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Abstract. A problem of lossy compression of hyperspectral images is considered. A specific
aspect is that we assume a signal-dependent model of noise for data acquired by new generation
sensors. Moreover, a signal-dependent component of the noise is assumed dominant compared to
a signal-independent noise component. Sub-band (component-wise) lossy compression is stud-
ied first, and it is demonstrated that optimal operation point (OOP) can exist. For such OOP, the
mean square error between compressed and noise-free images attains global or, at least, local
minimum, i.e., a good effect of noise removal (filtering) is reached. In practice, we show how
compression in the neighborhood of OOP can be carried out, when a noise-free image is not
available. Two approaches for reaching this goal are studied. First, lossy compression directly
applied to the original data is considered. According to another approach, lossy compression is
applied to images after direct variance stabilizing transform (VST) with properly adjusted param-
eters. Inverse VST has to be performed only after data decompression. It is shown that the second
approach has certain advantages. One of them is that the quantization step for a coder can be set
the same for all sub-band images. This offers favorable prerequisites for applying three-dimen-
sional (3-D) methods of lossy compression for sub-band images combined into groups after
VST. Two approaches to 3-D compression, based on the discrete cosine transform, are proposed
and studied. A first approach presumes obtaining the reference and “difference” images for each
group. A second performs compression directly for sub-images in a group. We show that it is
a good choice to have 16 sub-images in each group. The abovementioned approaches are tested
for Hyperion hyperspectral data. It is demonstrated that the compression ratio of about 15–20
can be provided for hyperspectral image compression in the neighborhood of OOP for 3-D
coders, which is sufficiently larger than for component-wise compression and lossless coding.
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1 Introduction

Airborne and space-borne hyperspectral imaging is now a useful and conventional tool in remote
sensing (RS). It is able to provide valuable information for different applications, such as Earth
surface monitoring, oceanology and hydrology, pollution control, and so on.1–3 However, taking
into account modern tendencies of increasing spectral and spatial resolution of sensors as well as
areas of sensed terrains, the amount of acquired data greatly increases. Then, there is often an
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urgent need to compress the hyperspectral data intended for transferring, archiving, and dissemi-
nation.3–6

As it is known, there exist lossless and lossy data compression techniques.4,7 Some customers
and researchers consider lossless compression to be preferable.6 However, lossless compression
techniques applicable to hyperspectral data have a serious drawback. Even the best among
them provide a compression ratio (CR) of about 4–5, 5,6,8 and there are no recent papers dem-
onstrating considerable improvement of CR for lossless compression techniques. Meanwhile,
it is often desirable or required to have a larger CR. This means that one has to apply the
lossy compression.

Two aspects are worth stating here. First, lossy compression can be the only way out in some
practical situations. Second, under certain conditions, useful information can be practically not
lost in images if one applies lossy compression. This happens if distortions introduced by lossy
compression are smaller than the level of the noise present in an image, and these distortions
basically relate to noise removal.9,10 Thus, it is possible to employ near-lossy compression
approaches10 and to sufficiently provide larger attained CR values due to this.

It is also worth mentioning that a partial noise filtering effect that takes place in lossy com-
pression of noisy images can be considered as a positive factor. It can lead to improving the
classification accuracy of compressed hyperspectral images compared to uncompressed (origi-
nal, compressed in a lossless manner) images.11 It can even lead to a better visual quality of
compressed images compared to original (noisy) ones if the parameters of a coder are properly
adjusted and noise level in the original images is quite high.12 A question, then, is what is “prop-
erly adjusted” with respect to properties of hyperspectral RS data and noise present in the
corresponding images.

For many years, noise in acquired hyperspectral data has been assumed additive,10,13and this
is almost true for images provided by such hyperspectral sensors as airborne visible/infrared
imaging spectrometer (AVIRIS). However, studies performed recently have clearly shown
that images acquired by more modern (new generation) hyperspectral sensors are corrupted by
noise that fits a more complicated model. In more detail, the noise has, in general, a signal-
dependent (SD) nature and a SD component of the noise is prevailing compared to a signal-
independent (SI) component.14–20

A problem is that better adequateness of the SD noise model is still often ignored in the design
of methods intended for different types of hyperspectral image processing. Such processing can
include denoising of junk channels,21,22 spectral analysis,16 and spectral feature extraction as well
as compression.19 There are some recent papers23,24 where the authors declare their intention to
take noise statistics into account when processing hyperspectral images. Meanwhile, there are also
several papers where the authors have already done several steps in this direction.16,19–22,24–26

Obviously, to take noise statistics into account, it is necessary to have it at disposal or to
estimate the statistics with appropriate accuracy. Such estimation has to be performed either
from calibration data (if available) or from obtained RS data. In the latter case, it is desirable
to carry out such an estimation in a blind manner. In this sense, it is worth saying that the cor-
responding methods are quickly developing and have been already used in several applica-
tions.14,17,18,27–32 Moreover, the most efficient of them provides rather high accuracy.31 Thus,
a question is how to exploit this information in lossy compression of hyperspectral images?

