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Abstract. Encouraged by the EU INSPIRE directive requirements and recommendations, the
Walloon authorities, similar to other EU regional or national authorities, want to develop opera-
tional land-cover (LC) and land-use (LU) mapping methods using existing geodata. Urban plan-
ners and environmental monitoring stakeholders of Wallonia have to rely on outdated, mixed,
and incomplete LC and LU information. The current reference map is 10-years old. The two
object-based classification methods, i.e., a rule- and a classifier-based method, for detailed
regional urban LC mapping are compared. The added value of using the different existing geo-
spatial datasets in the process is assessed. This includes the comparison between satellite and
aerial optical data in terms of mapping accuracies, visual quality of the map, costs, processing,
data availability, and property rights. The combination of spectral, tridimensional, and vector
data provides accuracy values close to 0.90 for mapping the LC into nine categories with a
minimum mapping unit of 15 m2. Such a detailed LC map offers opportunities for fine-scale
environmental and spatial planning activities. Still, the regional application poses challenges
regarding automation, big data handling, and processing time, which are discussed. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.11.036011]
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1 Introduction

Land cover (LC) means the composition and characteristics of land surface elements, such as
vegetation, buildings, or water bodies.1 A detailed definition of LC categories and a fine-scale
LC map, i.e., a small minimum mapping unit (MMU), are required for city or regional spatial
planning and for the management of citizen well-being related to environmental changes.2

Examples include the monitoring of soil sealing that increases the risks of flooding3,4 and of
urban green spaces that impact heat and air pollution.5,6

Despite the availability of a very rich catalog of Earth observation (EO) and vector geodata,
there is no recent and complete LC information that covers the whole Walloon region of Belgium
(also referred to as Wallonia). Moreover, the LC is not mapped separately from the land use (LU)
and is insufficiently detailed over urban environments. The LCLU map of Wallonia [Carte
d'Occupation des Sols de Wallonie (COSW)] has not been updated since 2007 whereas urban-
ized areas have increased by 6.2% between 2005 and 2014.7 As such, Wallonia is not complying
with the INSPIRE (2007/2/EC) directive that requests distinct LC and LU products.

The fine-scale and thematically detailed characterization of complex urban LC by remote
sensing requires submeter resolution data.8 Such characterization using only traditional optical
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imagery is challenging for the following reasons: (1) urban areas are characterized by an hetero-
geneous mosaic of small features9 resulting in the so-called “salt-and-pepper” effect;10 (2) differ-
ent land elements share similar spectral responses, causing frequent misclassifications, such as
between buildings and roads or water bodies and shadows;11 (3) vertical urban structures induce
shadows and occlusions that vary with the acquisition sun/viewing angles;12,13 and (4) most
submeter sensors lack the medium and thermal infrared bands that are useful for the characteri-
zation of urban materials.14

In the literature, multisource data fusion and object-based image analysis (OBIA) are con-
sidered for addressing these challenges.

A number of studies assessed the added value of either the multisensor data combination and/
or the integration of ancillary geodata. First, among the multisensor approaches, such as the
combination of optical and synthetic aperture radar data or the fusion of multiresolution optical
data, the combination of optical data with height-related features seems one of the most prom-
ising techniques for urban LC mapping.15 Photogrammetric methods and light detection and
ranging (LiDAR) data provide height information as normalized digital surface models
(nDSM). Their use adds a third dimension to the LC classification for discriminating elevated
objects. Moreover, being an active sensor, LiDAR is not subject to shadowing or other variations
in natural light. According to the review of Ref. 15, LC mapping accuracy improves from 5% to
18% when incorporating LiDAR-derived height features to multispectral images.16–18

Second, the integration of ancillary geodata enables the production of LU information based
on the LC obtained by remote sensing.19 While remote sensing is often used to update vector
data,20–22 ancillary vector data can also successfully constrain the LC mapping to improve the
results. An example of such an approach was presented in Ref. 23 in which LiDAR, aerial ortho-
photos (AOP), and ancillary vector data, such as buildings, water bodies, and certain impervious
features, are incorporated into an OBIA approach for high-resolution LC mapping. The overall
accuracy (OA) of 95% obtained is above accuracies generally reached by LC products classified
using remotely sensed data only.10,13,15,21

OBIA is more efficient than pixel-based methods for classifying the urban LC from submeter
remotely sensed data.10,11,24,25 By focusing on relatively homogeneous segments rather than on
pixels, OBIA not only creates additional object-based spectral information but also offers the
possibility of calculating contextual, geometrical, and textural features that facilitate classifica-
tion. Two widespread OBIA approaches are distinguished in this paper: (a) the first one, which
we call the OBIA automated, segments the images into meaningful objects and then classifies
them using supervised machine-learning classifiers, such as random forest (RF)26 or support
vector machines (SVMs)27 and (b) the second one, which we call the OBIA-rule based, uses
expert knowledge to define hierarchical rules that simultaneously segment and classify
images.21,23

LC mapping using multisource data and a high number of object features increases the vol-
ume of data to be processed and therefore challenges a regional application. A recommended
solution to deal efficiently with big data could be parallel processing,23 i.e., the division of LC
feature extraction tasks among multiple cores for reducing processing time.

In addition, to ensure operational readiness, repeatability and automation of the method are
also required. As highlighted by Du et al.,28 there is a need for integrated processing chains that
combine different necessary image processing modules to derive useful LCLU maps. These
modules should be well-documented and should allow an efficient processing of various EO
and ancillary data sources to ensure the repeatability of the method and the possibility of apply-
ing it to different urban environments. Since we want to move toward automation, this implies
limiting the manual intervention of the operator and strengthening processing efficiency.
Recently, automated solutions that avoid the tedious and time-consuming trial and error
required for tuning segmentation parameters and selecting the best-performing classifiers have
appeared.29–32 However, certain tasks remain time-intensive and subjective, e.g., calibrating
classification rules in OBIA-rule-based approaches or generating a large set of training samples
that are statistically independent, class-balanced, and representative of the target classes in
OBIA-automated approaches.26

This study aims at developing an operational and integrated mapping framework to update
the LC map of Wallonia (16;844 km2) and to increase its thematic and spatial levels of detail

Beaumont et al.: Toward an operational framework for fine-scale urban land-cover mapping. . .

Journal of Applied Remote Sensing 036011-2 Jul–Sep 2017 • Vol. 11(3)



using existing geodata, i.e., data that were not acquired for the purpose of the study. The best set
of existing geodata and the best OBIA classification method were identified within these con-
straints. We proceeded with three subtasks: (1) testing the suitability of two state-of-the-art
OBIA classification methods on a 25-km2 subset, (2) introducing various existing EO and ancil-
lary vector data in the process and assessing their added value in terms of mapping accuracy and
visual map quality, and (3) applying the methods to the larger area of Liège (261 km2) as an
indication of their transferability to the whole Walloon region. The research leading to this paper
was carried out for and with the active support of various public stakeholders, primarily to ensure
compliance with the EU INSPIRE directive mapping obligations.

Regarding the general structure of the paper, Sec. 2 describes the study area, the data, and the
two methods proposed. The classification results are presented in Sec. 3, moving from the local
to the regional scale. They are discussed in Sec. 4 with regards to the three subobjectives.
A conclusion is presented in Sec. 5.

2 Materials and Methods

2.1 Study Area

This paper discusses the development of an operational urban LC mapping method that is appli-
cable to the whole Walloon region (16;844 km2). In collaboration with end-users, we defined
two subsets that are representative of the Walloon urban dense landscape (Fig. 1).

