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Abstract. An image navigation (NAV) and registration (INR) performance assessment tool set
(IPATS) was developed to assess the US Geostationary Operational Environmental Satellite
R-series (GOES-R) Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper
(GLM) INR performance. IPATS produces five INR metrics for level 1B ABI images: naviga-
tion, channel-to-channel registration, frame-to-frame registration, swath-to-swath registration,
and within-frame registration. IPATS also produces one INR metric for GLM: navigation of
background images. The high-precision INR metrics produced by IPATS are critical to INR
performance evaluation and long-term monitoring. IPATS INR metrics also provide feedback
to INR engineers for tuning the navigation algorithms and parameters to further refine INR per-
formance. IPATS utilizes a modular algorithm design to allow the user-selectable data processing
sequence and configuration parameters. We first describe the algorithmic design and the imple-
mentation of IPATS. Next, it describes the investigation of the optimization of the configuration
parameters to reduce measurement errors. Finally, sample INR performance is presented, includ-
ing GOES-16 and GOES-17 ABI NAV performance from postlaunch test to November 2019 and
the comparison of example 24-h INR performance against the mission performance require-
ments. The INR assessment results show that both GOES-R ABIs are in compliance with the
mission INR requirements. © The Authors. Published by SPIE under a Creative Commons Attribution
4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.032405]
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1 Introduction

The Geostationary Operational Environmental Satellite R-series (GOES-R) satellites, including
GOES-16 and GOES-17, are the latest generation of GOES series satellites. The GOES-R series
are the collaborative development efforts of the National Oceanic and Atmospheric Administration
(NOAA) and the National Aeronautics and Space Administration (NASA). The Advanced
Baseline Imager (ABI) is the primary instrument on the GOES satellites. ABI has significantly
improved temporal and spatial resolutions from the imagers on previous GOES-NOP satellites.
GOES-R ABI has 16 channels (bands) on three focal planes: visible/near-infrared (VNIR), mid-
wave infrared (MWIR), and long-wave infrared (LWIR). The nadir spatial resolution ranges
from 0.5 to 1 km in the visible channels and 1 to 2 km in the infrared channels. ABI level
1B (L1B) images are radiometrically calibrated and then rectified to the ABI-fixed grid
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coordinate system, which is a two-dimensional (2-D) angle space centered at the assigned loca-
tion of the satellite in geosynchronous orbit.1 ABI has columns of detectors for each spectral
channel, and it scans the fields of view of these detectors in a west to east direction to acquire
swaths of Earth imagery. Each ABI L1B image is composed of two or more swaths, each swath
having an effective angular height in the GOES fixed-grid of about 0.8 deg. During nominal
operations, ABI produces a full disk (FD) image composed of 22 swaths every 10 to 15 min,
a Conterminous US (CONUS) image composed of six swaths every 5 min, and a mesoscale
(MESO) image composed of two swaths every 30 s. The FD is a circle of 17.4 deg angular
diameter with center at nominal satellite nadir and circumference at the Earth limb. The
CONUS images are rectangular and have a nadir extent of 5000 km in the east–west (EW)
direction and 3000 km in the north–south (NS) direction. The MESO image can be acquired
at any location and is also rectangular and has an extent of 1000 kmEW × 1000 kmNS.2 The
advanced temporal and spatial resolutions make ABIs a promising data source for imaging
Earth’s surface and atmosphere. ABI data are used not only for weather forecasting but also
for the detection and observation of severe environmental phenomena and climate change
studies.3

Earth location, or geolocation, accuracy is a key quality indicator of satellite data. Accurate
geolocation ensures that data from different channels of a sensor or data from different sensors/
sources can be applied together to retrieve high-level biogeophysical information.4,5 An image
navigation (NAV) and registration (INR) performance assessment tool set (IPATS) was designed
and developed under the auspices of NASA’s GOES-R Flight Project for independent verifica-
tion of the ABI INR performance in the postlaunch period for performance evaluation and
long-term monitoring. IPATS was also developed for analysis of the navigation accuracy of
background images produced by the Geostationary Lightning Mapper (GLM) onboard both
GOES-R series satellites. In this study, we will focus on ABI results to describe the IPATS algo-
rithms and ABI INR performance. Further information concerning the evaluation of GLM INR
performance with IPATS can be found in Ref. 6. IPATS produces INR performance metrics for
all three types of ABI images. The assessment results are not only used to verify the INR accu-
racy but also provide in-depth analysis to help improve the INR algorithms, operational param-
eters, and future instrument design.

In this paper, we describe the IPATS software design and the algorithms employed by IPATS,
including image preprocessing, image registration, and evaluation and quality screening of the
IPATS results. Next, the selection of configuration parameters for optimal results is described.
Finally, we present the latest GOES-16 and GOES-17 ABI performance measured by IPATS and
how the in-depth analyses are performed based on IPATS measurement results.

2 Algorithms and Methodology

2.1 IPATS Architecture

To fully assess the INR accuracy, IPATS produces five types of INR quality assessment metrics:

• ABI and GLM navigation (NAV) error: difference between the location of an image feature
and its true location.

• ABI channel-to-channel registration (CCR) error: relative navigation error at correspond-
ing image features of different channels in the same frame.

• ABI frame-to-frame registration (FFR) error: relative navigation error of corresponding
image features of same channel in consecutive images.

• ABI within-frame registration (WIFR) error: difference between radial separation of two
image features on the fixed grid coordinate system and their true angular separation. WIFR
is calculated indirectly from the NAV results.

• ABI swath-to-swath registration (SSR) error: relative navigation error of two neighboring
image features on opposite sides of the horizontal image swath boundary.

IPATS employs a modular algorithm architecture because (1) most of the processing steps of
above metrics are common and (2) there are multiple algorithms available for each processing
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step. During IPATS development, members of the team who are image-processing subject matter
experts brought various techniques to the table. Given the need to design, develop, test, and
deploy IPATS in advance of GOES-R (now GOES-16) launch, the effort was focused on those
techniques familiar to the IPATS team members, and a more comprehensive research effort to
identify all alternatives was not undertaken. Sometimes, multiple algorithms to perform a given
function, such as Pearson cross correlation (PCC) and normalized mutual information (NMI)
algorithms in the image registration module, were both implemented into IPATS, with the selec-
tion of algorithm being left to the IPATS user.

Figure 1 shows a high-level diagram of IPATS. Two input images are preprocessed and then
the EW and NS registration differences are calculated. In the last step, the IPATS measurements
are screened to identify the high-quality measurements used to produce the assessment reports.
All the metrics above, except for WIFR, use similar modules with different image types, con-
figuration, and screening parameters. Metrics, except SSR, are generated separately for each of
the image types: FD, CONUS, and MESO. WIFR is an additional step that operates on the NAV
results.

