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Abstract. A segment of the field of precision agriculture is being developed to accurately and
quickly map the location of herbicide-resistant and herbicide-susceptible weeds using advanced
optics and computer algorithms. In our previous paper, we classified herbicide-susceptible and
herbicide-resistant kochia [Bassia scoparia (L.) Schrad.] using ground-based hyperspectral im-
aging and a support vector machine learning algorithm, achieving classification accuracies of up
to 80%. In our current work, we imaged kochia along with marestail (also called horseweed)
[Conyza canadensis (L.) Cronquist] and common lambsquarters (Chenopodium album L.) and
the crops barley, corn, dry pea, garbanzo, lentils, pinto bean, safflower, and sugar beet, all of
which were grown at the Southern Agricultural Research Center in Huntley, Montana. These
plants were imaged using both ground-based and drone-based hyperspectral imagers and were
classified using a neural network machine learning algorithm. Depending on what plants were
imaged, the age of the plants, and lighting conditions, the classification accuracies ranged from
77% to 99% for spectra acquired on our ground-based imaging platform and from 25% to 79%
on our drone-based platform. These accuracies were generally highest when imaging younger
plants. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.13.044516]
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1 Introduction

Weed control is a major problem in worldwide agriculture, costing an estimated $25.2 billion a
year to control.1 The emergence of herbicide-resistant weeds has compounded this problem,
threatening to reduce yields of certain crops by up to 93%.2–7 In the United States and Canada
alone, the combined potential losses from uncontrolled weeds in just corn and soybean would
total $43 billion annually,8 and production of both crops would be cut in half. Current methods of
identifying herbicide resistance require weeks or months,9 longer than a complete growing cycle
in many cases. To achieve more real-time classification and detection capabilities, we have been
developing remote sensing methods based on hyperspectral imaging and machine learning to
classify different biotypes of herbicide-resistant weeds.

Our previous work10 classified between mature herbicide-susceptible and herbicide-resistant
biotypes of the weed kochia, which has been demonstrated to be resistant to both glyphosate11,12

(commonly marketed as Roundup®) and dicamba (the active ingredient in the herbicides
Banvel® and Clarity®). There we used ground-based hyperspectral imaging and a support vector
machine (SVM) learning algorithm to correctly identify herbicide-susceptible kochia, glypho-
sate-resistant kochia, and dicamba-resistant kochia with 80%, 76%, and 67% classification accu-
racies, respectively.

The current paper builds on that work, which used our hyperspectral imager to collect
ground-based imagery in a greenhouse and in the field, and used the same imager to collect
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field data while mounted on a drone. Furthermore, the newer data set included a larger set of
crops and weed species and included multiple levels and types of resistance. This includes im-
aging herbicide-susceptible and -resistant kochia biotypes at different growth stages to character-
ize classification accuracies as plants grow. Most importantly, the results in this paper were
obtained using neural networks instead of SVM algorithms, which improved the classification
accuracies from on the order of 80% to up to 99%.

Hyperspectral imaging produces a two-dimensional spatial map with an additional dimen-
sion of spectral information, allowing researchers to collect reflectance profiles and predict her-
bicide resistance in a variety of weeds and situations. This is a site-specific weed control
technique13 designed not only to locate weeds among crop fields but also to determine the appro-
piate herbicide(s) to use on each individual plant prior to any use of herbicides. The process
involves a detailed spectral analysis of different weeds (e.g., kochia, marestail, and common
lambsquarters) in different crops (e.g., wheat, barley, and sugar beet), aimed at differentiating
between herbicide-resistant and -susceptible biotypes of the weed. Other work in this field
includes distinguishing between susceptible- and glyphosate-resistant Palmer amaranth bio-
types,14 differentiating between glyphosate-susceptible and glyphosate-resistant Italian
ryegrass,15 and detecting the injury on crops as a result of dicamba and glyphosate.16

The paper follows this format: Sec. 2 presents the methodology used to grow the plants, the
species and biotypes imaged, and the imaging and calibration process; Sec. 3 details the machine
learning algorithm used to discriminate between plant species and biotypes; Sec. 4 discusses the
classification accuracies on different combinations of crops and weeds; Sec. 5 offers concluding
remarks and proposals for further work.

