The adaptive prism consists
of a fixed glass substrate and a tiltable glass window that sandwich a fluid. The upper glass
of the adaptive prism can be tilted by three piezo-bimorph bending transducers (see Fig. 2).
As the wavefront tilt is induced by the adjustment of the controlled path-length caused by
the refractive index transition from the fluid in the prism to air (approximately 1.48 to 1),
a surface tilt of 1 deg is required to induce a wavefront tilt of 0.48 deg. It has been verified
that the prism is capable to induce wavefront tilts up to �6.4 deg and achieves response times
of 2.5 ms.27

Fig. 1 (a) Schematic of the axial scanning setup with an adaptive lens. (b) Schematic of the lateral
scanning setup using an adaptive prism.
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3 Characterization of All-Adaptive 3D Scanning Microscope

3.1 Digital Holography for Characterization of Adaptive Components

The characterization of the individual adaptive lens and prism is performed using digital off-axis
holography.30

The adaptive element is illuminated (green beam) and the transmitted light is imaged onto the
camera. There it is overlapped with a coherent plane wave, which acts as a reference beam
(marked in red) Fig. 3. The change of the wavefront angle upon actuation is measured holo-
graphically. The reconstructed results are summarized in Fig. 4. The tuning range of the adaptive
lens is in the range of −23 to 19 dpt. We show the wavefront tilt angle of the adaptive prism
amounts to a scanning range of 12.8 deg. As the mounting of the adaptive prism is not perfectly
aligned, tilting in the x-axis also leads to a small tilt in the y-axis direction.

Fig. 3 Digital holographic setup in off-axis geometry for the characterization of the adaptive
elements.

Fig. 4 (a) The refractive power of the adaptive lens as a function of the applied voltage U . (b) The
lateral scanning angle of the adaptive prism as a function of voltage U1 applied to adaptive prism.
Also the induced undesired tilt across the perpendicular axis is displayed.

Fig. 2 Schematic of the adaptive prism.
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3.2 Digital Holography for Characterization of the 3D Scanning

The characterization of the 3D scanning is performed with the in-line digital holographic system
shown in Fig. 5. The laser beam (TCLDM9) at an output wavelength of 532 nm is expanded by a
beam expander and illuminates the adaptive lens. A 4f imaging system consisting of two lenses
with focal length of both 75 mm images the adaptive lens to the adaptive prism, which is again
imaged to the front lens by two 50-mm lenses. In the first characterization measurements, the
scanning lens has a focal length of 25.4 mm.

A reference beam marked in red is split, magnified, and is overlapped on the digital camera
with the object beam. The object beam is the scanned focus, which acts as a point source. The
region of interest is imaged to the camera together with the reference beam. The resulting inter-
ference rings allow to reconstruct the origin of the point source in 3D by digital propagation,
employing the angular spectrum propagation.30 The setup is designed in in-line geometry, which
is sufficient to reconstruct the amplitude information of the scanned region. Hence, we can track
the scanning of the focus position numerically and can characterize the system.

The all-adaptive 3D scanning system is driven as shown in Fig. 6. In these experiments, just a
single lateral scan in the x-direction is performed with the adaptive prism. As a first step, the
actuation voltages of the adaptive elements are tuned as follows: the voltage of the adaptive lens
U is kept constant at −40 V, while the whole voltage range of the adaptive prism is tuned,
resulting in a lateral scan at constant axial position. The voltage U1 on the adaptive prism is
driven from −50 V to þ150 V and the decreasing voltage of the adaptive prism U2 is from
þ150 V to −50 V. Then, U increased by 10 V and again U1 and U2 are driven over the whole
voltage range, until the static voltage U is tuned over the whole range. For each voltage pair,

Fig. 5 The sketched digital holographic setup is used to characterize the scanning system. The
green beam acts as an object beam, while the red beam is the reference beam. Actuation of the
adaptive elements results in a shifting focus, which acts as a point-source.