SSR is evaluated on two successive MESO images, which are specially tasked by mission
operations to specific Earth locations. The top of the lower swath of the first MESO image over-
laps the bottom of the upper swath of the second MESO image. The evaluation window with
a size of 128 × 8 GOES pixels lies within the overlap region of the two tasked MESO images.
The misregistration errors measured within the evaluation windows provide the assessment
of SSR.7

2.2 Landsat Chips

The ABI NAV accuracy is assessed through comparing subsets of ABI images with subsets of
Landsat 8 images, called chips here, which are considered to have a negligible NAV error. The
geolocation accuracy of the Landsat images is within 15 m,8 which is 3% or less of the spatial
resolutions of GOES-R ABIs.

The chips for assessing ABI NAV are mostly along the shorelines of North and South
America (Fig. 2). The shorelines are emphasized because they tend to exhibit high contrast,
low spatial frequency image features that are particularly suitable for image registration at the

Fig. 1 High-level algorithm diagram of IPATS. The image pair characteristics include cloud cover-
age, seasonal change, ground surface type, and other factors which impact the quality of image
registration.
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spatial scale of ABI images. The size of a Landsat chip is about 150 km × 150 km. The Landsat
8 images used to generate chips were acquired between years 2013 and 2017. Based on our
experience with other instruments, the chips should be refreshed with latest Landsat images
every 10 years or so. The Landsat chips are either cloud free or contain limited cloud coverage,
usually <5%. For a single chip location, multiple chips corresponding to multiple seasons were
collected when Landsat 8 images of sufficient quality were available.

The spectral response of different channels varies for the same target. This is a major error
source when registering the images from different spectral channels. For example, the land/water
boundary is the primary feature for registering ABI and Landsat subsets. The locations of the
land/water boundary could be at different locations in different channels due to spectral response
difference and ground feature characteristics, e.g., steep or mild slope on the shoreline.
Therefore, it is necessary to use a multispectral chip library when assessing ABI NAVaccuracy.
Table 1 shows a comparison of the spectral channels of ABI and Landsat 8. For VNIR channels,
ABI and Landsat 8 channels show good spectral overlap. For MWIR and LWIR channels, there
is no close correspondence between ABI and Landsat 8 channels. We determined the corre-
sponding channels based on the spectral response characteristics and also made necessary adjust-
ment after carefully examining registration performance for ABI and Landsat subsets. Originally,
we utilized channel 7 of Landsat 8 (short-wave infrared channel) to assess channel 7 of ABI
(MWIR).8 After examining operational ABI data, we found that channel 10 of Landsat 8
(LWIR) is a better choice to assess ABI channel 7 considering nighttime emissions. Such adjust-
ments occurred throughout the IPATS development and testing process from 2014 to 2018.

2.3 Image Preprocessing

2.3.1 Subimage resampling

For retrieving ABI metrics (except WIFR), subsets of ABI images, rather than the whole ABI
image, are used to identify the registration errors. For ABI NAV, IPATS correlates each Landsat
chip and the corresponding subsets of the ABI image. For ABI FFR/CCR, a user supplied list of
evaluation windows is used to identify the subsets of the two ABI images to be correlated.
Currently, the locations of the evaluation windows are mostly along the shorelines of North and
South America. There are 651 and 629 locations for FFR/CCR for the current orbital longitudes
of GOES-16 and GOES-17, respectively.

The ABI image subsets are upsampled to a common finer resolution for assessing registration
accuracy, e.g., FFR and CCR. In the NAVassessment, the Landsat chips are downsampled to the
common resolution. The Landsat chips were reprojected via uniform local averaging to GOES

Fig. 2 The chip locations in the view of (a) GOES-16 and (b) GOES-17. There are 644 chip loca-
tions in the view of GOES-16 and 574 chip locations in the view of GOES-17.
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ABI fixed grid projection for each assigned orbital longitude at 12× finer resolution than the
native resolution of the corresponding ABI band (Table 1). The Landsat chips were preprocessed
offline and stored in the IPATS multispectral landmark database to save processing time of
ABI INR assessment. The possible resolution scales at which subimages may be correlated for
ABI NAVare 12×, 6×, 4×, 3×, 2×, and 1× finer resolution than the native resolution of the ABI
image. We introduce the term subpixel factor (SPF) for the amount of upsampling applied to ABI
images during IPATS processing. For instance, an SPF of 2 means that the ABI images are
upsampled to half an ABI pixel before the image registration occurs. We will discuss the optimal
SPF value for the long-term monitoring later in this paper.

IPATS provides three different interpolation algorithms for upsampling of images:

• Nearest-neighbor interpolation: a resampled pixel is assigned the digital number value of
the nearest pixel in the source image.

• Bilinear interpolation: the values of the four source pixels nearest to the destination pixel
are linearly interpolated.

• Bicubic interpolation: the values of the 16 source pixels in a 4 × 4 array that includes the
destination pixel within its central 2 × 2 subarray or on the boundaries of this subarray are
interpolated using a cubic spline.

The details of the bilinear and bicubic interpolation algorithms are described in Chapter 10
of Ref. 9.

Table 1 ABI channels and the corresponding Landsat channels utilized for NAV measurements.
The ABI water vapor-sensitive channels (4, 8, 9, and 10) are excluded from the NAV measure-
ments because they cannot see the ground and so cannot be compared with static Landsat chips.

GOES-16/GOES-17 ABI Landsat 8

Channel Wavelength (μm)

Spatial resolution

Channel Wavelength (μm)
Spatial

resolution (m)μrad km at nadir

1 0.45 to 0.49 28 1 2 0.45 to 0.51 30

2 0.59 to 0.69 14 0.5 4 0.64 to 0.67 30

3 0.846 to 0.885 28 1 5 0.85 to 0.88 30

4 1.371 to 1.386 28 1 NA NA NA

5 1.58 to 1.64 28 1 6 1.57 to 1.65 30

6 2.225 to 2.275 56 2 7 2.11 to 2.29 30

7 3.80 to 4.00 56 2 10 10.60 to 11.19 100

8 5.77 to 6.6 56 2 NA NA NA

9 6.75 to 7.15 56 2 NA NA NA

10 7.24 to 7.44 56 2 NA NA NA

11 8.3 to 8.7 56 2 10 10.60 to 11.19 100

12 9.42 to 9.8 56 2

13 10.1 to 10.6 56 2

14 10.8 to 11.6 56 2

15 11.8 to 12.8 56 2 11 11.50 to 12.51 100

16 13.0 to 13.6 56 2
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The possibility of using the original channel-dependent modulation transfer function (MTF)
during the interpolation was not studied mainly because we performed the INR assessment using
L1B data. This L1B data had already been resampled from the original scan data into the GOES
fixed-grid coordinates using resampling kernels for each channel that were derived in part in
order to meet the L1B MTF specifications. It is possible that compensating for the residual
MTF in the fixed-grid image could reduce the NAV measurement error, but this is outside the
scope of this paper and could be a topic for a future study.