2 Physical Experiments and Data Collection

Data were collected at the Montana State University Southern Agricultural Research Center
(SARC) in Huntley, Montana, from June 2017 to August 2017 and in August 2018. A total
of nine different crops (barley, corn, dry pea, garbanzo, lentils, pinto, safflower, sugar beet, and
wheat) and three different weeds (kochia, marestail, and common lambsquarters) were imaged,
producing a total of 255 hyperspectral images. Vegetation spectra were extracted from these
using a normalized vegetation index (NDVI) filter that identified plants and had the added benefit
of excluding pixels from unhealthy parts of a given leaf as well as some pixels in shadow, as
shown in Fig. 1. Further shadowed pixels were removed by keeping only those spectra with a
summed reflectance equal to or higher than the sum of the median spectral reflectance in
the image.

This paper draws from a subset of these images and spectra, focusing on the crop sugar beet
and herbicide-susceptible and -resistant biotypes of kochia, marestail and common lambsquar-
ters. In total, 19,188,642 spectra were extracted from 67 hyperspectral images and used as part of
the process to generate and test the neural networks described in Sec. 3. The number and type of
spectra for each weed species and biotype are detailed in Tables 1 and 2.

Fig. 1 An RGB image of herbicide-susceptible kochia leaves made from extracting the 460, 550,
and 642 nm layers from (a) a hyperspectral image and (b) the pixels that only contain healthy
vegetation found using our NDVI filter.
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All kochia, marestail, and common lambsquarters plants used in the experiments were grown
using the method detailed in our earlier paper.10 During the 2017 and 2018 data collection in the
field, we imaged potted kochia plants (at identical growth stages) among sugar beet at the full
canopy growth stage, this time in direct sunlight. Hyperspectral images were collected individu-
ally for crops, and herbicide-resistant versus herbicide-susceptible kochia, as well as for a com-
bination of various crops and different kochia biotypes. We also imaged greenhouse-grown
barley, corn, dry pea, garbanzo, lentils, pinto bean, safflower, and wheat, but their spectra are
not analyzed in this study.

For our experiments, we used a Pika L imaging system from Bozeman-based Resonon, Inc.
with a Schneider Xenoplan f∕1.4, 17-mm-focal-length lens. This hyperspectral imager had 300
spectral channels spread across the visible and near-infrared spectrum, from 387.12 to 1023.5 nm
in increments averaging 2.13 nm. Each raster scan had a vertical height of 900 pixels and a
horizontal width set by the scan parameters, with a 2500-pixel maximum under most conditions.
The lens had an angular field of view of 0.88 mrad per pixel, giving us 0.79 rad (45.4 deg) by
2.20 rad (126 deg) angular field of view.

The imager provided us with a series of images with two spatial dimensions and one spectral
dimension. Each spectrum was then extracted from its corresponding pixel in the spatial plane.
For our outdoor experiments, the data collected were taken during moments when the wind was
calm to minimize both spatial and spectral blurring (both occur as each frame has one spatial and
one spectral dimension). It should be noted that while this study could be done with a single point

Table 2 Number of spectra collected from kochia and sugar beet in outdoor conditions. The
images taken in 2017 were taken under direct solar illumination using the Pika L imager in its
tripod-mounted configuration. The images taken in 2018 were taken under direct solar illumination
using the Pika L imager in its drone-mounted configuration.