There already exist some initial observations and results that can be employed. Skauli in
Ref. 19 proposes to use standard Anscombe transform33 and to apply it component-wise to
hyperspectral images that are usually represented as 16-bit data. This simple operation practi-
cally reduces data amount twice, i.e., performs specific data compression. Moreover, such an
operation makes noise in transformed sub-band images almost additive.34 Besides, standard or
generalized Anscombe transforms have been earlier exploited in lossy compression of astro-
nomic images35 as well as other images corrupted by SD noise.36 This shows that such variance
stabilizing transforms (VSTs) can be useful for dealing with SD noise.

Another group of observations relates to lossy compression of multidimensional data
(images). Experience in color image and video compression37 shows that if there is a correlation
between multidimensional data components (e.g., frames for video), it can be used to increase
the CR. Similarly, the use of three-dimensional (3-D) compression methods usually leads to
sufficient increase of CR compared to component-wise compression of hyperspectral data
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(see, e.g., 38–40). This happens due to exploiting high interchannel correlation, which is inherent
for hyperspectral images.1,4,6 However, the 3-D compression of hyperspectral data has to be
carefully done taking both noise statistics and the dynamic range of sub-band images into con-
sideration. Otherwise, decompressed images in sub-bands that have a small dynamic range can
be considerably distorted.41

Finally, there can be different priorities of requirements to lossy compression of hyperspec-
tral data.4,38,40 For example, it might be required to provide CR not less than some given value
with simultaneous desire to introduce less distortions into compressed data. We concentrate on
another priority, the primary goal is to carry out lossy compression in the neighborhood of the
optimal operation point (OOP), while it is also desirable to provide as much high CR as possible.
Note that compression in the neighborhood of OOP (with efficient noise removal) practically
provides maximal probability of correct classification for multichannel RS data, as this has been
shown for multispectral data in Ref. 42 for the case of pure additive noise. Therefore, we can
expect that similar results will be observed for the classification of hyperspectral images cor-
rupted by SD noise.

The goal of this paper is to aggregate these observations within a unified framework or sev-
eral possible approaches to lossy compression. In fact, this paper extends initial results presented
in a conference paper,25 but with distinctive differences mentioned below. Section 2 considers
some peculiarities of hyperspectral data for the Hyperion sensor and presents the estimates of SD
noise parameters. We give some quantitative criteria for lossy compression of single-channel
noisy images that can be used in an analysis of component-wise compression of hyperspectral
data. These criteria describe lossy compression from several different points of view including
hyperspectral data interpreting.

Two approaches, with and without VST, to the component-wise lossy compression of images
corrupted by SD noise, are presented in Sec. 3. They are tested and compared for simulated
data (test images). Compared to the paper,25 we give more details and provide a more thorough
analysis on coder parameter setting in order to reach compression in an OOP neighborhood.
In particular, novelty consists in an analysis of different images for approaches to lossy com-
pression. These approaches either exploit or do not use VST.

Section 4 presents the results and analysis for the case of component-wise compression
applied to real-life Hyperion images. Compared to the paper,25 more real-life data sets are con-
sidered to strengthen the conclusion drawn from an analysis of the results and to make these
conclusions more general.

Section 5 discusses one approach to increase the CR by means of processing sub-band
images in groups. One image is used as reference and other sub-band images are represented
in different form. We present more practical examples in Ref. 25 to better stress the potentiality
of this approach.

Section 6 absolutely contains new results dealing with the 3-D compression of data after VST
in groups. In particular, novelty of our study consists in analysis of the influence of the group size
on the efficiency of compression.

Section 7 deals with new results of analysis of endmembers for original and compressed data
(we would like to thank the anonymous reviewers for their ideas to carry out such analysis).
Finally, conclusions and directions of future research are given.

2 Image/Noise Model and Lossy Compression Efficiency Criteria

This paper is based on the assumption that noise in considered images is mixed when both SI and
SD components are present. Thus, the noisy image can be presented as 17,27

InijðnÞ ¼ Itrueij ðnÞ þ NSI
ij ðnÞ þ NSD

ij ðnÞ; (1)

where Itrueij ðnÞ is the true image value in the ij-th pixel of a n-th sub-band image, NSI
ij ðnÞ and

NSD
ij ðnÞ denote SI and SD noise components in the ij-th pixel of a n-th sub-band image,

i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm, where IIm and JIm define the image size. These noise components
are assumed zero mean, spatially uncorrelated, and Gaussian. Then, an appropriate model for the
noise variance in an n-th sub-band image is σ2ijðnÞ ¼ σ20ðnÞ þ kðnÞItrueij ðnÞ where σ20ðnÞ is the SI
noise variance and kðnÞ is the SD noise parameter.