2.3.2 Image edge enhancement

The images, preprocessed through edge enhancement, give a sharper correlation peak than the
original images.10 The sharper peak is easier to detect, especially when noise in images is sig-
nificant. IPATS provides the user with the option to perform edge enhancement operation to the
resampled ABI subsets and Landsat chips on a channel-by-channel basis. Two edge enhance-
ment operators are available, the Sobel operator11 and the Roberts operator.12

Sobel edge enhancement. Sobel edge enhancement is achieved using the Sobel operator,
which is an isotropic 3 × 3 discrete differentiation operator.11 Two 3 × 3 kernels are convolved
with the original image to compute derivatives in the horizontal and vertical directions. Note that
in these equations we use ðx; yÞ and ðu; vÞ to indicate image pixels in the EW (row) and NS
(column) directions. If we call the original image A, we can define

EQ-TARGET;temp:intralink-;e001;116;484Gx ¼
2
4 1 0 −1
2 0 −2
1 0 −1

3
5 � A; Gy ¼

2
4 1 2 1

0 0 0

−1 −2 −1

3
5 � A; (1)

which represent the horizontal and vertical derivatives and where * is the convolution operation.
Then, at each point in the image, the derivatives are combined:

EQ-TARGET;temp:intralink-;e002;116;401G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
; (2)

G is the final image with Sobel edge enhancement applied.

Roberts edge enhancement. Roberts edge enhancement is achieved using the Roberts
cross operator.12 It is a similar type of operation to the Sobel edge enhancement method, except it
uses 2 × 2 kernels. Again, if we call the original image A, we can define

EQ-TARGET;temp:intralink-;e003;116;302Gx ¼
�
1 0

0 −1

�
� A; Gy ¼

�
0 1

−1 0

�
� A: (3)

Then, the final image G is calculated from Gx and Gy, using Eq. (2).

2.4 Image Registration

The core of the IPATS algorithms is the correlation module that ingests two preprocessed subsets
at the same resolution, in which one subset is larger than the other in both the EW and NS
directions. The smaller subset, called the float image, is then shifted in both directions to all
possible locations coincident with a subarray of the larger subset, which is called the fixed image.
For each such shifted location, a similarity metric is computed, either PCC or NMI. The results of
these computations are captured into a 2-D array of similarity metrics, called the correlation
array, one for each shifted location. The size of the correlation array is always odd, with the
center location corresponding to zero shift in both the EW and NS directions. The size of the
correlation array is determined by the maximum anticipated registration error, a user provided
input to IPATS, and by the resolution scale, defined by the SPF, at which the correlation is per-
formed. Some additional padding of the correlation array is required to ensure that the raw cor-
relation peak, prior to application of the peak location refinement algorithms, lies in the interior

Tan et al.: GOES-R series image navigation and registration performance. . .

Journal of Applied Remote Sensing 032405-6 Jul–Sep 2020 • Vol. 14(3)



of the array, and furthermore that the subarray centered on the peak required for both peak loca-
tion interpolation algorithms lies within the correlation array (Sec. 2.4.3).

2.4.1 Pearson cross correlation

PCC describes how well two images match each other.13 The PCC is calculated as

EQ-TARGET;temp:intralink-;e004;116;662γðu; vÞ ¼
P

x;y½fðx; yÞ − fu;v�½tðx − u; y − vÞ − t�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y
½fðx; yÞ − fu;v�2

P
x;y
½tðx − u; y − vÞ − t�2

r ; (4)

where ðu; vÞ indicates the ðx; yÞ direction integer shift of the resampled subset of GOES-R
image, γðu; vÞ is the PCC at the shifted location, fðx; yÞ is the pixel value of the fixed image
(either the resampled Landsat chip or another resampled subset of GOES-R image) at location x
and y, and tðx − u; y − vÞ is the float image (another GOES-R subset) value at pixel location
x − u and y − v, fu;v is the mean pixel value of the fixed image in the region overlapping with the
float image, and t is the mean pixel value of the float image.

2.4.2 Normalized mutual information

The mutual information (MI) of two images describes the amount of information about one
image contained in the other image and vice versa.14,15 Similar to the procedure of PCC, the
float image tðx − u; y − vÞ shifts on top of the fixed image fðx; yÞ and record the MI value
MIðu; vÞ at location ðu; vÞ.

The MI is calculated as follows:

EQ-TARGET;temp:intralink-;e005;116;431MIðu; vÞ ¼ H½fðx; yÞ� þH½tðx − u; y − vÞ�
Hð½fðx; yÞ; tðx − u; y − vÞ� ; (5)

where H½fðx; yÞ� and H½tðx − u; y − vÞ� is the Shannon entropy of fixed and float images,
respectively, computed for the distribution of radiance values of two images. H½fðx; yÞ;
tðx − u; y − vÞ� is the Shannon entropy computed for the joint distribution of radiance values
of two images. When two images are identical, we have

EQ-TARGET;temp:intralink-;e006;116;338H½fðx; yÞ; tðx − u; y − vÞ� ¼ H½fðx; yÞ� ¼ H½tðx − u; y − vÞ�: (6)

When the two images are totally independent, we have

EQ-TARGET;temp:intralink-;e007;116;295H½fðx; yÞ; tðx − u; y − vÞ� ¼ H½fðx; yÞ� þH½tðx − u; y − vÞ�: (7)

Therefore, the range of MI values is [1, 2]. To shift the range to [0, 1], we define the NMI as

EQ-TARGET;temp:intralink-;e008;116;252NMIðu; vÞ ¼ MIðu; vÞ − 1: (8)

To calculate the Shannon entropies for the distribution of radiance values in a single image and
for the joint distribution of radiance values for a pair of images, we linearly divide the radiance
range between mean plus and minus 3σ of the image radiance into 256 bins. The pixels with the
radiance value beyond 3σ are put in the bins at two ends. And then, the Shannon entropy of one
image A is defined as follows:

EQ-TARGET;temp:intralink-;e009;116;161HðAÞ ¼ −
XN
i¼1

pAðiÞ log½pAðiÞ�; (9)

where pAðiÞ is the fraction of radiance values in the i’th radiance bin. Similarly, the Shannon
joint entropy of the images A and B is defined as follows:
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EQ-TARGET;temp:intralink-;e010;116;735HðA; BÞ ¼ −
XN
i¼1

XN
j¼1

pABði; jÞ log½pABði; jÞ�: (10)

2.4.3 Peak interpolation

The correlation array generated in last step is in same spatial resolution as the resampled subsets.
To further interpolate the correlation peak location beyond the limitation of the spatial resolution,
IPATS provides two different algorithms, parabolic and centroiding.