Plant

Experiment date

August 4, 2017 August 9, 2018 August 10, 2018

Sugar beet 129,881 545,813 752,774

Kochia (SUS) 13,796 6952 31,684

Kochia (GR) 45,998 9368 11,996

Kochia (DR) 31,127 9039 13,835

Table 1 Number of spectra collected and date they were collected from each weed species and
biotype grown and imaged in greenhouse conditions, including susceptible (SUS), glyphosate-
resistant (GR), and dicamba-resistant (DR) weed biotypes. Each image was taken under diffuse
solar illumination using the Pika L imager in its tripod-mounted configuration.

Weed

Experiment date

June 23, 2017 June 28, 2017 June 30, 2017 July 28, 2017 August 3, 2017

Kochia (SUS) 2,840,882 182,578 n/a 277,856 43,269

Kochia (GR) 583,484 1,035,149 n/a 1,663,241 294,086

Kochia (DR) 1,583,024 555,565 228,602 1,371,050 332,874

Marestail (SUS) 185,226 n/a n/a n/a n/a

Marestail (GR) n/a n/a 596,261 n/a n/a

Common lambsquarters (SUS) n/a n/a n/a n/a 401,195

Common lambsquarters (GR) n/a n/a n/a 3,398,223 2,013,450
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spectrometer to obtain data, a hyperspectral imager allows us to collect what a spectrometer
would see en masse, quickly and relatively easily.

For any ground-based image of an entire kochia plant, the camera was placed 2.25 m away
from the base of the weeds (a pixel size of 1.98 × 1.98 mm), a distance similar to having the
camera look at weeds if mounted on the boom of a tractor-mounted herbicide sprayer. The crops
in those images were placed at most 0.25 m from the weeds so both the crops and weeds could be
contained within the same image. This resulted in the camera being between 2.0 and 2.5 m from
the imaged crops. For images of individual leaves taken in the greenhouse, we placed the imager
10 cm away (a pixel size of 0.088 × 0.088 mm) to capture more spatial features and more spectra
of each type of plant. Examples of these setups are shown in Fig. 2.

The drone-based images were all taken while the Pika L was mounted on a DJI Matrice 600
Pro drone, flying 9.7 m above the ground (∼9.0 m from the canopy of the crops and weeds) at a
velocity of 1 m∕s. The camera was pointed with a DJI Ronin-MX gimbal, and the imager was
activated using a Resonon flight computer connected to a GPS receiver using a target map gen-
erated by Google Earth. The drone was flown along a path that included crops, weeds, and the
spectralon panel, with the path designated by the DJI Ground Station Pro application. Each
image generated using this method was used independently and not stitched together to make
a single hyperspectral image. The setup in flight and a resultant image are shown in Fig. 3.

3 Machine Learning Experiments

3.1 Image Processing

A Spectralon panel was used to calibrate the digital numbers in every image to spectral reflec-
tance (the percentage of light that is reflected from the object at a given wavelength). During each
of the observations using the Pika L, we began the imaging sequence by recording dark images
of a tightly sealed lens cap and placed a portion of the spectralon panel in the field of view
when we recorded a vegetation image. This allowed us to subtract the electronic sensor noise

Fig. 2 A Resonon Pika L hyperspectral imager mounted on a tripod imaging weeds at (a) the
SARC greenhouse and (b) a similar setup in the field.

Fig. 3 A Resonon Pika L hyperspectral imager mounted on the DJI Matrice 600 Pro while the
drone is (a) in flight taking images of (b) a sugar beet field. The red ellipse notes the position
of herbicide-susceptible, glyphosate-resistant, and dicamba-resistant potted kochia next to a cal-
ibration panel.
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(dark current) from the raw image and then divide out the spectral variation of the light source
using an algorithm we developed. Further work is ongoing to make an algorithm independent of
the calibration panel.

Figure 4 is a sampling of the calibrated data for every crop and weed species (susceptible
biotypes only) imaged. Each spectrum is an algebraic mean and standard deviation derived from
4000 randomly selected individual spectra of the noted species. The plot shows the differences
and similarities in the spectral reflectance for crop and weed species, which suggests that there is
information that can be useful for classifying plants in images using their spectra. At the same
time, the overlapping standard deviations suggested that machine learning algorithms and not
simple spectral comparison are required to accurately discriminate them from one another.
Unless otherwise stated, every spectrum in this and all subsequent plots will show the means
derived from 4000 randomly chosen spectra of the noted plant biotypes imaged on the day speci-
fied. In addition, plots of spectra will no longer have standard deviations plotted, in order to more
clearly show the mean spectra.