Zone A is a 25-km2 square area selected for the development of the two methods and for
identifying the data and features of interest. Zone B is used to assess the regional transferability
of the chosen methods. It corresponds to a 261-km2 subset that includes the city of Liège and
eight other municipalities. Zone B demonstrates a strong urbanization with 55% of artificialized
areas. This value is well above the Walloon region’s mean of 15%.33 The population density of
1663 inhabitants per km2 is largely higher than the Walloon average of 213.8 inhabitants per
km2.34 Zone B covers a large diversity of urban morphologies ranging from isolated house neigh-
borhoods to 10þ floor buildings. Residential, industrial, and commercial areas cover 55% of the
area. Crops and pastures account for 30%, seminatural spaces and forests for 13%, and water

Fig. 1 Liège study area and samples for 2012. The blue border delineates the 25-km2 represen-
tative area (zone A) used for methods development. The red border delineates the 261-km2 area
(zone B) used for transferability assessment. The validation samples are represented by purple
squares. The training samples for the OBIA-automated approach are represented by yellow dots.
A true-color composite of aerial photographs from 2012 is used as background.
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bodies for 2%.33 Given the inner complexity of urban areas,17 we believe that applying our
method first to such dense urban areas and then to rural ones in a later stage is more straightfor-
ward than the inverse approach.

2.2 Data

An operational LC mapping method should rely on routinely acquired EO data to minimize the
acquisition costs and to exploit existing data as recommended by the European legislation on
reuse of public sector information (PSI directive; 2003/98/CE, consolidated by 2013/37/EU). In
this perspective, this study valorizes existing data even though their acquisition conditions were
not always the most relevant for the discrimination of LC classes. Wallonia, as many other EU
regions, acquires remotely sensed data that are particularly interesting for LC mapping. In our
comparisons, we integrated three available remotely sensed datasets: (1) visible–near-infrared
(VNIR) AOP (4 bands) with a spatial resolution of 0.25 m after pan-sharpening of panchromatic
(PAN: 0.25 m) and multispectral (XS: 0.75 cm) bands (leaf-on: May 2012) along with a 1-m
resolution nDSM generated by photogrammetry;35 (2) VNIR Pléiades satellite data with a spatial
resolution of 2 m for the XS bands and of 0.5 m for the PAN band (leaf-on: August 2013); and (3)
the digital terrain model (DTM) and the digital surface model (DSM) generated by the Walloon
authorities using the low-resolution LiDAR data acquired during the winter of 2012/2013
(leaf-off: 1 to 3 points per m2).

Ancillary vector data consist of the polygonal delineations of building footprints available in
the BelMap database (GIM, 2015) and of fresh water courses and water bodies, road networks
(i.e., aggregated polygons of the travel lane, sidewalk, planting strip, and on-street parking) and
rail networks available in the Projet Informatique de Cartographie Continue (PICC, in French)
database.36 Produced using a photogrammetric method, the PICC is the Walloon digital carto-
graphic reference at 1:1000 scale. It includes landscape elements, such as buildings, networks,
infrastructures, and isolated trees, with a planimetric accuracy of 12 cm and an altimetric accu-
racy of 25 cm. We chose the BelMap database for delineating buildings because it was updated in
2015, due to various commercial datasets, while the PICC has not been updated since the 1990s
in some parts of the region. The update of the PICC is currently being carried out by the regional
authorities who consider this dataset the future spatial and thematic reference, including for
buildings. This will guarantee the availability of up-to-date polygonal data that will be used
for mapping the LC.

2.3 Methods

2.3.1 Data preprocessing

The Walloon Public Service provided pan-sharpened AOP as a regional mosaic with full geo-
metric (accuracy <0.5 m) and radiometric corrections. The photogrammetric nDSM provided by
Claessens et al.35 was resampled to 0.25 m using cubic interpolation.

Radiometric calibration, pan-sharpening, and orthorectification of the raw Pléiades data were
performed inside the ENVI/ArcGIS environments. LiDAR DTM and ground control points
taken on AOP were used for orthorectification. We obtained a root-mean-square error smaller
than 1 pixel.

The LiDAR nDSM layer was computed by subtracting the DTM from the DSM. It was
resampled using cubic interpolation to match the spatial resolutions of the AOP and Pléiades
data.

2.3.2 Classification scheme and minimum mapping unit

The classification scheme and the MMU were defined according to the needs and feedbacks
expressed by a panel of Walloon environmental and spatial planning stakeholders. The classi-
fication scheme comprises two hierarchical levels (Table 1).

Five classes characterize level 1: artificial surfaces, bare soils, vegetation, water bodies, and
shadows. Level 2 distinguishes buildings, asphalt surfaces at ground level, rail network, and
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vegetation. The vegetation class of level 1 is subdivided at level 2 according to its height and type
into low, medium, and high deciduous and coniferous classes. Shadows are temporary and will
be removed either directly due to the processing performed in the OBIA-rule-based approach or
in a later stage in the OBIA-automated approach due to a postprocessing using contextual rules
that is still under development.

The reference MMU for building representation in the PICC is 15 m2. We used this MMU as
it meets end-users’ expectations in terms of details and allows the detection of most anthropic
and natural features.

2.3.3 Sampling scheme and accuracy assessment

Sampling consists of three steps: (i) a stratified random point sampling inside the ancillary vector
data, (ii) a random point sampling with visual interpretation on the AOP (2012) for the other LC
classes, and (iii) an update of these samples for processing the Pléiades (2013) data.

In step (i), a set of samples are selected within the ancillary vector data of buildings, water
courses, water bodies, and road and rail networks. The stratified random sampling scheme
ensures a minimum sample size in each class.21 This minimum is set to 60 points per class
for training and 30 points per class for validation. A visual interpretation was performed to
remove misregistration cases or points demonstrating LC changes due to a difference in date
between ancillary vector data and AOP. This visual interpretation was performed by an operator
who has expert knowledge of the study area.

In step (ii), a random sampling was performed for the shadows, the four level 2 vegetation
classes, and the bare soils. The labeling of the random samples was manually performed by the
visual interpretation of the AOP.

By grouping (i) and (ii), we obtained a total set of 937 samples.
In step (iii), we updated the sample labels and coordinates by visual photointerpretation to

match the ground truth depicted in the Pléiades data (August 2013).
For the tests carried out on the 25 km2 of zone A, the training and validation samples were

taken in two different zones to limit the potential spatial autocorrelation (SA).37 Five hundred
and forty-nine samples were used for training the classifiers in the OBIA-automated approach
and were defined outside zone A. The 388 samples left, inside zone A, were used for validation
purposes (Fig. 1).

For the application to the 261 km2 of zone B, the training and validation samples were redis-
tributed among the whole area. We kept the same distributions of samples per class and the same
ratio between training and validation.

Table 1 Two-level LC classification scheme.

Level 1 Level 2 Abbreviation

Artificial surfaces Buildings BU

Asphalt surfaces AS

Rail network RA

Bare soils Bare soils BS

Vegetation Low vegetation (<1 m) LV

Medium vegetation (1 to 7 m) MV

High vegetation deciduous (>7 m) HVD

High vegetation coniferous (>7 m) HVC

Water bodies Water bodies WB

Shadows Shadows SH
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For the classifiers in the OBIA-automated approach, we automatically selected the segments
containing a training point to create the training objects set. The advantage of this strategy is that
the same labeled set of points can be used with different segmentation results.

The validation points were used for accuracy assessment in both the OBIA-automated and
the OBIA-rule-based classification approaches.