Parabolic interpolation. Parabolic interpolation refers to uniquely fitting a parabola in one
direction, either X or Y, to the correlation array. The maximum of the fitted parabola, rather than
the maximum of the correlation array, is the final peak location, effectively facilitating subpixel
resolution in locating the correlation maximum. The location of the peak value in the correlation
array serves as the middle point for each interpolation, with one point to the left and right
considered for the x-direction interpolation, and one point above and below considered for
the y-direction interpolation. Assume ðx1; x2; x3Þ denote the integer x index values centered on
the correlation array peak located at ðx2; y2Þ and the corresponding correlation value are
ðz1x; z2x; z3xÞ. Then, the interpolated peak location in x direction is calculated as follows:

EQ-TARGET;temp:intralink-;e011;116;512xpk ¼
½ðz2x − z1xÞ � ðx23 − x21Þ − ðz3x − z1xÞ � ðx22 − x21Þ�

½2 � ðz2x − z1xÞ � ðx3 − x1Þ − 2 � ðz3x − z1xÞ � ðx2 − x1Þ�
: (11)

The calculation of the interpolated peak location in Y direction is same as X direction. The
interpolated peak correlation value is

EQ-TARGET;temp:intralink-;e012;116;443zpk ¼ ½z1x − ax � ðx1 − xpkÞ2� þ ½z1y − ay � ðy1 − ypkÞ2� − z2x; (12)

where

EQ-TARGET;temp:intralink-;e013;116;398ax ¼
ðz2x − z1xÞ

ðx2 − x1Þ � ðx2 þ x1 − 2 � xpkÞ
: (13)

The calculation of ay is same as ax. The peak sharpness in X direction is calculated as

EQ-TARGET;temp:intralink-;e014;116;340PkShx ¼ −2 � ax; (14)

where ax is calculated in Eq. (13). The calculation of the peak sharpness in Y direction is same as
X direction.

Centroiding interpolation. The centroid is calculated over the correlation array with a user
selectable square windowW centered on the array peak. The centroid of the peak location, rather
than the maximum of the correlation array, is the final peak location. The size of the correlation
array is always odd, with the center corresponding to array peak location. The centroid in the
x directions can be calculated as follows:

EQ-TARGET;temp:intralink-;e015;116;214xpk ¼
P

w zðx; yÞ � xP
w zðx; yÞ

; (15)

where xpk is the refined peak location in the x direction, zðx; yÞ is the correlation value at location
ðx; yÞ. The calculation of ypk is same as xpk.

2.5 Screening of IPATS Results

The accuracy of the IPATS measurements depends on the characteristics of the image pair.
In addition to the differences between the ABI and Landsat sensor, other factors, such as cloud
coverage, seasonality, and image acquisition time, lead to additional registration errors between
Landsat chips and the corresponding GOES-R subsets. The measured INR errors due to these
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factors could be as large as several GOES-R pixels, and so it is necessary to remove such poor-
quality measurements to obtain a better estimate of the true INR errors.

2.5.1 Sun-view geometry screening

The solar and viewing geometry is an important factor of remotely sensed images, especially for
the reflective channels.16,17 The solar zenith angle (SZA) is the solar angle at the observation time
as measured downward from the local vertical of an observed point on the Earth. It determines
the intensity of the incident radiance on the ground surface. The signal level of reflective chan-
nels images decreases when SZA increases. IPATS applies an SZA of 75 deg as the maximum
threshold and removes unscreened IPATS results with SZA above this value because the low
image contrast and significant shadow effects cause INR assessments of such images to be of
poor quality.

The view zenith angle (VZA) is the angle to the GOES satellite as measured downward from
the local vertical of a point observed on the Earth. It affects the quality of remotely sensed images
in a different way from SZA. The pixel footprint increases as VZA increases due to the shape of
the Earth. The actual pixel footprint at the edge of the globe is about eight times coarser than at
nadir.15 NAV is impacted most by VZA because the dimensions of the ABI image subsets are
limited by the size of the Landsat chips. Typically, one Landsat chip covers about 80 × 80

GOES-R pixels at nadir. The dimension of coverage drops to about 10 × 10 GOES pixels at
locations close to the limb of the Earth. The detailed spatial features in the original Landsat
chips appear in only a few GOES-R pixels and are difficult to distinguish from noise in the
images. Image correlation results between such image subset pairs are not reliable. Therefore,
a VZA threshold of 70 deg is applied in screening NAV measurements.

2.5.2 Analytic measurement uncertainty screening

De Luccia et al.7 introduced a parameter, called “analytic measurement uncertainty (aMU),”
that quantitatively describes the quality of image registration. The aMU value is high when
two images have very different scene content, in which would typically result in unreliable
image registration results. Dr. De Luccia then revised the original aMU equation and developed
a second version of aMU, called aMU2, to provide an improved indicator of measurement
quality:

EQ-TARGET;temp:intralink-;e016;116;338aMU2x ¼
1

SPF

1

PkShx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2pk

q D
NM

1

2

�
1

c1
þ 1

c2

�
; (16)

where aMU2x is the measurement uncertainty in the x direction, PkShx is the peak sharpness in
the X direction [Eq. (14)], zpk is refined PCC (refer to Sec. 2.4.3), N and M are the image
dimensions, D is the normalized contrast difference between two images at overlap region
[Eq. (17)], c1 and c2 are the normalized contrast of two images [Eqs. (18) and (19)], and
SPF is a subpixel factor (refer to Sec. 2.3.1).

The values D, c1, and c2 are calculated as

EQ-TARGET;temp:intralink-;e017;116;214D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

�
fðx; yÞ

f
−
tðx; yÞ

t

�
2

s
; (17)

EQ-TARGET;temp:intralink-;e018;116;147c1 ¼
σf
f
; (18)

EQ-TARGET;temp:intralink-;e019;116;114c2 ¼
σt
t
; (19)

where fðx; yÞ and tðx; yÞ are the fixed and float subsets, f and t are the mean values of the two
subsets, and σf and σt are the standard deviations (STDs) of the two subsets.
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Note that the formulation of aMU2 (nor aMU) does not use the misregistration measurement
as an input; in other words, aMU2 does not reject misregistration measurements based on their
magnitudes. Peak sharpness is calculated in the EW and NS directions separately. Therefore,
aMU2 is also evaluated independently in each direction.

Figure 3 shows the relationship between the scatter in unscreened IPATS measurements ver-
sus PCC coefficient, peak sharpness of PCC, and 1/aMU2 in the EW direction. The plot is from
GOES-16 channel 2 data acquired on April 11, 2019. The variation of measurements decreases
quickly with increasing 1/aMU2 values, which indicates aMU2 represents the measurement
quality very well. On the other hand, there is still considerable amount of scattering IPATS mea-
surements when PCC coefficient and peak sharpness are high. The plots show that aMU2 is more
effective at discriminating between likely invalid measurements and likely valid measurements
than screening with PCC coefficient or peak sharpness alone. Currently for NAV, the aMU2
threshold was visually examined and manually set to 0.357 (1/aMU2 = 2.8) for all ABI channels,
which is marked as the vertical line in Fig. 3(a). The measurements with an aMU2 value in the
EW direction that are larger than the threshold are removed. A similar screening process is also
applied in the NS direction.