Zemliachenko et al.: Lossy compression of hyperspectral images based on noise parameters estimation. . .

Journal of Applied Remote Sensing 083571-3 Vol. 8, 2014



One and probably the best (the most accurate and simplest) way to estimate the parameters
σ20ðnÞ and kðnÞ is to analyze calibration data for acquired hyperspectral images.14 However,
calibration data are not always available in practice. This means that one has to directly
apply a blind method for obtaining the estimates of σ̂20ðnÞ and k̂ðnÞ from acquired images.
This can be done onboard if lossy compression should be performed there or on-land if lossless
compression has been used before transferring the data downlink and the RS images are to be
compressed with a larger CR for further transferring, dissemination, and/or storage.

Certainly, the obtained estimates of noise parameters have to be accurate enough. According
to both theoretical and practical studies, the methods14,18,43 based on the fractal Brownian motion
model, maximum-likelihood estimation of noise and texture parameters in scanning windows,
and noise-informative maps are able to appropriately provide the accurate estimates. Therefore,
we have applied them to obtain and analyze the noise parameter estimates for the Hyperion data.
In more detail, we have processed the image EO1H1800252002116110KZ44 and some other
images are available.

The obtained estimates are represented in Fig. 1 as dependences and on a sub-band index n.
Since the obtained estimates of vary in wide limits ([this happens due to a variation of dynamic
range and signal-to-noise ratio (SNR) in sub-band images), they are represented in a logarithmic
scale. It is also worth mentioning that Hyperion data contain several sub-bands that have very
narrow dynamic ranges and small SNR. Due to this, these sub-bands are commonly not used in
analysis of acquired data. Because of this, we have set the estimates for such sub-bands to zero
(the estimates for these sub-bands are not shown at all). Besides, these sub-band images have not
been subject to compression in our further analysis.

Let us briefly analyze the dependences in Fig. 1. As seen, the estimates are within wide limits
from about 10 to several thousands while are from about 0 (there are even a few estimates that are
slightly negative) to about unity (mostly the estimates are of about 0.1). Both the estimates and
are quite close for most neighbor sub-bands. Both of them are also quite large at the edges of
sensor bands. It is worth noting here that there are two different sensors in the Hyperion RS
system. The first sensor operates in visible range and the second one works in the infrared range.

Similar plots have been obtained for other Hyperion images. In particular, for the image
EO1H2010262004157110KP, the same tendencies as reported above have been observed.
This indirectly means that, on the one hand, parameters of the noise components in hyperspectral
data for a given sensor can be quite stable. On the other hand, this means that the methods14,18 of
blind estimation are quite accurate. Note that noise has been spatially identified as uncorrelated
for all analyzed data; this simplifies further simulations and analysis.

One more important observation is that using the obtained estimates, it is possible to evaluate
the contributions of SD and SI noise components. Such analysis has shown that noise variance
induced by an SD component is usually considerably (up to 40 times) greater than the SI noise
variance at the upper margin of the data dynamic range for almost all sub-band images.
Therefore, the contribution of the SD noise component is prevailing, and it should be taken
into account in designing image processing methods.

For simplicity, consider a single-channel (a given sub-band) image denoted as
Inij; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm, i.e., omitting spectral index n. Just such noisy images that

Fig. 1 Dependences (a) and (b) for the Hyperion data EO1H1800252002116110KZ.
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one has available in practice. However, it is possible to have the corresponding true image also
Itrueij ; i ¼ 1; : : : IIm; j ¼ 1; : : : JIm in simulations where noisy image is obtained by generating and
adding noise with preset k and σ20 according to the model (1).

Suppose now that lossy compression is applied to Inij; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm,
obtaining a compressed image Icij; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm. Then, in simulations, it
becomes possible to calculate a metric Metr for either a pair of images Inij and Icij,
i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm (denote it as Metrnc) or a pair of images Itrueij and Icij,
i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm (denote this metric as Metrtc). Any conventional metric Metrnc
worsens for any coder for larger CR. This deals with the fact that more distortions are introduced
in compressed data if the CR increases. Note that usually dependences of Metrnc on CR [or
another parameter that controls compression (PCC) as bpp or quantization step (QS) or scaling
factor (SF)] are considered for conventional analysis of lossy compression performance.

Meanwhile, dependences of the metricMetrtc on CR (or PCC) are specific. This has been first
noticed in the paper 9 for such standard criterion (metric) as mean square error

MSEtc ¼
�XIIm
i¼1

XJIm
j¼1

ðIcij − Itrueij Þ
�
∕IImJIm: (2)

It has been shown that for quite intensive noise and quite simple structure images, the metric
Metrtc often has optimum (minimum for MSEtc) for a certain value of a PCC.