Accuracies were assessed using confusion matrices. User’s accuracy, producer’s accuracy,
OA, and Kappa (K) index38 were calculated. McNemar’s nonparametric test was computed to
assess the statistical significance of the differences between classifications, compared pairwise.39

The expression of McNemar’s test is

EQ-TARGET;temp:intralink-;e001;116;628χ2 ¼ ðf12 − f21Þ2
ðf12 þ f21Þ

; (1)

where f12 represents the frequency of samples correctly classified in the first classification but
incorrectly classified in the second one and f21 is the frequency of samples correctly classified in
the second classification but incorrectly classified in the first one.

2.3.4 OBIA-automated classification

The OBIA-automated processing chain, first introduced by Grippa et al.,40 consists of a suite of
modules developed in the open-source software Geographic Resources Analysis Support System
Geographical Information System (GRASS GIS). The chain uses the GRASS Python scripting
library to combine the modules and is implemented in a “Jupyter notebook” that enables efficient
documentation, publication, and sharing of the computer code. The code is available on a dedi-
cated Github repository (Ref. 41). The processing chain consists of six main steps.

Step 1 covers data preparation and preprocessing: (a) the definition of the working environ-
ment, i.e., the definition of the workspace and of the projection system, the creation of the
GRASS GIS mapsets, the download of the needed libraries, etc; (b) the import of the raw
EO and ancillary vector data; and (c) the derivation of various indices. Currently, the processing
chain allows computation of the normalized difference vegetation index (NDVI),42 commonly
used for vegetation discrimination; the normalized difference water index (NDWI),43 reported to
enhance the detection of water; a brightness index (sum of the visible bands); and a texture index
using the “r.texture” algorithm.44,45 This list of indices will hopefully grow in the coming months
as more diverse EO data sources are processed by the authors, e.g., hyperspectral APEX and
Sentinel-2 data, and as the community contributes to the development of the code. At the time of
the production of the results within this research, only the NDVI index was implemented. We
used it, according to the OBIA-automated tests in Sec. 3.1, as additional information to the
raw input data for performing the segmentation (steps 2 and 3) and/or for computing objects’
statistics (step 4) prior to the classification (step 5).

Step 2 uses the new GRASS GIS add-on i.segment.uspo for tuning the “threshold” parameter
of the segmentation (see step 3).46 This tuning allows a more objective and automated param-
eter’s definition than the usual tedious and time-consuming “trial-and-error” approach relying on
the visual assessment of several naïve segmentation results and on the iterative testing of varying
segmentation parameters.32 i.segment.uspo is an unsupervised optimization method, so it is able
to assess the quality of a segmented image without the need for a reference map or for a priori
knowledge, which is a major advantage compared with the supervised empirical methods.31

i.segment.uspo relies on tuning functions combining measures of intrasegment homogeneity
[weighted variance (WV)] and intersegment heterogeneity (SA). To compare different segmen-
tations, both WV and SA measures are normalized using the following equation:

EQ-TARGET;temp:intralink-;e002;116;149FðxÞ ¼ Xmax − X
Xmax − Xmin

; (2)

where FðxÞ is the normalized value of WV (or SA), X is the WV (or SA) value of the current
segmentation result, and Xmax and Xmin are the highest and lowest values of WV (or SA), respec-
tively, for the whole stack of segmentation results assessed.
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Two tuning functions can be used to combine the WVand SA measures: either a simple sum
of the normalized criteria as defined by Espindola et al.29 or the F-function defined by Johnson
et al.31 The expression of the F-function is

EQ-TARGET;temp:intralink-;e003;116;699F ¼ ð1þ α2Þ ASnorm ×WVnorm

α2 × ASnorm þWVnorm

; (3)

where F is the “overall goodness,” ranging from 0 (poor quality) to 1 (high quality). F synthe-
tizes the quality of the segmentation while the α parameter varies to give more weight to WVor
to SA.

To define the segmentation parameters in this study, we ran the i.segment.uspo module on a
subset of 10 distinct areas of 300 × 300 m distributed across the diversity of urban environments
present in our study area (zone B at Fig. 1). According to the visual check of the preliminary
tests, we observed minor changes between the two functions’ outputs. Using the simple sum
resulted in undersegmentation. To avoid it, we used the F-function and set the α parameter
at 1.25. Some recent studies argue that oversegmentation is a minor issue that could be corrected
during classification, which is not the case of undersegmentation.47–49

Step 3 consists of running the i.segment module of GRASS GIS50 that implements image
segmentation using a region-growing algorithm (an experimental mean-shift algorithm has been
recently implemented). The region-growing segmentation uses two parameters: (a) a standard-
ized “threshold” parameter below which segments are merged according to spectral similarity
between neighboring objects (tuned in step 2) and (b) a “minsize” parameter entered by the
operator that sets the minimum size of segments. Here, we used our definition of the MMU
of 15 m2 to set the minsize parameter.

In step 4, the i.segment.stats add-on computes objects statistics used in the classification
process.51 They include the minimum, maximum, mean, range, standard deviation, sum, and
median spectral statistics extracted from EO data, as well as the area, perimeter, and compactness
morphological attributes. This fourth step was sped up using the new r.object.geometry add-on.52

This add-on allows working in raster format, hence, avoiding the vectorization and saving time.
Based on the object statistics, step 5 uses the v.class.mIR GRASS GIS add-on, built with the

“Caret” library of the R software, to perform scene classification.53 At the time of the elaboration
of the analyses presented here, this add-on implemented the following machine-learning clas-
sifiers: RF, SVM radial (SVMRadial), recursive partitioning (Rpart), and k-nearest neighbors
(k-NN) (since then C5.0 and XGBoost have been added). The add-on automatically tunes
the parameters of each classifier using repeated cross validation on the training samples.

v.class.mIR also provides the possibility of using four voting systems to combine the pre-
dictions of the individual classifiers:54 (a) the simple (unweighted) majority vote that retains the
most frequent prediction, (b) the simple weighted vote (SWV) where the weighting corresponds
to the accuracy of the individual classifiers estimated through the cross validation, (c) the best-
worst weighted vote (BWWV) where a zero weight is attributed to the worst performing clas-
sifiers and a linear weighting is applied to the other classifiers, and (d) the quadratic BWWVwith
the same design as BWWV with the difference that a squared function weighting is applied to
the best-performing classifiers.

Finally, step 6 performs the accuracy assessment using confusion matrices and the K index
generated by the r.kappa tool.55

The rail network, requested by the end-users, is excluded from this classification approach
because the first results showed a high level of confusion with asphalt surfaces and bare soils.
This class did not change much over time and will be integrated using ancillary vector data in
a later stage.

2.3.5 OBIA-rule-based classification

Using works of O’Neil-Dunne et al.23 and Van De Kerchove et al.56 as references, we developed
an LC mapping ruleset in eCognition Developer 9.2. The general structure is divided into two
parts (Fig. 2). Part (a) uses existing ancillary vector data for some LC classes and checks their
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consistency by comparing them with the EO data. Part (b) updates these classes by adding
objects that are not covered by the ancillary vector data and classifies the other classes.

For the sake of transferability, rules are kept as simple as possible using normalized and well-
documented indices and criteria. The classification integrates four spectral indices derived from
AOP VNIR data: the NDVI,42 the NDWI,43 the blue-NDVI (bNDVI),21 and the spectral shape
index (SSI).17 The referenced authors reported that bNDVI eases the discrimination between bare
soil and asphalt surfaces and that SSI is useful for distinguishing water from shadow.