2.5.3 Statistics-based screening

Most of the poor-quality NAV measurements are removed by the aMU2 screening. However,
a few significant outliers occasionally pass the aMU2 screening. Therefore, a median absolute
deviation from the median (MAD) screening is applied to clean up the remaining outliers. First,
the MAD is calculated from all INR measurements that passed the aMU2 screening in a 24-h
period. An INR measurement is then removed by the MAD screening when the absolute
deviation of this measurement from the median of INR measurements in 24-h is larger than
the MAD value times a user-specified factor, currently set to nine.

Fig. 3 The unscreened IPATS measurements versus (a) PCC coefficient, (b) peak sharpness of
PCC, and (c) 1/aMU2 in the EW direction from channel 2 data of 144 FD images acquired from
18:00 UTC April 11 to 17:59 UTC April 12, 2019. The variation of the measurements drops sig-
nificantly with increasing 1/aMU2 value. There are still considerable variations of the measure-
ments when the PCC coefficient and peak sharpness increase. 13,310 out of 58,745 IPATS
unscreened measurements passed the aMU2 screening in both X and Y directions.
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Occasionally, the MAD screening masks short-term abnormal situations by removing legiti-
mate measurements with large INR error. For example, in a 24-h period, if a small number of
images have significant (and real) INR error, most of the INR measurements in those images are
removed by the MAD screening because of the out-of-family large INR error readings. The
remaining INR measurements are actually low-quality measurements, although they pass the
aMU2 screening, because they do not represent the real INR error of these scenes. To correct
the overshoot of the MAD screening, a scene is marked as a “real significant error” scene if more
than 50% of measurements from this scene are removed by the MAD screening. The measure-
ment outliers of such a scene are not determined by the MAD but the STD of all the measure-
ments of this scene. A measurement in such a scene is marked as an outlier and removed if it is
greater than three times the STD of this scene. This process is named short-term abnormal detec-
tion (STAND).18 The STAND screening is currently applied to ABI NAV only and is also
planned to be applied to other metrics.

2.6 Assessment of Measurement Error

INR error is composed of two components: INR intrinsic error and measurement error:

EQ-TARGET;temp:intralink-;e020;116;531ϵINR ¼ ϵINR_intrinsic þ ϵME; (20)

where ϵINR is the IPATS measured INR error, ϵINR_intrinsic is the INR intrinsic error of the
ABI system, and ϵME is the measurement error due to uncertainty resulting from the IPATS
algorithms.

To estimate ϵME and determine the optimal configuration parameters to minimize ϵME, we ran
IPATS with 136 Landsat chips to process test images with known, intentionally induced INR
errors. The induced errors are up to one GOES-R pixel in all four directions (East, West, South,
and North). The root mean square error (RMSE), ϵME, of the 136 measured errors against
induced errors in EW and NS directions are considered the measurement error ϵME.

Stair-step error is one important measurement error introduced by the image registration
algorithm.18 The name “stair-step error” comes from the fact measured INR error plotted against
the true INR error resembles a stair-step shape (see Fig. 1.1-1 in Ref. 19). The difference between
measured and true error is therefore oscillatory, and the frequency and the amplitude of the
oscillation depend on the spatial resolution at which the image correlation is performed. As
mentioned, the spatial resolution for correlation is determined by the SPF parameter in the
IPATS configuration. The theoretical stair-step error is 0 when the intrinsic error is zero.18,19

However, it is observed that the ϵME of the 136 measured error is close to but not exactly 0
in this test when the intrinsic error is zero in both directions (Fig. 4). This is due to other error
sources, e.g., imperfect resampling algorithm, the possible true minor mismatch between
Landsat chips and ABI subsets and insufficient spatial/spectral information in the coarse reso-
lution image. The ϵME for the zero-shift case increases with increasing SPF. This indicates that
measurement error increases when interpolating to finer and finer resolution.

Fig. 4 The relationship between the RMSE of measured errors and SPF. There is no induced error
in the test.
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The frequency of the stair-step error, equal to the size of the target resolution of the image
registration, and the amplitude of RMSE depend on the SPF value.18,19 The stair-step error
emerges when the intrinsic error is not zero. Table 2 shows the maximum RMSE for different
SPF values. In contrast to the situation of zero intrinsic error, the maximum RMSE decreases
with increasing SPF when the intrinsic error exists. This means the stair-step error is a more
significant measurement error source than the error introduced by other sources. At the
GOES resolution (SPF = 1), the maximum RMSE is about 0.19 pixels. There is a significant
drop, from 0.19 to 0.06 pixels, with a change of SPF from 1 to 2. It then drops slowly from 0.06
to 0.02 pixels when the SPF increases from 2 to 12. The measurement quality improved slightly
but the computation time increases significantly because the computation time of the image
registration algorithm has O (SPF2) time complexity. After examining the tradeoff between the
accuracy and the computation cost, the SPF was set to 2 for NAV, CCR, and FFR in the IPATS
baseline configuration. The measurement error is only 1% of the pixel size when the intrinsic
error is close to 0 (Fig. 4). This is sufficient for assessing the NAVaccuracy. The intrinsic error of
GOES-16 and GOES-17 ABIs is close to 0 since they turned into the operational status. The
measurement error could drop from 1% of the pixel size to 0.5% if the SPF value switches from
2 to 1. However, the intrinsic error often increased unexpectedly due to various reasons, which
we will discuss later in this paper. In such a case, the measurement error increases significantly as
the stair-step error emerges. IPATS is designed to not only monitor the normal operation status
but also detect and assess the abnormal INR errors. Therefore, the optimal SPF value is set to
2 for NAV, CCR, and FFR through the mission. The selection of the optimal algorithms and
parameters of SSR, not shown here, is independent to the selection of other metrics because
of the small evaluation window over special tasked MESO image pairs. For SSR, the optimal
SPF value is set to 3.

2.7 IPATS Baseline Configuration for ABI

IPATS provides multiple algorithms for each processing step. In monitoring ABI INR perfor-
mance, a set of IPATS algorithms and user-configurable parameters were selected as the baseline
configuration for optimal monitoring results. The selection of the at-launch algorithms and
parameters was based on simulated ABI data and surrogate Advanced Himawari Imager
(AHI) data, and these algorithms and parameters were later refined with on-orbit GOES-16 data
during the postlaunch test (PLT) phase. Table 3 shows the algorithm selections and parameter
values for preprocessing, image registration, and screening IPATS results. For the metrics gen-
erated in the operational mode, including NAV, CCR, and FFR, the algorithm selections of pre-
processing and image registration are the same. The primary difference is in screening results.
The VZA screening is not applied in CCR and FFR because two ABI images are compared in
these two metrics, and they do not suffer the small subset dimension issue when the VZA is large
(Sec. 2.5.1). The STAND screening is not applied in CCR and FFR also, but we plan to include it

Table 2 Maximum RMSE in pixels in both EW and NS direc-
tions with induced error up to 1 pixel on each direction.