Later it has been shown that other thanMSEtc metrics,Metrtc might have optimum as well.12

Such quality metrics, as standard peak signal-to-noise ratio (PSNR), and visual quality metrics,
as multi-scale structural similarity (MSSIM)45 and PSNR-HVS-M,46 might have maxima. The
optimum of the metric Metrtc is called OOP. This optimum is associated with a PCC used for a
given coder. It can be bppOOP for such coders as JPEG2000 or SPIHT, QSOOP for DCT-based
coders as, e.g., AGU47 or a scaling factor SFOOP for JPEG. Note that the OOP position depends
upon a metric and the coder used.12

Below we obtain and analyze data for the coder AGU47 that performs image compression in
32 × 32 pixel blocks and deblocks after decompression. There are several reasons for using this
coder in our further analysis. First, it performs better than JPEG and slightly better than
JPEG2000 and SPIHT.47 Second, QS serves as PCC for this coder, and it is easy to control
compression (to vary CR) by changing QS.12,47 Third, there is also a 3-D version of AGU
that has earlier been successfully applied for compressing AVIRIS hyperspectral data with
sub-band grouping.13,40

Therefore, let us come to demonstrating and analyzing typical dependences presented in
Fig. 2. These are the plots of MSEtc versus QS obtained for six test images, namely,
Airfield, Baboon, Barbara, Goldhill, Lenna, and Peppers. All of these test images have been
corrupted by the noise with the parameters k ¼ 1.0 [which is almost the largest value in

Fig. 2 Dependences MSEtcðQSÞ for six test images corrupted by signal-dependent noise (k ¼ 1.0
and σ20 ¼ 20).
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Fig. 1(a)] and σ20 ¼ 20 [which is almost the smallest value in Fig. 1(b)]. Hence, we deal with the
case of SD prevailing noise. Here, we have directly applied lossy compression to original noisy
images, without any preliminary transformations.

All six dependences MSEtcðQSÞ have global or, at least, local minima (local minimum takes
place for the most textural test image, Baboon, andMSEtc in this minimum is slightly larger than
MSEtcðQS ¼ 1Þ, i.e., for practically uncompressed images). For all these curves, minima are
observed for QS about 55. Thus, we can state that OOP exists in this case, and, assuming
that an image is compressed in the OOP neighborhood, the quality of Ic is closer to the quality
of Itrue than the quality of In (according to the analyzed metric). This brings two benefits to
compression in an OOP neighborhood. The first benefit is that a compressed image has a suf-
ficiently smaller size than the original (uncompressed or compressed in a lossless manner)
image. The second benefit is that due to partial filtering of the noise, the classification of decom-
pressed data can improve compared to classification of the original (noisy) data.42 Moreover,
classification accuracy was shown42 to attain the optimum if multichannel data are compressed
in an OOP neighborhood. These benefits give evidence in favor of compressing hyperspectral
data in the neighborhood of OOP.

In practice, there can be some restrictions that might not allow carrying out the compression
in an OOP neighborhood. For example, it might be necessary to ensure a desired CR and com-
pression in OOP does not produce such a CR (produces a smaller CR than desired). In this paper,
we do not analyze such a case. In fact, we do not impose any restriction on attained CR.
Meanwhile, we analyze ways to provide the CR as large as possible (see Sec. 5 and 6).

The dependences in Fig. 2 have been obtained for the case of available noise-free image Itrue.
And a question is how to attain OOP (e.g., to set a proper QS for the coder AGU) if Itrue is not
available; this happens in practice. In this sense, it is reasonable to already exploit the existing
experience of carrying out lossy compression in the neighborhood of OOP for other types of
noise. Several procedures have been already proposed and tested for a case of additive
noise.12,48,49 The procedure in Ref. 48 is iterative and, under conditions of the known variance
of additive noise, it can be used for any lossy compression method. The procedure in Refs. 12
and 49 presumes that QS is set proportional to the additive noise standard deviation according to
the recommendations based on the experience obtained in advance (by simulations).
Respectively, this procedure is not applicable for all coders. However, this procedure is appli-
cable for coders for which QS or SF serve as PCC. This was one more reason for considering the
AGU coder that uses QS as PCC and that has been thoroughly studied in the papers.12,50

It has also been shown in the papers34,36,50 that earlier proposed automatic procedures12,48,49

for OOP attaining can also be applied for compressing images corrupted by different types of
SD noises. The main idea is in applying a proper homomorphic (variance stabilizing) image
transformation before compression with converting SD noise to pure additive (or almost pure
additive 34) in transformed images. Then, under the condition that parameters of SD noise can be
recalculated to a variance of additive noise, the task reduces to a simpler and already solved one.