Part (a) first integrates and second updates the ancillary vector data. First, a coarse chessboard
segmentation and class assignment rules integrate ancillary vector data.23 Second, changes are
detected. The removal of buildings is detected using nDSM and NDVI thresholds. NDWI is used
to flag potential changes from initial water bodies. The changed areas are then reinjected into the
classification process during part (b). Road and rail networks are considered stable in time. They
are not updated in the process.

Part (b) classifies areas outside ancillary vector data or identified as changed. An NDVI
threshold distinguishes vegetation from artificial areas, grouping pixels of each category into
objects. An nDSM threshold subdivides the vegetation into low, medium, and high vegetation
objects. The small low and/or medium height vegetation objects surrounded by higher strata are
aggregated into medium/high vegetation classes. An SSI index threshold further distinguishes
deciduous trees from conifers. A 2.5-m nDSM threshold reclassifies artificial areas into ground
and elevated building objects. This threshold value avoids the meaningless detection of low-
height features, such as cars on parking lots.57 New buildings are detected. Cleaning using
shape and context features erases elongated objects caused by the small positional shift between
the vector and the EO data. An additional step for the subdivision of the buildings into low and
small, low and large, and high buildings is implemented as an indication for the future LU infor-
mation derivation. A combination of bNDVI, NDWI, SSI thresholds, and contextual criteria
reclassifies ground features into asphalt surfaces, bare soils, and new water bodies.

Additionally, the ruleset was adapted to run without ancillary vector data. A classification
was performed using this adapted ruleset to assess the gain in accuracy potentially offered by the
addition of the different ancillary datasets. The main changes include the use of the NDWI and
SSI for the delineation of water bodies at the beginning of the ruleset.

Fig. 2 Structure of the ruleset of the hierarchical LC classification: (a) ancillary vector data
processing and (b) classification of areas outside ancillary vector data.

Beaumont et al.: Toward an operational framework for fine-scale urban land-cover mapping. . .

Journal of Applied Remote Sensing 036011-8 Jul–Sep 2017 • Vol. 11(3)



Technically, all tests were run on an i7-4870HG CPU @ 2.50 GHz, 16-GB RAM, 4-cores
computer. Processing times were calculated for each test in both the OBIA-rule-based and the
OBIA-automated approaches. Application to zone B area was performed using eCognition
Server.

3 Results

This chapter contains four sections. Sections 3.1, 3.2, and 3.3 present and compare the main
results obtained for the application of both OBIA approaches to zone A (Fig. 1).
Section 3.4 presents the application of the best-performing test of both approaches to zone B
(Fig. 1).

3.1 OBIA-Automated Approach Tested on Zone A

We carried out eight tests to evaluate the performance of the OBIA-automated processing chain
and the added value of multisource EO and ancillary vector data (from A to H in Table 2).
Varying the input data for the segmentation and the classification steps enabled us to test
the added value not only of the AOP versus Pléiades data but also of the NDVI, nDSM,
and ancillary vector data integration. The accuracy assessment for the four classifiers and
for the SWV is presented in Table 2. Using the SWV, the decision of each classifier is weighted

Table 2 OBIA-automated accuracy assessment: K and OA at the classification level 1 and 2 for
the eight tests.

Test
Input data Individual classifiers Vote

Segmentation Classification k -NN Rpart SVMRadial RF SWV

A AOP (VNIR) L1 K 0.6464 0.7314 0.8684 0.8673 0.8747

OA 0.7552 0.8144 0.9072 0.9072 0.9124

L2 K 0.2988 0.5046 0.6286 0.6227 0.6198

OA 0.3787 0.5593 0.6701 0.6649 0.6624

B Pléiades (VNIR) L1 K 0.4564 0.6424 0.7011 0.6810 0.6956

OA 0.6005 0.7423 0.7861 0.7706 0.7809

L2 K 0.2935 0.4638 0.5612 0.5535 0.5588

OA 0.3737 0.5232 0.6108 0.6031 0.6082

C AOP (VNIR + NDVI) L1 K 0.6895 0.8400 0.8564 0.8788 0.8792

OA 0.7809 0.8566 0.8995 0.9149 0.9149

L2 K 0.4027 0.6179 0.6373 0.6606 0.6669

OA 0.4716 0.6598 0.6778 0.6985 0.7036

D AOP (VNIR) AOP (VNIR + NDVI) +
AOP nDSM

L1 K 0.7506 0.8273 0.8653 0.8906 0.8941

OA 0.8247 0.8789 0.9046 0.9227 0.9253

L2 K 0.4369 0.7064 0,7065 0.7676 0.7617

OA 0.5026 0.7397 0.7397 0.7938 0.7887
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according to its estimated accuracy. Only the SWV is presented as it provides the highest
accuracies of all the voting schemes tested in this study.

The best accuracy results are achieved for test E in which the AOP, NDVI, and LiDAR nDSM
were used as input to both segmentation and classification. OA of 0.83 and 0.92 and K of 0.81
and 0.89 are obtained at level 2 and 1, respectively, using the SWV voting scheme. The clas-
sification of buildings achieves good results, with K higher than 0.9. The confusion matrices
reveal that the main misclassifications occur between the bare soil and the asphalt surfaces
and between the vegetation classes.

The segmentation that integrates multisource EO data generates objects that accurately delin-
eate the true shape of LC elements (test E). It also provides significantly higher accuracies than
test D, which combines these data only at the classification step and segments only the VNIR
data (þ0.04 of OA and þ0.05 of K at level 2 for SWV vote between tests D and E).

Overall, the best-performing classifier is RF. Its performance is closely followed by
SVMRadial, which even outperforms RF for both tests that only use VNIR data (A and B).
The Rpart and k-NN classifiers provide generally significantly lower accuracies and a lower
visual quality of the map than RF and SVMRadial. The SWV vote either improves slightly
or does not modify the accuracies obtained by individual classifiers.

Table 2 (Continued).

Test
Input data Individual classifiers Vote

Segmentation Classification k -NN Rpart SVMRadial RF SWV

E AOP (VNIR + NDVI) + LiDAR nDSM L1 K 0.6948 0.8296 0.8759 0.8867 0.8865

OA 0.7835 0.8814 0.9124 0.9201 0.9201

L2 K 0.4562 0.7383 0.7702 0.7964 0.8051

OA 0.5180 0.7680 0.7964 0.8196 0.8273

F AOP (VNIR + NDVI) + AOP nDSM L1 K 0.7063 0.8253 0.8722 0.8831 0.8907

OA 0.7938 0.8763 0.9098 0.9175 0.9227

L2 K 0.4586 0.7332 0.7529 0.7876 0.8023

OA 0.5206 0.7629 0.7809 0.8119 0.8247

G Pléiades (VNIR + NDVI) + LiDAR
nDSM

L1 K 0.4114 0.7406 0.8095 0.8203 0.8274

OA 0.5799 0.8144 0.8634 0.8711 0.8763

L2 K 0.3890 0.6170 0.7186 0.7420 0.7391

OA 0.4588 0.6598 0.7500 0.7706 0.7680

H AOP (VNIR + NDVI) + LiDAR nDSM +
ancillary vector data

L1 K 0.7560 0.8555 0.8684 0.8825 0.8825

OA 0.8273 0.8995 0.9072 0.9175 0.9175

L2 K 0.5197 0.7671 0.7641 0.8020 0.8107

OA 0.5747 0.7938 0.7912 0.8247 0.8325

Note: The numbers in bold indicate the best accuracies per test. Tests B and G were carried out on the
Pléiades imagery. Test H was carried out with the ancillary vector data.
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The OA and K index for all tests are summarized in Fig. 3, which shows the added value of
the different input datasets.