SPF

Maximum RMSE

EW NS

1 0.19 0.19

2 0.06 0.06

3 0.04 0.04

4 0.03 0.03

6 0.03 0.03

12 0.02 0.02
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for these two metrics in the future. The aMU2 threshold value for NAV is uniformly set as 0.357
for all channels. However, the aMU2 thresholds for CCR and FFR vary by channel pairs or
channels.

For SSR, there is no Sobel edge enhancement applied in preprocessing, and only SZA and
aMU2 are applied in screening SSR results because they are sufficient to remove poor quality
measurements and meet the accuracy requirement.

3 Image Navigation and Registration Results

IPATS has been used to assess the INR performance of GOES-16 and GOES-17 ABIs since the
start of their respective PLT phases. NAV, CCR, FFR, and WIFR are measured continuously on
all MESO, CONUS, and FD images. SSR requires specially commanded MESO image pairs
where two MESO images overlap with small offset in NS direction. Therefore, SSR is only
measured during PLT, when the special MESO image pairs can be commanded. IPATS produces
three levels assessment reports: 24-h statistics, scene statistics, and single location assessments.
The 24-h statistics are computed from 18:00 UTC to 17:59 UTC the next day. In the 24-h and
scene assessment reports, the statistics of measured and screened EW and NS errors, including
mean, STD, minimum, maximum, and metric (absolute value of the mean plus 3 STD) values,
are reported for each measured channel/channel pairs together with the number of samples.
Reports of single location measurements include measured errors, measurement location, the
channel number, measurement time, and aMU2 values. The assessment reports are produced
for MESO, CONUS, and FD images separately. In this section, FD reports are presented to
demonstrate ABI INR performance.

The 24-h statistics report is good for long-term tendency monitoring and diagnostic of small
amplitude but long-term disturbances. The scene statistics report is usually used to assess short-
term abnormal INR performance. The single location measurements report is a resource for
the analysis of intrascene anomalies.

Table 3 IPATS baseline configuration for monitoring GOES-R ABI performance. WIFR is not
included because it is calculated from NAV results offline.

Metric Preprocessing Image registration Screening

NAV SPF = 2 PCC SZA < 75 deg (VNIR channels only)

Bicubic interpolation Parabolic peak
interpolation

VZA < 75 deg

Sobel edge enhancement aMU2 < 0.357

Within 9 MAD

STAND

CCR SPF = 2 PCC SZA < 75 deg (when VNIR channels involve)

Bicubic interpolation Parabolic peak
interpolation

aMU2, threshold value varies among channel
pairs

Sobel edge enhancement Within 9 MAD

FFR SPF = 2 PCC SZA < 75 deg (VNIR channels only)

Bicubic interpolation Parabolic peak
interpolation

aMU2, threshold value varies among channels

Sobel edge enhancement Within 9 MAD

SSR SPF = 3 PCC SZA < 85 deg (VNIR channels only)

Bicubic interpolation Parabolic peak
interpolation

aMU2, threshold value manually determined
scene by scene
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3.1 Long-Term NAV Record

Figures 5 and 6 show the 24-h NAV statistics for GOES-16 and GOES-17 ABIs, respectively,
from the start of PLT to November 5, 2019. Channels 2 and 7 are used to represent visible and
infrared (IR) channels, respectively. There are close to 3 years of GOES-16 data and about 1.5
years of GOES-17 data. Long-term ABI NAV results show the effects of the on-orbit calibration
process of ABI navigation system. In general, GOES-16 NAV error in the NS direction is less
than in the EW direction and is more stable over time. GOES-17 NAV errors are comparable in
both directions. The gaps in the early stage of PLTare due to the very large NAVerrors, which are
out of the plot range.

The NAVerror of GOES-16 in the EW direction of all channels and NS direction for channels
7 and 13 are significant from January 27 to April 27, 2017. The time period with significant
GOES-17 ABI NAVerrors is from May 1, to July 11, 2018. Figure 5 shows the NAV long-term
trend of GOES-16. The major INR updates in April and November 2017 and April 2018 are
apparent in the plots. Two updates in 2017 improved the mean NAV errors to around 1 μrad in
both directions across all channels. The update in June 2018 removed gradual increase in EW
NAVerror, which increased about 1 μrad in all channels from June 2017 to November 2017 and
from November 2017 to April 2018. This is due to a zonal tide term which was missing in the

Fig. 5 The time series plots of the 24-h mean and three STD of the GOES-16 ABI channels 2 and
7 NAV errors from January 27, 2017, to November 5, 2019. The vertical dash lines mark when
the ABI products reached provisional and operational status.
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spacecraft’s Earth orientation calculations. The missing term drifts slowly over time and led to
the EWerror gradually increasing as observed. Figure 6 is the NAV long-term trend of GOES-17.
The NAV errors dropped to around 1 μrad in VNIR channels and around 2 μrad in IR chan-
nels after the INR updates in July 2018. The EW errors increased about 0.5 μrad in VNIR
channels and 2 μrad in MWIR/LWIR since the yaw flip on September 9, 2019. This indicates
there is room to fine tune the INR parameters to improve the NAV accuracy to pre-yaw-flip
level.

It took 3 months for GOES-17 to bring the NAVaccuracy to about 1 to 2 μrad and 11 months
for GOES-16 to obtain the similar improvement. The faster improvement of GOES-17 is because
of the lessons learned from GOES-16. Currently, the NAV errors of GOES-17 are about 1 μrad
larger than GOES-16.

3.2 Long-Term CCR Record

The CCR performance of both ABIs is presented in Figs. 7 and 8. The CCR of channels 1 and 2
and channels 7 and 13 represents the CCR of visible and IR channel pairs. For GOES-16 ABI,
CCR of visible channels achieves excellent accuracy, both mean and σ are within 1 μrad, in a

Fig. 6 The time series plots of the 24-h mean and three STD of the GOES-17 ABI channels 2 and
7 NAV errors from April 13, 2018, to November 5, 2019. The vertical dash lines mark when the ABI
products reached provisional and operational status.
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month from the beginning of PLT. CCR of IR channels improved significantly from start of PLT
to provisional status and to operational status. The mean error dropped from more than 10 μrad
to around 1 μrad and to less than 0.5 μrad. The STD of error also dropped from more than 5 μrad
to less than 0.5 μrad.

The CCR performance of GOES-17 ABI improved to <0.5 μrad in about 5 months after the
start of PLT, which is much faster than GOES-16 ABI. The INR algorithm/parameters were
continually updated after reaching the operational status. The impact of the updates on CCR
is showed clearly in Fig. 8. The latest CCR change is after the yaw flip on September 9,
2019, and the specific cause is being investigated, as is the prior jump near the end of July
2019. The variation of CCR between channels 1 and 2 increased in the NS direction.