The SD noise type determines the type of variance stabilizing transformation to be applied.
For example, conventional Anscombe transform33 performs reasonably well if noise in an origi-
nal image is Poissonian. Logarithmic transform can be a proper solution if the noise in the origi-
nal images is pure multiplicative.50,51 Finally, if the noise contains both SI and SD components,
the generalized Anscombe transform35 can help in coping with the situation. Thus, taking the
results of noise parameter estimation presented above into account, we pay basic attention to
using the generalized Anscombe transform.35 This is a novel approach according to which it
becomes possible to perform lossy compression of images corrupted by the noise of the con-
sidered type without VST is also proposed.

3 Comparison of Approaches to Component-Wise Lossy Compression

A first approach to the compression of a one-channel (component) image corrupted by mixed
noise of the model (1) can be called either direct or WithOut Variance Stabilizing Transform
(WOVST). It consists in the following. Suppose that parameters k and σ20 are known or pre-
estimated with appropriate accuracy. Then, using k and σ20 or their estimates, it is possible
to determine the so-called equivalent noise variance in a given image
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σ2eq ¼ σ20 þ
XIIm
i¼1

XJIm
j¼1

kItrueij ∕ðIImJImÞ ≈ σ20 þ
XIIm
i¼1

XJIm
j¼1

kInij∕ðIImJImÞ: (3)

If a coder uses QS or SF as PCC, then a coder parameter for reaching OOP can be set as

QS ¼ α1σeq; SF ¼ α2σeq; (4)

where α1 and α2 denote some proportionality factors that depend upon the coder used.
Experiments carried out by us for the coder AGU for many test images and sets of k and
σ20 have demonstrated that QSOOP ≈ 4.5σeq. The plots in Fig. 2 confirm this. The value of
σ2eq approximately equals MSEtcðQS ¼ 1Þ, which is about 150 for all considered test images.
Then, QSOOP ≈ 4.5σeq ≈ 55 as we have according to all plots in Fig. 2. Note that for other coders
one might have other recommendations. For example, for another DCT-based coder ADCT,52 the
recommendation is to set QS ¼ 3.5σeq. This coder is able to produce slightly better results than
AGU, but it requires more time for compressing images since the partition scheme optimization
is needed.

An advantage of theWOVSTapproach is that compression is directly applied to the image In.
As a result, no additional operations are needed after decompression. The corresponding lossy
compression procedure can be fully automatic. At the first stage, blind estimation of noise
parameters k and σ20 is carried out if needed. At the second stage, σ2eq (3) is calculated, then
QS is determined according to (4) and a chosen method of lossy compression (coder) is applied
with the value of QSOOP set.

Now consider the second approach, the so-called WVST (With VST). According to this
approach, a noisy image is first subject to the VST for obtaining the transformed image
where the generalized Anscombe transform is applied (SI noise component is assumed to
have zero mean in the expression below; see model (1) and comments to it)

IGAij ¼ ð2∕kÞ
�
kInij þ

3

8
k2 þ σ20

�
1∕2

: (5)

If k and σ20 are exactly known or accurately pre-estimated, the noise in the image IGA after (5)
becomes purely additive and has a variance equal to unity. This means that for coders using QS
or SF as PCC one has

QS ¼ α1; SF ¼ α2; (6)

where for the AGU coder the recommended α1 is about 4.5.
The dynamic range of images after the transform (5) decreases and the two-dimensional

(2-D) data array IGAij , i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm becomes real-valued, although Inij values
are usually integers. This means that a coder to be applied to the data array IGA should be
able to deal with real-valued 2-D data. However, there is also an easy way out. If a coder is
able to compress only integer-valued data, it is possible to stretch the dynamic range of IGA

by β times where β is adjusted to provide a desired range of data representation and to
round-off the obtained values. Then, PCC can be set as

QS ¼ α1β; SF ¼ α2β: (7)

In our further studies, we have not used (7) since the coders applied were able to deal with
real-valued data arrays.

The decompression for the proposed approach contains more stages than the WOVST
approach. After the initial decompression and deblocking (if applied), a decompressed
image range is to be inversely changed (if stretching by β times has been applied before com-
pressing). Then, the inverse generalized Anscombe transform is to be carried out.

Although it might seem difficult, the approach of WVST to image compression and decom-
pression can be easily implemented as fully automatic. The first stage is to estimate the noise
parameters k and σ20 in a blind manner (if these parameters are not at disposal). Then, an image is
transformed according to (5) and, if needed, stretched to a desired range. After this, QS or SF are
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determined according to (6) or (7) depending upon whether its stretching is used or not. Finally,
a chosen coder with preset QS or SF is applied.