In Fig. 3, to assess the best combination of input data, all tests are compared with test A,
which classifies only the AOP multispectral info and reaches an OA of 0.91 and a K index of
0.87 at level 1 and of 0.66 and 0.62, respectively, at level 2 (test A).

By comparing tests C and A, we show that the NDVI allows a gain in accuracy of þ0.05 for
OA and þ0.04 for K at level 2, which is not significant according to McNemar’s test
(p-value ¼ 0.1138). There is also no improvement at level 1.

At level 2, the integration of the LiDAR nDSM (test E) achieves higher OA and K of þ0.14

and þ0.13, respectively. It drastically improves the mapping of buildings with a class-specific K
index value rising from 0.6 without height information (test C) to 0.9 when LiDAR nDSM is
used (test E). Improvements due to the addition of the LiDAR nDSM are statistically significant
(p-value < 0.001) compared with the results relying on AOP VNIR + NDVI (test C). Again, the
nDSM does not improve the results at level 1. The LiDAR- and the AOP-derived nDSM achieve
similar accuracy results. The delineation of elevated features is slightly enhanced using AOP
nDSM due to the exact spatial matching between spectral data and height above ground infor-
mation. Using the LiDAR nDSM as a reference, a 0.47� 4.65-m mean height difference and
standard deviation with the AOP nDSM are measured using all validation and training samples.
The main height differences are observed for the shadows, the high vegetation, and the water
bodies classes. The vegetation growth explains most of the height differences in the vegetated
areas. Changes in water levels and artifacts caused by scattering of the LiDAR signal on water
surfaces explain the height differences over water bodies. The differences in the shadow class are
explained by the small positional shift between both nDSM datasets due to varying camera/plane
acquisition angles. Interestingly, the height difference and standard deviation for the buildings
class are the smallest of all classes (0.04� 1.47 m).

As in the OBIA-rule-based approach (see below), the inclusion of ancillary vector data cleans
the delineation of objects (test H). However, it does not significantly improve the OA and K
values. This means that most misclassifications occur in areas located outside these database
features.

The added value of submeter satellite Pléiades data is assessed in comparison with AOP in
Table 3 and Fig. 4.

Using only VNIR spectral bands, the Pléiades classification (test B) produces OA and K
index values �0.05 lower at level 2 and �0.15 lower at level 1 than the comparable test on
the AOP map (test A). Visually, the water bodies and the shadows classes are largely overre-
presented in the Pléiades LC map [Fig. 4(e)]. This can be explained by intense sunlight reflection

Fig. 3 General representation of OA and K index for tests running on AOP with tests (A) only AOP
VNIR, (C) AOP VNIR + AOP NDVI, (E) AOP VNIR + AOP NDVI + LiDAR nDSM, (F) AOP VNIR +
AOP NDVI + AOP nDSM, and (H) AOP VNIR + AOP NDVI + LiDAR nDSM + ancillary vector
data. OA and K for SWV vote at (a) classification level 1 and (b) level 2.
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on water bodies leading to confusion with artificial surfaces [Fig. 4(d)]. The shadows also appear
less contrasted on the Pléiades imagery than on the AOP. The integration of the LiDAR nDSM
significantly improves the accuracies and the visual quality of outputs. It corrects most water
misclassifications in test G [Fig. 4(f)]. Accuracy wise (Table 3), higher OAs are still obtained for
test E using the AOP in comparison to test G using Pléiades.

3.2 OBIA-Rule-Based Approach Tested on Zone A

The urban LC mapping results using the OBIA-rule-based approach with and without ancillary
vector data are shown in Fig. 5, and the accuracy measures are presented in Table 3.

Fig. 4 Comparison of AOP and Pléiades data: (a) AOP 2012, (b) OBIA-automated using AOP
VNIR only (test A, SWV vote), (c) OBIA-automated using AOP VNIR + NDVI and LiDAR
nDSM (test E, SWV vote), (d) Pléiades 2013, (e) OBIA-automated using Pléiades VNIR only
(test B, SWV vote), and (f) OBIA-automated using Pléiades VNIR + NDVI and LiDAR nDSM
(test G, SWV vote). Legend: BU, buildings; AS, asphalt surfaces; BS, bare soils; LV, low vegeta-
tion; MV, medium vegetation; HVD, high vegetation deciduous; HVC, high vegetation coniferous;
WB, water bodies; and SH, shadows.

Table 3 Accuracy assessment for both OBIA-rule-based tests: (i) excluding or (ii) including in bold
ancillary vector data: K and OA at classification levels 1 and 2.

i EO data only (no ancillary vector data) L1 K 0.9066

OA 0.9398

L2 K 0.8421

OA 0.8624

ii EO data and ancillary vector data L1 K 0.9334

OA 0.9570

L2 K 0.8784

OA 0.8940
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Table 3 shows an OA and K index above 0.90 at level 1 and above 0.84 OA and K at level 2.
The misclassifications mainly occur between the subclasses at level 2 and between the four veg-
etation classes. The addition of ancillary vector data improves the OA byþ0.02 at level 1 and by
þ0.03 at level 2. At classification level 2, such an improvement is statistically significant, with a
McNemar p-value of 0.02178 (with a significance level of 0.05). This addition mostly improves
the classification of asphalt surfaces increasing its specific K by þ0.13. Interestingly, buildings
have a K of 0.97 whether or not ancillary vector data are used. Confusion exists between medium
and high vegetation (omission error of 27%) and between deciduous and coniferous vegetation
(omission error of 23%).

The addition of ancillary vector data improves the visual quality of the LC map with an
enhanced and smoother delineation of objects [Fig. 5(c)]. However, both maps provide valuable
information. The LC map produced without ancillary vector data [Fig. 5(b)] is a direct source of
information on tree canopy cover. This information may be useful for urban green monitoring.
The map produced with ancillary vector data [Fig. 5(c)] keeps information about ground features
that are occluded by trees or buildings in the EO data. Therefore, it appears more suitable for GIS
application as it eases the link with existing geodatabases. However, constraining the classifi-
cation using slightly outdated data generates some loss of information. For example, the newly
built roundabout is not classified in Fig. 5(c) but well mapped in Fig. 5(b). Both information
produced with and without the ancillary data could be computed for inclusion in a database.

Semantically, the OBIA-rule-based approach allows the automatic classification of the shad-
ows using contextual rules. As an example, the shadows detected alongside the buildings were
reclassified to the ground-level class (asphalt surface, bare soil, low vegetation, or water) with
which they shared the longest border. The approach that does not make use of ancillary vector
data does not allow classifying rail network, as rails consist of a complex mix of asphalt surfaces
and bare soils.

The visual and statistical analyses of results show a number of mistakes that are not accept-
able in an operational context, such as confusion between bridges and buildings or turbulent
water surfaces misclassified as asphalt surfaces. Some postprocessing operations will be required
to improve the results.

3.3 Comparison of OBIA Approaches on Zone A

Figure 6 compares the results of both methods with similar input data, i.e., the OBIA-automated
approach using the AOP VNIR, NDVI, and LiDAR nDSM data and the OBIA-rule-based
approach running without the ancillary vector data. Table 4 details the corresponding confusion
matrices. All validation points falling into the shadows were excluded from the OBIA-automated
approach accuracy assessment for comparison purposes.