For both ABIs, the CCR performance in NS direction is consistently better than EW direction
since the start of PLT.

3.3 Long-Term FFR Record

The mean of 24-h FFR assessment of both ABIs are close to zero since the start of PLT. The
variation of FFR, represented by the STD of 24-h FFR measurements, dropped through PLT. The
STD of both ABIs improved to about 1 μrad in the VNIR channels and 2.5 μrad in the IR chan-
nels after reaching operational status. GOES-17 has slightly better FFR performance in VNIR
channels than GOES-16 (Figs. 9 and 10).

Fig. 7 The time series plots of the 24-h mean and three STD of the GOES-16 ABI CCR errors from
January 27, 2017, to November 5, 2019. The vertical dash lines mark when the ABI product
reached provisional and operational status.
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3.4 INR Performance Summary

Tables 4 and 5 show the 24-h INR performance of both GOES-R ABIs from 18:00 UTC October
27 to 17:59 UTC October 28, 2019. This day was selected randomly. The INR performance of
both ABIs is stable since they were relocated to the operational location (Figs. 5 and 6). These
24-h statistics are representative of the current ABI INR status. The water vapor-sensitive chan-
nels (channels 4, 8, 9, and 10) are not included in these metrics because there is little ground
surface information captured by these channels. The ground surface information, especially the
land and water boundaries, are the key features for IPATS image registration algorithms in the
context of GOES-R INR.

The requirements of each INR metrics are measured with 99.73% (3σ) absolute error
(Tables 4 and 5).20 The worst performance channel (of NAV and FFR) and channel pair (of
CCR) are listed in Tables 4 and 5. The performance is calculated as the absolute value of the
mean plus 3 STD. All metrics, except direct CCR between VNIR and MWIR/LWIR, are well
within the mission requirements.

For this 24-h time period, GOES-16 has a slightly better NAV performance, especially in the
EW direction (15.0 versus 18.1 μrad). GOES-17 results are better for FFR and CCR of VNIR
channels, but about 1.5 μrad higher than GOES-16 for CCR of the MWIR/LWIR channels in
both directions. The CCR of VNIR and MWIR/LWIR being larger than the requirements does
not necessarily indicate true large CCR misregistration but may due to the high measurement
error between VNIR and MWIR/LWIR channels, because of the significant spectral response
difference. An alternative method to reduce CCR measurement error is to apply one or more
bridging channels to estimate CCR indirectly using the transitive property. Equation (21) shows

Fig. 8 The time series plots of the 24-h mean and three STD of the GOES-17 ABI CCR errors from
April 13, 2018, to November 5, 2019. The vertical dash lines mark when the ABI products reached
provisional and operational status.
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how the mean indirect, or bridged, CCR between channels A and D are calculated from the
means of direct CCR of channels A, B, C, and D:

EQ-TARGET;temp:intralink-;e021;116;309CCRbridged_A_D ¼ CCRA_B þ CCRB_C þ CCRC_D; (21)

where CCRbridged_A_D is the mean bridged CCR between A and D, and CCRA_B, CCRB_C, and
CCRC_D are means of the direct CCR measurements. The variation of bridged CCR, measured
by STD, is calculated as

EQ-TARGET;temp:intralink-;e022;116;234STDbridged_A_D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STD2

A_B þ STD2
B_C þ STD2

C_D

q
; (22)

where STDbridged_A_D is the STD of bridged CCR, and STDA_B etc. are the STD of direct CCR
measurements. The transitive path chosen for the bridged CCR estimate for a given channel pair
is the path with no more than two intermediary channels that minimize the bridged STD, where
each step along the path is required to have at least 1000 valid CCR measurements. Determining
and documenting a permanent set of bridging paths is a candidate for future study.

Table 5 shows the assessments of CCR performance using this bridging approach. The esti-
mated CCR performance with the bridging method improves from the direct CCR measure-
ments. The most significant improvements is for the CCR of the VNIR to MWIR and LWIR
channels, where the values drop from over 30 μrad to about 10 μrad and about 15 μrad to about
10 μrad in the EW and NS directions, respectively. The bridged CCR of VNIR to MWIR and

Fig. 9 The time series plots of the 24-h mean and three STD of the GOES-16 ABI FFR errors from
January 27, 2017, to November 5, 2019. The vertical dash lines mark when the ABI products
reached provisional and operational status.

Tan et al.: GOES-R series image navigation and registration performance. . .

Journal of Applied Remote Sensing 032405-18 Jul–Sep 2020 • Vol. 14(3)



LWIR channels of GOES-17 ABI is slightly out of mission requirements in the NS direction.
This is due to the poor performance of channel 16 of GOES-17 ABI.21 When channel 16 of
GOES-17 is excluded, the bridged CCR of VNIR-MWIR/LWIR is 11.0 and 8.1 μrad in EW
and NS, respectively. They are all now within the mission requirements.

Fig. 10 The time series plots of the 24-h mean and three STD of the GOES-17 ABI FFR errors
from April 13, 2018, to November 5, 2019. The vertical dash lines mark when the ABI products
reached provisional and operational status.

Table 4 GOES-R ABIs’ 24-h INR performance from 18:00
UTC October 27, 2019, to 17:59 UTC October 28, 2019. The
second column is the requirements of each category in the
mission requirement. The worst performance, calculated as
mean plus 3σ, among the channels is listed. The water
vapor-sensitive channels (channels 4, 8, 9, and 10) are not
included in these metrics. The units are μrad.

INR metrics Requirement

GOES-16 GOES-17

EW NS EW NS

NAV 28 15.0 16.1 18.1 16.3

WIFR 28 20.5 18.6

FFR, <2 km 21 4.2 5.5 3.2 3.5

FFR, 2 km 28 7.6 8.9 6.3 6.6
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3.5 Anomaly Detection and In-Depth Analysis

Besides assessing the overall INR performance, IPATS also played an important role in anomaly
detection and in-depth analysis. The following two sections show examples of each.

3.5.1 NAV during eclipse

During the eclipse season, fast thermal deformations in the sensor around penumbral times lead
to abnormal, large image navigation error for a short time period.22,23 Figures 11 and 12 show the
channel 13 scene temporal NAV plot of both ABIs from 18:00 UTC September 25 to 17:59 UTC
September 27, 2019. This period is in the fall eclipse season of 2019. For GOES-16, the images
around 4:00 UTC every day have a large EW error variation (from −2 to 10 μrad) followed by
another EWerror variation around 5:20 UTC (up to 23 μrad). The EWerror slides to the opposite
direction, about −7 μrad, right after the second variation, and then returned to normal NAVerror
gradually in approximate 1 h. The eclipse impact on the NS error is negligible.