3.2 Neural Networks

As noted in Sec. 1, our previous work applied an SVM to this problem, and the results were
promising.10 Even so, those results suggested that there may be room for improvement, thus
motivating the current work applying a feedforward neural network. As will be demonstrated
later, the results from the neural network yielded substantial improvement over the SVM. In this
section, we provide a brief introduction to feedforward networks with a focus on our specific
implementation.

The main component in a feedforward neural network is the neuron, also sometimes referred
to as a node. A neuron can be described as a weighted combination of inputs passed through an
“activation function,”

EQ-TARGET;temp:intralink-;sec3.2;116;175y ¼ f

�
w0 þ

Xm
i¼1

wixi

�
;

where xi is the i’th input to the node, wi is the weight on that input, and fð·Þ is the activation
function. Here, w0 corresponds to a special input known as a “bias” in which the input value is
clamped to þ1. The weight that is learned on this bias input can be interpreted as a “threshold”
that drives the activation of the node. It can also be interpreted as an intercept term for the cor-
responding linear function.

Fig. 4 Means and standard deviations of reflectance spectra for sugar beet, kochia, marestail, and
common lambsquarters (herbicide-susceptible biotypes only). The faded vertical dashed line at
700 nm denotes the divide between visible (400 to 700 nm) and near-infrared (700 to 1000 nm)
wavelengths.
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A neural network connects these nodes together in the form of a directed acyclic graph. In the
specific context of a feedforward neural network, the orientation of the directed edges in this
graph proceeds from input forwards toward the output. No lateral connections within a layer are
permitted. Furthermore, it is customary (though not required) that adjacent layers be fully con-
nected, meaning every node in one layer connects to every node in the next layer. It is also
customary that edges not skip layers, but layer skipping is permitted and is sometimes beneficial.
For our purposes, we used fully connected layers with no layer skipping. An example of a feed-
forward network with two hidden layers is shown in Fig. 5.

One of the primary advantages to using feedforward neural networks is that they are capable
of learning arbitrary nonlinear functions. Indeed, it has been proven that a feedforward neural
network with at least two hidden layers corresponds to what is called a “universal approximator,”
meaning that the network can approximate any function (whether continuous or not) to an arbi-
trary level of accuracy.17 Key to enabling the network to model nonlinear functions is to apply
nonlinear activation functions on the outputs of the nodes. When performing regression, how-
ever, it is customary for the output node to apply a linear (identity) activation function
where fðxÞ ¼ x.

The most common activation functions in feedforward networks are the logistic function

EQ-TARGET;temp:intralink-;sec3.2;116;348fðxÞ ¼ 1

1þ ex
;

the hyperbolic tangent

EQ-TARGET;temp:intralink-;sec3.2;116;287fðxÞ ¼ tanh x;

and the rectified linear unit (ReLU), EQ-TARGET;temp:intralink-;sec3.2;116;257fðxÞ ¼ maxf0; xg:

As discussed below, the network is trained using a gradient-based process, so it is necessary
for the activation functions to be differentiable. The ReLU unit has a discontinuity at x ¼ 0, so it
is customary to replace the ReLU activation with an approximation—the softplus function:

EQ-TARGET;temp:intralink-;sec3.2;116;210fðxÞ ¼ logð1þ exÞ:
The ReLU and softplus functions are widely used in so-called deep neural networks because they
mitigate the problems of so-called vanishing and exploding gradients.18