Fig. 5 Comparison of the two OBIA-rule-based approaches: (a) AOP 2012, (b) OBIA-rule-based
approach running on EO data only (without ancillary vector data), and (c) OBIA-rule-based
approach running on EO and ancillary vector data. Legend: BU, buildings; AS, asphalt surfaces;
BS, bare soils; LV, low vegetation; MV, medium vegetation; HVD, high vegetation deciduous; and
HVC, high vegetation coniferous.
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Visually, the current implementation of the OBIA-rule-based approach provides better results
than the OBIA-automated one (Fig. 6). The former already includes shadow reclassification and
avoids the overrepresentation of water bodies. It also offers an automated solution for the
removal of many small misclassified objects due to contextual rules; these include misclassified
urban objects or shadows interpreted as conifers in deciduous forests. Such improvements could
be included in the future development of the OBIA-automated approach through postprocessing
or additional mapping steps.

Statistically, these visual improvements are reflected by overall higher OA and K index val-
ues (Table 4). McNemar’s test shows that they can be considered significant (p-value ¼ 0.0028).

The technical advantages and disadvantages of each method will be developed in Sec. 4.
However, processing times have been calculated and can be synthetized as follows: the OBIA-
automated approach shows an average processing time of 5-min per km2 running at 0.5-m spatial
resolution (Pléiades) and of 20- to 30-min per km2 running at 0.25-m resolution (AOP) using
a personal computer. The OBIA-rule-based approach shows an average processing time below
2 min per km2 using ancillary vector data and below 1-min per km2 running without vector data
using a personal computer.

3.4 Application to Zone B

According to Tables 2 and 3, the two best-performing tests in each approach at level 2 are the
OBIA-automated test using AOP, NDVI, LiDAR nDSM, and ancillary vector data (see Table 2,
test H) and the OBIA-rule-based approach relying on the ancillary vector data (see Table 3,
test ii). In this section, these two methods have been applied to the 261-km2 area of Liège.
Table 5 details the accuracy assessment for these two tests.

The analysis of Table 5 shows that (1) OA and K values are 4% to 5% higher for the OBIA-
automated carried out on zone B rather than on the smaller zone A (see Table 2, test H and
Table 5) and (2) OA and K for the OBIA-rule-based approach at level 1 are lower than
those obtained for zone A (Table 3, test ii and Table 5). The gain in (1) probably results
from the new distribution of training and validation samples. This new distribution improves
their representativeness. The decrease in accuracy in (2) is explained by the definition of thresh-
olds. Indeed, the threshold values have been fine-tuned for zone A, and no updating was per-
formed for zone B. The latter covers a larger diversity of LC surfaces that impacts threshold
tuning. The differences in results between the two approaches at level 1 and 2 are not statistically
significant.

As an illustration, Fig. 7 presents the LC map resulting from the OBIA-rule-based approach
with ancillary vector data. Three typical urban neighborhoods of Liège are shown with (a) new

Fig. 6 Comparison of the LC for both OBIA approaches: (a) AOP 2012, (b) OBIA-automated using
AOP VNIR + NDVI and LiDAR nDSM (Table 2, test E, SWV vote), and (c) OBIA-rule-based
approach running with the EO data without ancillary vector data (Table 3, test i). Legend: BU,
buildings; AS, asphalt surfaces; BS, bare soils; LV, low vegetation; MV, medium vegetation;
HVD, high vegetation deciduous; HVC, high vegetation coniferous; WB, water bodies; and SH,
shadows.
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isolated or adjacent houses, (b) urban redevelopment in front of the Guillemin rail station in the
center of Liège, and (c) industrial and commercial areas expansion in the Sart-Tilman area. The
surface statistics per class for the Liège area are presented on the same figure. Impervious sur-
faces cover 29.3% of the area. At level 2, the most represented LC is low vegetation with 28.8%.

4 Discussion

The discussion is structured according to the three subtasks listed in the introduction:

Table 4 Detailed accuracy assessment for both OBIA approaches: (a) OBIA-automated with
AOP VNIR + NDVI and nDSM LiDAR (Table 2, test E, SWV vote) and (b) OBIA-rule-based
using EO data without ancillary vector data (Table 3, test i): confusion matrices, user’s, producer’s
OA, and K at classification level 2.

Reference data

Classified data BU AS LV MV HVD HVC BS WB User’s

(a) OBIA-automated using AOP (VNIR + NDVI) and LiDAR nDSM (Table 2, test E, SWV vote)

Buildings 33 3 — — — — — — 92%

Asphalt surfaces 2 47 — — — — 7 — 84%

Low vegetation — — 39 2 — — 4 — 87%

Medium vegetation — — 6 37 1 — 1 — 80%

High vegetation deciduous — — 1 9 26 4 — — 65%

High vegetation coniferous — — — — 8 39 — — 83%

Bare soils 1 9 — — — — 30 — 75%

Water bodies — — — — — — — 34 100%

Producer’s 92% 80% 85% 77% 74% 91% 71% 100% 285

OA 83% — — — — — — — —

K 81% — — — — — — — —

(b) OBIA-rule-based using EO data without ancillary vector data (Table 3, test i)

Buildings 33 1 — — — — — — 97%

Asphalt surfaces 3 54 — — — — 5 6 79%

Low vegetation — — 46 — — — 4 — 90%

Medium vegetation — — — 36 — — — — 100%

High vegetation deciduous — — — 10 35 10 — — 64%

High vegetation coniferous — — — 2 1 33 — — 92%

Bare soils 1 5 — — — — 33 — 85%

Water bodies — — — — — — — 31 100%

Producer’s 89% 90% 100% 75% 97% 77% 79% 84% 301

OA 86% — — — — — — — —

K 84% — — — — — — — —
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1. We assessed two OBIA classification methods for producing a fine-scale urban LC map.
We will then qualify their performances with regards to the literature.

2. We tested the contribution of all sources: two multispectral EO data, various indices, two
nDSM, and ancillary vector data. The added value of each will be further discussed.

3. We tested the methods on a 25-km2 subset (zone A) and applied them to a 10 times wider
area that includes the city of Liège (261 km2, zone B). The application to the 674 times

Table 5 Accuracy assessment for the two tests for the Liège area: (a) the OBIA-automated
approach using AOP + NDVI + LiDAR nDSM + ancillary vector data and (b) the OBIA-rule-
based approach relying on ancillary vector data: K and OA at classification level 1 and 2.

a OBIA-automated with AOP + NDVI + LIDAR nDSM +
ancillary vector data—SWV vote

L1 K 0.8983

OA 0.9268

L2 K 0.8633

OA 0.8790

b OBIA-rule-based (EO and ancillary vector data) L1 K 0.9027

OA 0.9357

L2 K 0.8768

OA 0.8929

Fig. 7 LC map for the Liège area using the OBIA-rule-based approach with ancillary vector data
(1/125,000), surface statistics, and zooms: (a) on a new urban neighborhood in Grâce-Hollogne,
(b) on the Guillemin rail station in the center of Liège, and (c) on the extension of the Sart-Tilman
industrial and commercial area (1/10,000). Legend: BU, buildings, New BU, new buildings; AS,
asphalt surfaces; RA, rail network; LV, low vegetation; MV, medium vegetation; HVD, high veg-
etation deciduous; HVC, high vegetation coniferous; BS, bare soils; and WB, water bodies.
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larger Walloon region (16;844 km2) raises new challenges. Various aspects need to be
taken into account, such as data volume, data availability, acquisition costs, or processing
capabilities.