Fig. 6 (a) Voltage trajectories for the actuation of the adaptive elements for characterization.
(b) Digital holographic propagation enables to determine the 3D focus position.
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a digital holographic measurement is performed, resulting in 360 measurements in total in this
experiment.

Figure 7 shows cross-sections of the amplitude reconstructions for different propagation
distances at different voltages.

The trajectory of lateral scanning is shown in Fig. 8. For each hologram, the propagation is
performed, resulting in a cross-section amplitude image for each voltage configuration. The
example in the figure shows the superposition of all reconstructions for scanned voltages on
the adaptive prism, and for a constant axial position, at a voltage of 40 V on the adaptive lens.

The resulting scanned 3D area is shown in Fig. 9. The overall axial scan-range in this con-
figuration is approximately 10.8 mm.

It is noteworthy that the z distance is measured relative to the camera position. The lateral
scanning range amounts from −3.47 to þ3.47 mm when UAL ¼ −40 V, from −2.67 to
þ2.67 mm when UAL ¼ 0 V, and from −2.31 to þ2.33 mm when UAL ¼ þ40 V, respectively.
The results are consistent with analytical geometric considerations.

Using simple trigonometric calculations, the effective lateral scan angle can be determined
and is displayed in Fig. 10(a). The standard deviation of the lateral tilt angles along each voltage

Fig. 7 Exemplary cross-section across amplitude reconstructions for different propagation distan-
ces at a constant lateral position.

Fig. 8 Superposition of reconstructed amplitudes at different propagation distances. The voltage
on the lens is kept fixed atUAL ¼ 40 V. Lateral scanning of the focus is accomplished by tuning the
voltage on the adaptive prism.
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pair is shown in Fig. 10(b), the maximum standard deviation appears for the maximum angles
and amounts to 1%, while for small angles, the standard deviation appears to be 0.05%.

For large tilt-angles of the adaptive prism, the focus quality and the peak intensity degrade
due to aberrations. The by far greatest contribution to the aberrations, induced by tuning of the
adaptive elements, is astigmatism. As in these experiments the scan lens has a comparably low
refractive power, the spherical aberrations have a small effect in this configuration. Images of
the resulting point-spread functions are shown in Fig. 11(a). The change of the astigmatism of
the whole system during scanning is shown in Fig. 11(b). All other aberrations do not show
significant contributions. Due to hysteresis, the axial displacements of the focal spot behave
differently for decreasing and increasing voltages.

4 Experimental Validation

For the final all-adaptive scanning microscope, a 40× Olympus microscope objective (effective
focal length ¼ 4.5 mm, NA ¼ 0.65) is employed as a scanning lens to further increase the NA
and magnification of the system. The resulting axial scan range is reduced to around 500 μm.
Laterally, the usable scan range amounts to approximately 130 μm. The theoretical axial and
lateral resolutions of the system are 2.5 μm and 500 nm, respectively.

Fig. 9 The axial scanning and lateral scanning position of each focal spot in characterization
setup. Hysteresis effects are clearly visible, when the color-coded scan lines are compared for
increasing and decreasing voltages on the adaptive lens. (a) Increasing voltage on AL and
(b) decreasing voltage on AL.

Fig. 10 (a) The induced wavefront tilt angles in the experiment at different axial positions. (b) The
standard deviation of the lateral tilt angles along each voltage pair.
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As a first step in the experiment, a USAF resolution test chart (Thorlabs R1DS1P) is used as
a target. The all-adaptive scanning setup is applied in transmission geometry in a comparable
way as shown in the characterization setup. Only the scanning lens is replaced by the above-
mentioned microscope objective. The sample plane is imaged to a digital camera by a lens
system. Without any voltage on the adaptive optical elements, the microscope objective creates
a focus on the sample. By applying voltage trajectories on the adaptive prism, a lateral scanning
is accomplished resulting in a shifting focus on the camera. For each voltage constellation, an
image is acquired. By superposition of the individual single-focus images, the image of the
USAF test target is obtained, as displayed in Fig. 12. The smallest elements (element 6 of group
7) of our USAF test chart is clearly resolved, which corresponds to a lateral resolution of 2.2 μm.
A slight tilt of the scans is observable, which is induced by a slightly rotated mounting of the
adaptive prism, the optical setup, and camera.