As mentioned, the traditional way to train a feedforward neural network is to apply a gradient-
based method for updating the weights in the network. The most commonly applied method is
called backpropagation, where weights are updated from the output layer back toward the input
layer by following the gradient of the error function of the network.19 More specifically, the mean
squared error is generally used to evaluate the performance of the network:

EQ-TARGET;temp:intralink-;sec3.2;116;97MSEðDÞ ¼ 1

jDj
X
x∈D

½yx − fðxÞ�2;

Fig. 5 A two-hidden-layer neural network.
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where D corresponds to the data set used for training, yx is the true value expected when passing
example x through the network, and fðxÞ is the output of the network. At the output layer, weights
are updated as

EQ-TARGET;temp:intralink-;sec3.2;116;699Δwji ¼ −η
∂MSEðxÞ

∂wji
:

For the hidden nodes, the updates are propagated backward in proportion to the
current weights. For example, given a logistic function, the update rule for the hidden nodes
corresponds to

EQ-TARGET;temp:intralink-;sec3.2;116;622Δwji ¼ −ηδjzji;

where

EQ-TARGET;temp:intralink-;sec3.2;116;570δj ¼ ojð1 − ojÞ
X

k∈downstreamðjÞ
δkwkj;

and oj is the output of node j after passing zji through the activation function. The training
process can apply the update rules after each example is presented (called incremental updating),
by averaging all of the updates after the entire data set is processed (called batch updating), or by
averaging over a random subset of the training examples (called stochastic gradient descent).

The neural network architecture and parameters were selected by performing a hyperpara-
meter search on the activation function (rectified linear and hyperbolic tangent) number of hid-
den layers (from 1 to 3), the number of nodes in each layer (125, 250, 500, and 1000), the
learning rate (0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001), the momentum (0.5 and 0.9), and
the regularizer coefficient (0.01 and 0.005).

The algorithm was trained on the full spectrum observed by the hyperspectral imager, pro-
viding a 300-dimensional vector for the neural network to train and classify. The data used to test
the neural network are shown in Fig. 6. Each spectrum is the average of 4000 randomly selected
spectra from susceptible, glyphosate-resistant, and dicamba-resistant kochia biotypes that were
imaged on June 23, 2017. These 4000 spectra for each class of plant were randomly and evenly
split into training and validation sets. The training sets were combined, and validation sets were
combined, forming a training set of 6000 spectra and a valiation set of 6000 spectra, 2000 spectra
from each kochia biotype. The neural network was trained on the training set and used to predict
the class of the spectra in the validation set. The roles of the training and validation sets were then
reversed: the validation set was used to train the neural network, and the trained neural network
predicted the class of the spectra in the training set.

This process was repeated five times in an experimental design method known as K × 2

stratified cross validation,20 which is used to ensure that a particular instance of a machine learn-
ing algorithm is not randomly showing accurate classifications. The average and standard
deviation of the classification accuracies are presented in the multiclass confusion matrix also
shown in Fig. 6. Any values of 1.0 or 0.00 in this and subsequent confusion matrices are

Fig. 6 Reflectance spectra for susceptible (SUS), glyphosate-resistant (GR), and dicamba-resist-
ant (DR) biotypes of kochia and the confusion matrix showing the classification accuracies of the
neural network.
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rounding errors, indicating an accuracy equal to or greater than 0.995 or a standard deviation less
than 0.005, respectively.

A confusion matrix is a table that visualizes the classification accuracy of a machine learning
algorithm, indicating the fraction of measurements that the algorithm predicted correctly or
incorrectly. In this case, the neural network correctly identified dicamba-resistant, glypho-
sate-resistant, and susceptible (susceptible to both glyphosate and dicamba) kochia with
99%, 99%, and 98% accuracy, respectively. More generally, the correct prediction rates occur
on the diagonal and various incorrect prediction options exist in the off-diagonal positions. For
example, the algorithm incorrectly predicted susceptible kochia as glyphosate-resistant 1% of the
time and as dicamba-resistant less than 0.005% of the time.