Fig. 11 The time series plots of the mean and 3σ of the GOES-16 ABI FD channel 13 images from
18:00 UTC, September 9 to 17:59 UTC, and September 11, 2019. The rectangular boxes marked
the 3-h period centered at when eclipse effect occurs.

Table 5 GOES-R ABIs’ 24-h CCR performance from 18:00 UTC October 27, 2019, to 17:59 UTC
October 28, 2019. The second column is the requirements of each category in the mission require-
ments. The worst performance, calculated as mean plus 3σ, among the channel pairs is listed.
Both direct CCR and bridged CCR are presented. The units are μrad. The boldface highlights the
measured CCR is out of mission requirements.

Requirement

GOES-16
direct CCR

GOES-16
bridged
CCR

GOES-17
direct CCR

GOES-17
bridged
CCR

EW NS EW NS EW NS EW NS

CCR, within VNIR, <2 km 7 5.5 4.1 3.4 2.8 4.1 2.9 3.6 2.5

CCR, within VNIR, 2 km 11.2 16.7 10.1 10.3 9.6 11.0 6.9 7.1 4.2

CCR, with MWIR/LWIR 11.2 7.0 6.8 3.9 3.8 8.8 7.8 8.1 7.8

CCR, VNIR-MWIR/LWIR 11.2 39.7 15.2 9.3 7.7 30.5 14.9 11.0 11.5
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For GOES-17, the impact of the eclipse is similar to GOES-16 but with larger amplitude.
At first, the EW error changed from about −1 to 12 μrad around 8:20 UTC and then swung in
the opposite direction, about −10 μrad. The error gradually shifted from −10 to −5 μrad from
8:40 to 9:30 UTC, followed by another variation to −20 μrad. Then, the EW error gradually
returned to normal level, about −1 μrad, over ∼1 h. Similar to GOES-16, the eclipse impact
in NS direction is not significant. In general, the eclipse effect is more significant and lasts longer
on GOES-17 than GOES-16.

The observed NAVabnormality during the eclipse is not only due to the thermal contraction
on the hardware but also due to how the software, in particular the Kalman filter, handling the
situation. The eclipse transients have been reduced since the beginning of the PLT with INR
algorithm and tuning improvements (not discussed here). There should be room to further min-
imize the eclipse transient, at least for GOES-17.

3.5.2 INR measurements for in-depth analysis

In addition to directly assessing INR accuracy, the measured INR errors are also useful to evalu-
ate and understand more in-depth information, such as focal plane misalignment, scan encoder
misalignment, etc. Figures 13 and 14 show one sample in-depth analysis. These plots show the
linear least-squares fit between the measured NAVerrors and the measurement locations in each
scene based on 30 days of LWIR NAV results in April 2019. In the situation of perfect INR, the
errors and the measurement location are independent. The lines plotted in Figs. 13(a), 13(b),
14(a), and 14(b) would ideally be horizontal lines with zero error, and the lines plotted in
Figs. 13(c), 13(d), 14(c), and 14(d) would ideally be vertical lines with zero error. The slopes
and the offsets of the lines in Figs. 13 and 14 indicate various issues could relate to satellite
attitude, INR parameters, or scene variation as a function of viewing geometry.

For GOES-16, the mild slope of lines in Figs. 13(a) and 13(d) indicate a scale error in EWand
NS directions, respectively. On average, the measured EWerrors at the east and west boundaries
of an LWIR scene have a difference of 2.5 μrad. Similarly, the measured NS errors at the north
and south boundaries of an LWIR scene have a difference of 1.5 μrad. The systematic offsets are
also observed in both directions as the lines in Figs. 13(a) and 13(d) are all located to one side of
the zero-error line. This is consistent with the conclusions in the 24-h NAV assessment reports.
The dependency of NS errors in EW image location is negligible [Fig. 13(b)]. However, the EW
errors are about −1.2 and 1.7 μrad at the north and south boundaries of an LWIR scene,

Fig. 12 The time series plots of the mean and 3σ of the GOES-17 ABI FD channel 13 images from
18:00 UTC, September 9 to 17:59 UTC, and September 11, 2019. The rectangular boxes marked
the 3-h period centered at when eclipse effect occurs.
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respectively [Fig. 13(c)]. The different slopes between NS error versus EW image location and
EW error versus NS image location indicate a possible orthogonality issue.

The scale error in GOES-17 ABI in both EW and NS directions is more significant than the
scale error in GOES-16 ABI. On average, the measured EW errors at the east and west boun-
daries of an LWIR scene have a difference of 3.8 μrad [Fig. 14(a)]. The measured NS errors at
the north and south boundaries of an LWIR scene have a difference of 10.3 μrad [Fig. 14(d)].
The systematic offsets are also observed in both directions [Fig. 14(a) and 14(d)]. The depend-
ency of NS errors in EW image location is weak [Fig. 14(b)]. The NS error difference is only
<0.5 μrad at the east and west boundaries of an LWIR scene. However, the EWerror difference is
about 12.1 μrad at the north and south boundaries of an LWIR scene [Fig. 14(c)]. There are two
possible reasons for this effect: the first is the potential orthogonality issue, and the second is the
impact of EW scale error [Fig. 14(a)] due to the unbalanced spatial distribution of GOES-17
Landsat chips [Fig. 2(b)]. A thorough analysis is needed to confirm which reason, or the com-
bination of two reasons, led to this effect. Channel 16 of GOES-17 is not included due to poor
performance.20

We have repeated similar analysis for GOES-17 data acquired in June and September 2019
(not shown) and the same effect was observed with minor variations. Further study is needed to
determine the causes of these phenomena.

Fig. 13 The linear least square fit between NAV errors and the image location of the measure-
ment. The statistics are based on the LWIR data of GOES-16 in April 1 to 30, 2019. Besides the
individual measured LWIR channels (channel 12 to 16), the average of all measured LWIR chan-
nels is also plotted and marked as “LWIR” in the plots.
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4 Summary

IPATS has been implemented to continuously monitor ABI INR performance since the start of
GOES-16 PLT. The INR metrics produced by IPATS have been used to help tuning of both ABI
INR systems to achieve excellent INR accuracy performance. IPATS is not a static system. The
algorithm processing modules and the module-specific configuration parameters are all user
selectable. The processing sequence and the postprocess screenings are all customizable for each
metric. Additional screenings and subprocedures were developed when the demand emerged,
e.g., the STAND and VZA screening approaches were developed during the PLT of GOES-16
and GOES-17, respectively. The INR accuracy of the GOES-R ABIs improved with updates
and tuning in PLT. The IPATS measurements show that in general both GOES-R ABIs are
in compliance with the mission requirements. There is still room for further ABI INR improve-
ments, such as NAV performance during eclipse, CCR discontinuities after algorithm/parameters
updates, scale errors, orthogonality issues, etc.
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