4.1 3D Scanning of the Fluorescence of a Thyroid in Transgenic Zebrafish
Embryos

The setup we used for the first all-adaptive 3D scanning experiments is shown in Fig. 13. The
setup is used in reflection geometry. An LED is used for flood-illumination during alignment of
the setup. The laser beam is scanned across the sample in three dimensions by just changing the
voltages on the adaptive elements. The fluorescence is excited within the thyroid of a transgenic

Fig. 12 A USAF test chart (b) was scanned pointwise by tuning of the adaptive prism. The super-
position of the individual raster scanned images is shown in (b).

Fig. 11 (a) The left part of the figure shows the point-spread function at different lateral locations.
The focus quality degrades during the lateral scanning. (b) This is mainly due to astigmatism.
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zebrafish larvae. A long-pass filter in front of the camera in the detection path separates the
fluorescence signal from the excitation. For each voltage combination, an image is recorded
with the digital camera. As described earlier, the lateral scan is performed for a constant voltage
on the adaptive lens. Then, the adaptive lens is tuned and the lateral scan is repeated for a differ-
ent axial position. These individual scans are shown in Fig. 14(c). After scanning is completed,
the data can be superimposed to the 3D view shown in the upper right of the figure. For future
experiments, the setup is to be realized in a confocal geometry to reduce the out-of-focus signals
by optical sectioning. Additionally, the detection geometry has to be adjusted, to keep the detec-
tion focused at the excitation, as currently tuning of the adaptive elements leads to a slight detun-
ing of the setup.

5 Discussion

We demonstrate first all-adaptive 3D scanning, combining two adaptive scanning elements. This
configuration has high potential to enable a compact and cost-effective in-line laser scanning
microscope, without beam folding. The advantages of our approach in comparison to scanning
using a spatial light modulator (SLM) are the large tuning range and the potentially high tuning

Fig. 13 3D scanning setup. An objective lens (40×, NA ¼ 0.65) is used as a scanning lens. The
LED is used for flood-illumination during alignment of the setup. The laser beam is scanned across
the sample in three dimensions by just changing the voltages on the adaptive elements.

Fig. 14 (a) Dorsal view of the thyroid in the zebrafish embryo. The thyroid is located between the
eyes, approximately 200 μm below the surface. (b) 3D scanning of the excited fluorescence of
zebrafish. (c) Excited fluorescence of transgenic zebrafish embryo along different voltage pairs.
Red scale bar is 20 μm.

Wang et al.: 3D-scanning microscopy with adaptive lenses and prisms for zebrafish studies

Journal of Optical Microsystems 024501-8 Apr–Jun 2021 • Vol. 1(2)



speed. Additionally, the refractive elements have a higher efficiency than the diffractive SLM
versions. These advantages promise faster measurements in the sub-ms range and are thus impor-
tant for fluorescence microscopy as they may result in a reduced exposure of the sample,
minimizing bleaching effects. In the final microscope, the focus size in lateral dimension is
approximately 1 μm. The scan range in air amounts to approximately X ¼ Y ¼ 130 μm in lateral
direction and about Z ¼ 500 μm in axial direction. However, there is still room for improve-
ment. While the lateral full-width half maximum point-spread function-size of the system is
below 2 μm over the whole tuning range, the axial resolution is in the range of 10 μm. This
could be improved by changing the setup to a confocal alignment. The precise control and
orchestration of the adaptive elements is highly demanding, requiring either closed-loop itera-
tions or system monitoring, e.g., using wavefront sensing techniques.12 To ensure a high res-
olution in all-dimensions during scanning and to reduce the astigmatism, a multi-segmented lens
is required to enable non-symmetric tuning. This further increases the difficulty for a precise
control. Nevertheless, the presented approach has a high potential to improve the performance
and increase the scanning flexibility for all point-scanning-based microscopy systems, paving
the way to smart, computational microscopes.
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