The decompression is carried out in inverse order. Note that the operations of direct and
inverse VST as well as data stretching/destretching are very simple and do not require essential
time for their execution.

One obvious benefit of the VST-based approach to compression is clear from the description
given above. For a selected coder, the used QS or SF is fixed if stretching is not used and a coder
is applicable to compressing 2-D real-valued data. Note that we have modified the original coder
AGU to be able to work with 2-D data.

A question now is what approach is better in the sense of providing the smallest MSEtc and
the largest CR in OOP? To answer it, we have obtained numerical simulation results for the
considered approaches for the six above-mentioned test images corrupted by the considered
type of noise. The following three sets of parameters have been analyzed: k ¼ 0.2 and
σ20 ¼ 20; k ¼ 0.4 and σ20 ¼ 20;k ¼ 1 and σ20 ¼ 20. The first set relates to comparable contribu-
tions of the SI and SD components; the other two sets correspond to the prevailing contribution
of the SD component.

The obtained data are presented in Table 1. Since σ20 ¼ 20 is the same for all three sets, its
values are not presented in a separate column of the table, and the values of k are given in the
second column. For the approach with WOVST, the recommended QSrec are given in Table 1.
For the approach with preliminary VST, QSrec is fixed and set equal to 4.5. The following data
are presented: MSEtc, MSSIMtc, and PSNR − HVS −Mtc, all determined for the decompressed
and true images. The obtained CR values are presented for all cases.

Concerning the visual quality metrics, it is worth recalling the following. The values of
MSSIM vary from 0 to 1 where MSSIM ¼ 1 relates to perfect visual quality. In turn, the values
of PSNR-HVS-M are expressed in dB, and larger values of this metric correspond to a better
visual quality. Note that visual quality metrics are in high correlation with the probability of
correct classification for pixels that belong to small-sized objects (roads, fences, etc.).

The analysis of data presented in Table 1 shows the following:

1. If k is larger and, respectively, σ2eq is larger, then QSrec is also larger for the approach
WOVST; this leads to larger values of CR provided for a given test image;

2. If k is larger, thenMSEtc is larger whileMSSIMtc and PSNR-HVS-Mtc are smaller; these
changes relate to a worse quality of decompressed images according to the considered
metrics; this means that if noise intensity in the original (noisy) images is higher, then the
quality of images compressed in OOP is lower; this property could be predicted in
advance;

3. The value of CR reached in OOP depends upon the noise intensity and the image com-
plexity; CR increases if noise becomes more intensive (i.e., if k and, respectively, σ2eq are
larger); similarly, CR is larger if a compressed image has a simpler structure (compare
obtained values of CR for such simple structure test images as Peppers and Lenna to CR
values for such textural test images as Baboon and Airfield under the condition of
fixed k);

4. The tendencies abovementioned in items 2 and 3 are observed for both approaches;
5. In general, the approaches WVST and WOVST produce comparable performance

(according to all considered metrics and CR) although there are small differences;
6. The CR values are slightly smaller for the WVST approach, but for this approach the

values of MSEtc are smaller while MSSIMtc and PSNR-HVS-Mtc are usually slightly
larger; this means that the quality of images compressed in the OOP neighborhood
for the WVST approach is slightly better than for the WOVST approach.

Based on the analysis performed, it is possible to conclude that, in general, both proposed
approaches can be applied in practice for compressing a single-channel image or a hyperspectral
image in a component-wise manner. Both WOVST and WVST approaches are able to simulta-
neously adapt to noise intensity and image structure. As it follows from analysis, less complex
and noisier images are compressed better (with a larger CR). Meanwhile, less noisy and/or more
complex structure images have to be compressed “more carefully,” tending “to preserve” useful
information (texture features, details, etc.) contained in such images.
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Table 1 Efficiency of the considered approaches to lossy compression in optimal operation point
(OOP) neighborhood for the coder AGU.