In total, it took an average 2.5 h to extract weed spectra from a hyperspectral image, train the
neural network, and produce classification accuracies. While this varies widely depending on a
given computer system and any other processes the machine is running simultaneously, it shows
that this methodology has the potential to decrease the time needed to classify herbicide-resistant
weeds by at least an order of magnitude.

4 Results and Analysis

This section details the classification of sugar beet and weed biotypes using the neural network
algorithm described in Sec. 3 applied to spectra obtained from hyperspectral images recorded at
the SARC in Huntley, Montana. We assumed the grower would know which crop is in which part
of each field and which weeds are dominant, so we trained the neural network to discriminate
between a single crop (sugar beet) and three different weed species (kochia, marestail, and
common lambsquarters). The plants were then classified assuming different levels of knowledge
about an imaginary field, starting with a discrimination between sugar beet and all potential
weeds. This process was then iterated, assuming more knowledge, either known previously,
or gained through the previous classification.

4.1 Ground-Based Imaging Results

We did one-, two-, and three-step processing of the spectra. In the one-step processing, we
fed the reflectance spectra into a neural network to classify crops, herbicide-susceptible
and -resistant kochia, marestail, and common lambsquarters. In the two-step process, we first
classified crops and weed type (kochia, marestail, and common lambsquarters), then we fur-
ther classified each weed type as herbicide-susceptible or herbicide-resistant. In the three-step
process, we first classified between crops and all weeds, then classified among the different
weed species, finally classifying between herbicide-resistant and -susceptible biotypes. The
multiple-step classifications were explored to see if small increases in processing complexity
could yield significant improvements in the classification accuracies. We found that generally
the multistep processing increases classification accuracies by up to 11% over single-step
processing. Not all details of these processing variants are discussed here and can be found
in related work.21

Figure 7 is the first step in our crop/weed discrimination process, accurately classifying 99%
of the sugar beet spectra and greater than or equal to 99.5% of the weed spectra. We next
discriminated among the weeds themselves and used the neural network to classify just those
spectra classified as “weeds.”

Once the weeds have been discriminated against each other, the algorithm was used to
classify herbicide-susceptible and -resistant biotypes. Figure 8 shows that the algorithm classi-
fied glyphosate-resistant and -susceptible biotypes of marestail at least 99% of the time.
Similarly, Fig. 8 shows that the algorithm accurately discriminates between glyphosate-resistant
and -susceptible biotypes of marestail at least 99% of the time.

The final classification accuracies and propagated errors for sugar beet and the susceptible
and resistant biotypes were collected in Table 3. We also note that while we did attempt to clas-
sify the plants in a single step, that method produced lower accuracies: sugar beet spectra, for
example, were only accurately classified 88% of the time.
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Discriminating between kochia biotypes proved more difficult. Figure 8 shows the classi-
fication accuracies for susceptible kochia and all resistant biotypes, which are 96% and
85%, respectively, as well as the misclassification accuracies of 15% and 4%, respectively.
Given 2000 spectra (1000 spectra of each of two biotypes), 1110 out of 1000 plants would
be identified as susceptible (true susceptible and false suceptible), and 890 out of 1000 plants
would be identified as resistant (true resistant and false resistant).

Fig. 8 Confusion matrices for (a) glyphosate-susceptible (MS) and -resistant (MR) marestail bio-
types, (b) glyphosate-susceptible (LS) and -resistant (LR) common lambsquarters biotypes, and
(c) glyphosate-susceptible (KS) and -resistant (KR) kochia biotypes.

Table 3 Final classification types and propagated errors of sugar beet, herbicide-susceptible
(SUS), and herbicide-resistant (RES) kochia, marestail, and common lambsquarters biotypes.