4.1 Performance of the OBIA Approaches

We compared two very distinct OBIA solutions for urban LC mapping. First, we developed an
OBIA-automated approach that uses algorithms to semiautomatically segment and then classify
EO data according to training samples in two separate steps. The manual intervention is limited
to choosing segmentation parameters according to i.segment.uspo results and to the development
of the sample sets. In agreement with Ref. 58, i.segment.uspo facilitates the tuning of i.segment.
The generated objects are of good visual quality. The image is slightly oversegmented, which is
usually advised.5 Building the training samples is the more time-consuming process. It requires
∼6 h to generate and to validate the 549 training points. However, sample updating to match
the Pléiades data took <2 h.

Four algorithms classified the segmented objects. We reported that SVMRadial and RF out-
perform significantly the k-NN and Rpart classifiers in terms of classification accuracy. This
confirms the suitability of these widely used algorithms for remote sensing applications.26,27

We also found that RF outperforms SVMRadial when multisource data are used in the classi-
fication. This is in agreement with the concluding remark in Ref. 26. However, no general con-
clusion can be drawn here as we only tested the radial SVM kernel. Zhang et al.59 showed that
other SVM kernels, such as RBF and polynomial, could provide higher accuracies than RF.
Li et al.60 showed that the performance of the classifiers is strongly related to the input datasets.
In Ref. 59, k-NN was, for example, reported as being as powerful as SVM or RF.

The implemented classification strategy allows the use of voting schemes. In agreement
with Ref. 54, we demonstrated the added value of such voting schemes with the SWV vote.
This vote showed a more robust performance in general than individual classifiers. Future
work could be carried out on the v.class.mIR GRASS GIS add-on to include other classifiers,
most notably other SVM kernels,61 and other voting schemes/combination strategies/classifier
ensembles.28,54,62

Ancillary vector data integration is easy in the OBIA-automated approach, but more develop-
ments are needed to match the results achieved in the OBIA-rule-based one. These include the
use of contextual rules, such as the postprocessing or the updating of the ancillary vector data.
Flexibility regarding the input datasets is an asset of the OBIA-automated approach.

Second, our OBIA-rule-based approach classifies EO data according to a set of expert-
defined rules. These rules efficiently use information derived from EO, ancillary vector, con-
textual, and geometrical characteristics of objects to iteratively classify and reclassify objects
until their final class attribution. We confirm the findings by Chen et al.17 and Dinis et al.21

regarding the mapping possibilities offered using NDWI, bNDVI, and SSI. These spectral indi-
ces prove efficient for distinguishing water bodies from shadows, asphalt surfaces from bare
soils, and deciduous from coniferous forests. However, confusions remain between water bodies
and some shadows in dense urban areas. Specific methods, such as presented by Yuan and
Sarma,63 should be explored to avoid such confusions.

We also confirm the benefits of using spectral and height information for urban LC
mapping.15 Removing either the spectral or height above ground information will strongly
impact the mapping capabilities, such as the number of classes mapped or the resulting clas-
sification accuracies. As already demonstrated in Ref. 23, ancillary vector data integration is
efficient. The OBIA-rule-based approach also allows an easy update of these databases.

Regarding the transferability of the OBIA-rule-based approach, manual intervention is lim-
ited to visual thresholds definition on the four spectral indices used in the ruleset. No training
samples are required. Ruleset transferability to other scenes, other periods, or other EO data is
not straightforward. Spectral indices behavior and thresholds definition may change between EO
data sources and acquisitions. It could indeed be influenced by changes in the period of acquis-
ition that impact, for example, the greenness of vegetation, the shadow contrast level, or the
water reflectance values. Data availability could also change. In our case study, if the nDSM
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information was not available, the development of a completely new ruleset, not relying on
height thresholds, would be required. However, we developed this ruleset keeping these limi-
tations in mind. We focused on EO data that are part of Wallonia’s EO acquisition framework
that include yearly AOP acquisition and LiDAR data acquisition every 5 years. In the end, our
ruleset appears less sophisticated than the ones proposed by O’Neil-Dunne et al.23 and Van De
Kerchove et al.56 We strongly believe that this simplification benefits the transferability of the
method.

We showed that both OBIA methodologies have pros and cons. Regarding only accuracies
and visual quality of the map, it appears to be difficult to recommend one specific approach.
However, these are only two preliminary implementations that could be further improved.
Additionally, a potential solution is to combine both approaches with first a classification of
the LC using trained machine-learning classifiers and then postprocessing using expert-defined
rules. This option will be tested in future research.

One of our aims is to provide recommendations toward a suitable method for regional appli-
cation. This implies analyzing parameters other than just accuracy and map quality. This will be
discussed in Sec. 4.3.

4.2 Added Value of Input Data

We tested the added value of input data in the OBIA-automated approach by comparing the
results using VNIR data and by adding (1) NDVI, (2) nDSM, (3) by comparing the AOP
and the Pléiades data, and (4) by integrating ancillary vector data.

Initially, we intended to use the NDVI only in the classification. However, the first tests
showed that not including the NDVI in the segmentation process generates loss of information
for vegetated features. It was then decided to include the NDVI in the segmentation. However,
despite a segmentation that looks better according to visual assessment, NDVI integration did not
significantly improve the accuracy of the final LC map.

Despite the very low density of points (1 to 3 pts∕m2) used to generate the LiDAR nDSM, its
addition significantly improved the accuracies of the LC map, which is in agreement with
Ref. 15. A new acquisition of LiDAR data is currently under negotiation by Walloon authorities.
First, elements indicate a planned 7- to 8-pts∕m2 resolution. However, the Walloon EO data
acquisition framework will not include yearly coverage of LiDAR data. An acquisition for
every 5 years is being discussed. Therefore, as an alternative, we showed that the nDSM gen-
erated from AOP provides equivalent results to those obtained with the low-density LiDAR.
Producing yearly LC maps benefiting from the added value brought about by the nDSM is
thus possible in Wallonia.

We demonstrated that the 0.25-m AOP provides higher accuracies than the 0.5-m Pléiades.
The spatial and spectral resolutions and the quality of the data in link with the characteristics of
urban features are two parameters that can explain this result. Jensen and Cowen64 suggested that
the minimum spatial resolution requirement should be one-half the diameter of the smallest
object of interest. According to that criterion and to the 15-m2 MMU mapping goal, both
EO data seem suitable. However, both of them use pan-sharpening to derive fine-scale XS
data. Pan-sharpening often results in spectral distortions. Spectral quality of lower resolution
XS data is thus not fully preserved in the fused data. Currently, no satellite sensor can provide
a native spatial resolution inferior to 0.5 to 1 m for XS data. Worldview-3 (and soon 4)
offers 0.31-m PAN and 1.24-m XS bands.65 The lower positional accuracy of Pléiades data
is also a source of uncertainty, especially when used in a multisource approach.14 The improve-
ment of Pléiades’ positional accuracy is currently under discussion with the Pléiades data
provider.

We finally assessed the contribution of ancillary vector data integration to the classification.
These datasets mostly contribute to a better delineation of objects. A dedicated object-based
accuracy assessment could be performed in future research to better assess the quality of the
generated objects for cartographic purposes. We also stated the common interest of maps
obtained with or without the addition of ancillary vector data for dedicated applications, such
as urban green monitoring.
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4.3 Application to the Walloon Region

Operational mapping of the LC at a regional scale, such as Wallonia (16; 844 km2), generates
method- and data-related challenges.

Regarding the methods, automation seems mandatory. Each approach, including a manual
step, limits the automation, i.e., thresholding in the OBIA-rule-based one and training in the
OBIA-automated approach. On the one hand, thresholding requires similar acquisition dates
between the images acquired over the region, which is not realistic in Wallonia. Indeed EO
data acquisitions have always been spread across time. For instance, the spectral contrast visible
at the bottom of Fig. 1 is due to distinct acquisition periods and thus differing vegetation and
illumination status. Thresholds could be defined by processing the data separately according to
acquisition date or vegetation status. On the other hand, training samples need to be represen-
tative of the LC classes for the whole region and for each acquisition. New solutions for auto-
mated training, such as active learning methods,66 or the use of open access training databases/
frameworks, such as OpenStreetMap, Land Use/Cover Area frame Statistical Survey, or
GeoWiki, should be envisaged.