Image k Approach QSrec MSEtc CR MSSIMtc PSNR − HVS −Mtc

Airfield 0.2 WOVST 31.39 71.50 6.62 0.967 32.01

WVST 4.50 69.98 6.46 0.967 32.06

0.4 WOVST 39.57 92.57 8.16 0.955 30.02

WVST 4.50 90.44 7.83 0.955 30.08

1.0 WOVST 57.48 134.84 12.21 0.932 27.02

WVST 4.50 129.75 11.37 0.933 27.19

Baboon 0.2 WOVST 30.50 76.45 5.69 0.974 32.59

WVST 4.50 75.18 5.64 0.974 32.64

0.4 WOVST 38.15 104.09 6.73 0.965 30.47

WVST 4.50 102.12 6.62 0.965 30.52

1.0 WOVST 55.06 166.05 9.19 0.944 27.17

WVST 4.50 161.98 8.89 0.945 27.37

Barbara 0.2 WOVST 29.33 29.89 12.08 0.980 34.13

WVST 4.50 29.85 12.06 0.980 34.19

0.4 WOVST 36.27 38.92 14.16 0.974 32.46

WVST 4.50 38.85 14.16 0.974 32.51

1.0 WOVST 51.79 60.74 18.66 0.961 29.77

WVST 4.50 59.43 18.75 0.963 29.80

Goldhill 0.2 WOVST 29.31 36.55 11.23 0.973 33.13

WVST 4.50 35.92 11.07 0.974 33.28

0.4 WOVST 36.25 45.94 14.01 0.964 31.33

WVST 4.50 44.25 13.60 0.966 31.56

1.0 WOVST 51.74 64.24 20.51 0.947 28.84

WVST 4.50 61.21 20.01 0.951 29.06

Lenna 0.2 WOVST 30.13 22.58 18.37 0.977 34.60

WVST 4.50 21.99 17.66 0.978 34.78

0.4 WOVST 37.55 28.08 22.16 0.971 32.91

WVST 4.50 27.10 20.84 0.973 33.13

1.0 WOVST 54.02 40.10 31.00 0.960 30.45

WVST 4.50 37.88 29.07 0.963 30.76

Peppers 0.2 WOVST 29.88 28.69 14.61 0.973 34.11

WVST 4.50 28.22 14.01 0.973 34.17

0.4 WOVST 37.16 34.53 18.40 0.967 32.60

WVST 4.50 33.63 17.41 0.968 32.69

1.0 WOVST 53.33 47.21 26.04 0.955 30.15

WVST 4.50 46.03 24.69 0.957 30.20
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Let us consider what happens in the case of lossy compression of images corrupted by
SD noise. For this purpose, we have carried out an analysis for the test image airfield presented
in Fig. 3(a) for the case of SD noise with k ¼ 1.0 and σ20 ¼ 20. Noise is well seen in
homogeneous image regions. Because of this, in our further analysis, we will pay our main
attention to three quasi-homogeneous regions with different mean levels marked by digits 1,
2, and 3. Studies are carried out using difference images. The first difference image is
obtained as Id1ij ¼ jInij − Itrueij j; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm. It is represented in Fig. 3(b).
Darker regions in this difference image correspond to areas with less intensive noise as

Fig. 3 Experimental data for the test image Airfield: (a) its noisy version and (b)-(f) difference
images, respectively.
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Inij; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm, i.e., areas with, on the average, smaller
Itrueij ; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm. This is well seen from a joint analysis of images in
Figs. 3(a) and 3(b), in particular, in marked quasi-homogeneous regions.

We have also considered four other difference images. The second and third difference images
have been obtained as Id2ij ¼ jInij − IcWOVST

ij j; Id2ij ¼ jInij − IcWVST
ij j; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm,

where IcWOVST
ij and IcWVST

ij denote the i-th pixel values of the compressed images, where VST has
not been used and applied, respectively. In these images [given in Figs. 3(c) and 3(d)], one can
basically analyze the properties of noise removed from noisy images by lossy compression.
Compression WVST removes more noise in areas with larger mean values while lossy compres-
sion without VST introduces distortions of approximately the same level into all fragments of
Inij; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm. These distortions deal more with noise filtering in regions
with larger Itrueij but they relate to distorting information in areas with smaller Itrueij .

Finally, we have also obtained Id4ij ¼ jItrueij − IcWOVST
ij j; Id5ij ¼ jItrueij − IcWVST

ij j; i ¼ 1; : : : ; IIm;
j ¼ 1; : : : ; JIm. These difference images characterize residual noise and introduced distortions.
They are presented in Figs. 3(e) and 3(f). The images are quite similar since the values ofMSEtc

for them are of the same order (Table 1). However, there are some differences. For fragments
with larger Itrueij , one has, on the average, Id4ij smaller than Id5ij and vice versa. This means that
WVST compression approximately provides a constant factor of noise suppression in the case of
SD noise. Quantitative confirmation of this can be found in the paper.34

We have also carried out experiments similar to those described in the section above for
another coder. This coder is called ADCT52 and has been applied within WOVST and WVST
approaches. We do not present the obtained results here but give only the main observations.
The tendencies described above in items 1–6 of this section are also valid for data and dependences
obtained for the coder ADCT. The difference compared to AGU is the following. First, the rec-
ommended α1 for ADCT is slightly smaller than for AGU (3.5 instead of 4.5). This slightly leads to
(by 5. . . 10%) smaller CR for ADCT compared to AGU. Second, under the abovementioned set-
ting of QS, ADCT approximately provides the same CR as AGU for a given test image and noise
parameters set. Third, MSEtc values for ADCT operating in OOP are smaller by 5%–17% than
the corresponding data for AGU. Similarly, MSSIMtc for ADCT operating in OOP can be up to
0.08 better (larger) than for AGU, also operating in OOP. Finally, PSNR − HVS −Mtc for ADCT
can be up to 1.5 dB better than for AGU. Therefore, the quality of images compressed by ADCT
in an OOP neighborhood is sufficiently better than for the corresponding images compressed
by AGU. However, the coder ADCT is considerably slower, and this can restrict its application,
especially for onboard compression of hyperspectral data.