Classification accuracies (%)

Sugar beet 0.99� 0.01

Kochia (SUS) 0.94� 0.03

Kochia (RES) 0.83� 0.04

Marestail (SUS) 0.98� 0.01

Marestail (RES) 0.97� 0.01

Common lambsquarters (SUS) 0.96� 0.01

Common lambsquarters (RES) 0.94� 0.01

Fig. 7 Confusion matrices for sugar beet and the average spectrum of (a) all weed species and
biotypes used in this study and (b) kochia, marestail and common lambsquarters weed species.
The three weed species were classified against each other, assuming that the crop has already
been isolated.
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This does not, however, immediately throw the results of a map over an entire crop field in
doubt. A single spectrum might be classified incorrectly, but the probability of misclassifying an
entire plant is lowered if multiple pixels on a single plant are used to classify the plant.

If, for example, an herbicide-resistant kochia plant observed in a hyperspectral image con-
sists of p pixels (and thus has p spectra that have been measured), it will have on average of
0.85p spectra that are classified as resistant and 0.15p as susceptible. To falsely classify the plant
as a whole as susceptible, 0.96p of the resistant spectra would have to be misclassified as sus-
ceptible, a probability of 0.150.96p. If p ¼ 10, i.e., the imager is relatively far from the plants it is
imaging, the probability of a resistant kochia plant being misclassified as susceptible is
1.23 × 10−8. (The numbers used in this example are drawn from Fig. 8.)

In other words, if we assume that every genuine plant has the average number of correctly
and incorrectly classified spectra (an assumption that needs to be tested), this algorithm wrongly
classifies an herbicide-resistant kochia plant with 10 spectra as herbicide-susceptible approxi-
mately once every 10 million classification attempts. If the kochia plant was herbicide-suscep-
tible, the algorithm would wrongly classify it as herbicide-resistant once every trillion
classification attempts. Thus, the more pixels a plant in a given hyperspectral image consists
of, the less likely an entire plant will be wrongly classified. Using this methodology, even clas-
sification accuracies that might seem low can be used to correctly identify plants as a whole.

A classified scene of sugar beet and three biotypes of kochia can be seen in Fig. 9. It is
immediately apparent that while the neural network classifies between kochia and sugar beet
well, it does not do as well as suggested by the confusion matrices when attempting to discrimi-
nate between herbicide-resistant biotypes. This is possibly due to mixed pixels on kochia leaves
in front of sugar beet leaves, especially when one notes that the bases of the five kochia plants are
correctly identified when compared to their tops.

There is one further variable that has yet to be considered in the classification algorithms:
time. As part of the 2017 imaging campaign, we imaged susceptible, glyphosate-resistant, and

Fig. 9 (a) An RGB image of sugar beet and potted kochia plants, (b) a classification map of sugar-
beet and kochia, and (c) a classification map of sugar beet, susceptible kochia, glyphosate-resist-
ant kochia, and dicamba-resistant-kochia. Sugar beet is green, kochia in (b) and susceptible
kochia in (c) are brown, glyphosate-resistant kochia is blue, and dicamba-resistant kochia is
purple.
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dicamba-resistant kochia biotypes as they aged. Figure 10 plots the reflectance curves of sus-
ceptible, glyphosate-resistant, and dicamba-resistant kochia at 2, 3, 7, and 8 weeks old, corre-
sponding to heights of 7.6 to 10 cm tall, 13 to 15 cm tall, 25 cm tall, 30 to 38 cm tall, respectively.
While we can use absolute ages in this case because the kochia were grown in a greenhouse, in a
field its age must be estimated based on its height.

An analysis of the kochia at each stage of its development revealed that the classification
accuracies of at least kochia heavily depend on age. We found that kochia biotypes imaged when
they were about 2 weeks old were the easiest for our algorithm to discriminate, correctly dis-
criminating between glyphosate- and dicamba-resistant kochia with 99% accuracy.

Fig. 10 Spectra of susceptible (SUS), glyphosate-resistant (GR), and dicamba-resistant (DR) bio-
types of kochia over time. Note that none of the spectra evolved linearly.