Active learning66,67 allows the user to begin with only a few training samples. The algorithm
then identifies those unlabeled objects that would most improve the classification and asks the
user to label them. This leads to higher classification accuracies with lower numbers of training
samples. Very recently, a module implementing the core of active learning was uploaded to the
GRASS add-ons repository.68 We will test the integration of this technique into the processing
chain in future works.

Classifying the LC on a large area with submeter multisensor and multisource data poses
the challenge of the volume of data to be processed.23 The AOP data volume for the whole
Walloon region is more than 1.5 TB. The Pléiades coverage is lighter than the aerial one
with around 60 GB of data. The LiDAR nDSM is more than 50 GB. Enhanced storage capa-
bilities, as well as tiling and automation of the mapping scheme using parallel processing, are
required for improved efficiency.23 Tiling allows limiting temporary memory requirements.
Tools for tiling are already available using eCognition Server or GRASS GIS. However, for
increasing time efficiency, an implementation of parallel processing is envisaged in future
research. Currently, the OBIA-rule-based approach maps the LC at the rate of 2 min ∕km2

on our personal computer. Such a rate means that it would take 23 days to cover the whole
of Wallonia, which is problematic. Given the 20- to 30-min ∕km2 rate of the OBIA-automated
approach, it would take a year to map the LC of Wallonia using EO data at a spatial resolution
of 0.25 m.

Several elements of the toolchain already use parallel processing, e.g., the automatic seg-
mentation parameter optimization in i.segment.uspo and the cross validation in v.class.mIR,
but the greatest bottleneck is the segmentation step. In future developments, we will, therefore,
test the possibility of segmenting tiles in parallel and then combining the resulting objects before
classification. An important issue in this approach, however, is the possible border effect. Recent
works have attempted to overcome it using irregular cutlines.69,70 In future work, we will test
these approaches and assess the overall balance of gain of speed versus possible loss of accuracy
at the tile borders.

Another option would be to lower the spatial resolution. We carried out tests by resampling
the AOP data from 0.25 to 0.5, 1, and 2 m (see Sec. 2.3.5 for computer’s specs). The results show
that the processing times for applying the processing chain to Wallonia would take 34 days at
0.5-m spatial resolution compared with 360 days at 0.25 m. At 1 and 2 m, the processing time
would be further reduced to 11 and 2 days, respectively. Resampling the data to a lower spatial
resolution is, therefore, an alternative solution if parallel processing implementation fails to
reduce processing times at 0.25 m. The related loss in mapping accuracies and visual quality
of the map using lower spatial resolution EO data will then have to be investigated.

Regarding the recommendations for the mapping environment, the open-source solutions
have an obvious cost advantage over proprietary software, such as eCognition. The open-source
environment also allows the community to propose frequent amendments to the existing codes
and even to develop new modules. Proprietary software falls short with respect to research needs
in terms of freedoms of use, modification, and distribution of the coded algorithms.71 However,
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they often offer proven processing capabilities and, currently, their use is more common within
the administration than that of the open-source software. The preference toward one or the other
mapping environment will be discussed with the public authorities.

Recommending either AOP or submeter satellite data for mapping the LC is not easy. Data
availability, property rights, and acquisition costs should be taken into account in addition to
mapping quality and processing capabilities associated with the volume of data to be processed.

First, the Walloon authorities have agreed on an annual acquisition of fully processed AOP.
This annual acquisition framework is restricted by high sensitivity of optical airborne and space-
borne sensors to weather conditions. As an example, the 2016 AOP coverage of Wallonia was
supposed to be fully acquired during spring. This was not achieved until October due to bad
weather conditions. The same argument is applicable to satellite data. As an example, the prob-
ability of clear sky has been estimated over the Netherlands, which has a similar climate to
Belgium, to only 20%.72 As a consequence, data acquisitions to cover large-scale territories
are spread across multiple weeks, months, or years with changing LC, such as varying vegetation
and illumination conditions.

Second, property rights of satellite images are always owned by the provider while they are
fully transferred to the end-user for aerial images.

Third, budgetary constraints, although not the most important, have to be accounted by the
administrations for planning their EO data acquisition framework. The current yearly coverage
of AOP costs about 12 € per km2, which represents around 200,000 € to cover Wallonia. The cost
of the LiDAR acquisition is similar. Acquisition prices for very high-resolution satellite imagery
are not publicly available. However, the usual prices range from 3 to 5 to 30 € per km2.
Therefore, submeter satellite imagery is not always competitive price-wise. Furthermore, as
our acquisition of Pléiades data demonstrated, the framework to obtain preprocessed satellite
data is not straightforward and is more costly. However, the waiting time to get access to
the data is shorter for satellite imagery as the aerial coverage is usually made available around
6 months to 1 year after the data acquisition in Wallonia.

Future work includes discussing the present results with the Walloon authorities to identify
the suitable approach and then further developing the selected classification approach to guar-
antee its operational functionality and applicability to Wallonia. Also, the present map will be
refined to comply with the INSPIRE Pure Land-Cover Component specifications.73 Finally, the
LC map will be combined with ancillary socio-economic and thematic geodata to produce an LU
map. Both maps will be integrated in a single geodatabase and presented to the authorities. This
will help Wallonia to comply with the INSPIRE directive.

5 Conclusions

This research assessed the potential of two object-based approaches for operational regional and
fine-scale urban LC mapping. On the one hand, an open-source framework was intensively
tested. The flexibility in terms of developments and in terms of multisource data integration
is a strong advantage of this approach and offers great perspectives for its future improvements.
On the other hand, a rule-based classification approach was developed in eCognition. The expert
knowledge required for defining hierarchical classification rules combined with the straightfor-
ward ancillary vector data integration proved efficient for mapping the urban LC using remotely
sensed data and the derived indices. We showed that both approaches have advantages and
disadvantages. A viable solution could consist of using them successively: mapping LC using
machine-learning classifiers and performing postprocessing using expert-defined rules in an
open-source framework. This approach will be tested in future research. Looking for an opera-
tional framework that is easily reproducible in time, the challenge still resides in limiting the
processing time and improving the automation. We then highlighted the needs of parallel
processing for dealing with submeter resolution EO data and the automation of the sampling
scheme.

Another purpose of this paper was to identify the best set of existing geodata to map LC. Our
results show that combining spectral and tridimensional information significantly improves the
classification results while integrating ancillary vector data contributes to a better delineation of
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LC features. Discussing the results, we also show the comparative advantage of aerial images
versus submeter satellite imagery not only in terms of classification accuracy but also in terms of
costs, preprocessing, data availability, and property rights. Tridimensional information can be
extracted either from the processing of AOP or from LiDAR points clouds. As the annual or biannual
acquisition of AOP is more andmore common in European regions, our approach could be useful for
all regions that are looking for up-to-date LC data to provide an updated LC map to INSPIRE.

The use of submeter EO and ancillary vector data for annual fine-scale urban LCmapping is a
viable solution. When the numerous challenges related to the regional application of the
approaches are met, the new map will provide a holistic vision of the fast-changing urban envi-
ronment, which will contribute to sustainable spatial and environmental management, at regional
and city scales.
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