Fig. 11 Confusion matrices for susceptible (SUS), glyphosate-resistant (GR), and dicamba-resist-
ant (DR) biotypes of kochia at (a) 2 weeks, (b) 3 weeks, (c) 7 weeks, and (d) 8 weeks old.
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This changes as the plant grows older, though not strictly decreasing. Week 8, for example,
has a higher classification accuracy than week 7. This strongly suggests that attempts to
discriminate between herbicide-susceptible and -resistant kochia should be done in the plant’s
earlier growth stages. These spectra and classification accuracies are shown in Fig. 11.

4.2 Drone-Based Imaging Results

Figure 12 shows the classification accuracies and confusion matrices for kochia imaged in a
sugar beet field by a drone flying at 1 m∕s at a height 9 m above the canopy of sugar beet and
kochia biotypes and flying level with the ground. The accuracies were considerably worse than
the ground-based images due to factors including mixed pixels, added background light in the
uncontrolled field, and possible drone motion-induced smearing, though the trend of younger
kochia being easier to classify continues. These difficulties are expressed in Fig. 13, which
shows that the standard deviation of data taken using the drone-based imager is twice that
of data taken with the ground-based imager.

Similar to the discrimination of herbicide-resistant kochia biotypes presented earlier, the
accurate classification of whole plants will take an additional layer of statistics. The lower accu-
racies produced by data gathered from the drone-based platform also suggested that the

Fig. 12 Confusion matrices for susceptible (SUS), glyphosate-resistant (GR), and dicamba-resist-
ant (DR) biotypes of kochia at (a) 10 to 15 cm tall and (b) 20 to 30 cm tall.

Fig. 13 Mean spectra and standard deviations for young, herbicide-susceptible kochia imaged
using the drone- and ground-based hyperspectral imager.
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parameters involving the drone itself should be further explored. For example, the drone could
have been flown at a lower altitude to increase the resolution of the plants. The drone could also
in theory have flown at a slower velocity to minimize any noise in the image caused by traveling
too fast. This will, however, require different software to fly the drone as the DJI Ground System
Pro application enforces a minimum flight speed of 1 m∕s.

5 Conclusion

Herbicide-resistant weed biotypes are an emerging and costly problem for crop production inter-
nationally. While the underlying biochemistry of herbicide resistance is well understood, the
time it takes for traditional methods to detect these biotypes makes them unwieldy to apply
on a large scale. In addition, these methods generally require one to spray whole fields of crops,
a costly endeavor both economically and environmentally. We developed a neural network
machine learning algorithm that uses spectral reflectance observed by a hyperspectral imager
that can discriminate for herbicide-resistant weeds with up to 99% accuracy. Spectra can either
be classified against each other all at once or in stages, depending on the accuracy desired, and
are classified on time scales an order of magnitude smaller than traditional methods. This process
is currently implemented for an individual plant and has not yet been scaled up to entire crop
fields.

The classification accuracies are shown to have a strong dependence on the growth stage of
an individual plant and are higher when a given plant is younger. Further work on this needs to be
done investigating the age dependence of the classification algorithm on glyphosate-resistant
marestail and common lambsquarters. In addition, given the scope of the problem, more weeds
and crops should be imaged and classified against one another and over time.

The neural network also has areas where it can be refined, particularly when discriminating
between herbicide-resistant kochia biotypes. This includes investigating parameters such as
dropout, bias nodes, reducing the dimensionality of the data, and changing the learning rate
and momentum (annealing) while the network is training.

Concurrently, the imaging parameters of future drone-based campaigns should be changed in
order to provide spectra closer to those observed in greenhouse conditions to help gain more
reliable classification accuracies.

Lastly, the trained neural network should be applied to more hyperspectral maps of herbicide-
susceptible and -resistant weeds among crops to test the model under multiple and varying field
conditions. These maps should consist of data from the field as well as those modeled using the
data collected in order to vary the crops, weeds, lighting, mixed pixels, distance of imager from
plants, environmental conditions, and other factors to explore the efficacy of the methods devel-
oped in this study.
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