4 Analysis of Component-wise Compression Efficiency for
Real-Life Data

The previous two sections gave data and insight for procedures that can be used for fully auto-
matic compression of hyperspectral images in the neighborhood of OOP. Recall that we assume
noise parameters to be accurately known or pre-estimated for each sub-band. Since we know
now what to do for a single-channel image, it is easy to extend the procedure to component-wise
processing of multichannel (hyperspectral) data.

Consider first what to do if the WOVST approach is applied. Since the estimates of k̂ðnÞ and
σ̂20ðnÞ are individual (different) for each sub-band, QS or SF should also be individual. To deter-

mine PCC(n), it is necessary to use the estimates of k̂ðnÞ and σ̂20ðnÞ in (3) to calculate σ2eqðnÞ.
Then QSrecðnÞ (or SFrecðnÞ) has to be calculated and remembered. The obtained set of
QSrecðnÞ; n ¼ 1; : : : ; N is coded as side information to be used at the decompression stage
(N denotes the number of sub-bands in hyperspectral data). Compression of each sub-band
image with QSrecðnÞ (or SFrecðnÞ) for a used coder is carried out afterward. Decompression
is carried out in inverse order. Note that it is not necessary to remember and code

k̂ðnÞ; n ¼ 1; : : : ; N and σ̂20ðnÞ; n ¼ 1; : : : ; N because these arrays are not exploited at the
data decompression stage.

Let us describe now the WVST approach. The estimates k̂ðnÞ and σ̂20ðnÞ have to be obtained
since they are used for getting the transformed images IGAij ðnÞ for each sub-band. Then, lossy
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compression is carried out for each sub-band image where PCC (QS or SF) is the same for all
sub-bands (depending upon the coder applied and according to the recommendations known in
advance). The estimate arrays of k̂ðnÞ; n ¼ 1; : : : ; N and σ̂20ðnÞ; n ¼ 1; : : : ; N are to be coded as
side information and added to the bit-stream. The reason for this is that these data are needed at
the decompression stage to carry out an inverse transform with parameters that are individual for
each sub-band.

The description given above does not take some peculiarities of real-life data into consid-
eration. In particular, the simulated images studied in Sec. 3 have been presented as 2-D arrays of
8-bit non-negative integers (within the limits of 0,. . . ,255). However, sub-band images of real-
life hyperspectral data are usually represented by 16 bits and might also contain negative integer
values. As an example, Fig. 4 gives the dependences of maximal and minimal values in the sub-
band images on the sub-band index n for Hyperion data set EO1H1800252002116110KZ.
Besides, some estimates k̂ðnÞ can be negative [see the plot in Fig. 1(b)] although, according
to theory, kðnÞ; n ¼ 1; : : : ; N should be non-negative.

Note that similar properties of real-values data have been observed for other real-life
Hyperion data sets considered by us. Thus, these peculiarities are to be taken into account
in practice.

These peculiarities might cause some problems, especially for the WVST approach when
executing VST. For example, it might occur that the term in (5) is negative, and this can
cause problems. We propose one possible way to get around this shortcoming. Let us carry
out shifting of the values InijðnÞ; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm as

Insij ðnÞ ¼ InijðnÞ þ jIminðnÞj; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm (8)

for those sub-bands that have negative values of minimal value IminðnÞ for this image.
Then, instead of conventional generalized Anscombe transform (5), the following VST form

is performed

IGAij ðnÞ ¼ ð2∕k̂ðnÞÞ
�
k̂ðnÞInsij ðnÞ þ

3

8
k̂2ðnÞ þ σ̂20ðnÞ þ k̂ðnÞjIminðnÞj

�
1∕2

; i ¼ 1; : : : ; IIm; j

¼ 1; : : : ; JIm: (9)

The values IminðnÞ have to be remembered and coded as ancillary information alongside the
sets of k̂ðnÞ and σ̂20ðnÞ.

Besides, if, for a given sub-band, one has k̂ðnÞ < 0, then k̂ðnÞ ¼ 0 is assumed and another
modification is used, namely IGAij ðnÞ ¼ InijðnÞ∕σ̂0ðnÞ; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm. This means
that image value shifting is not carried out, but data normalization is performed instead to obtain
the variance of noise close to unity. The introduced modifications can be easily and quickly done
at the initial stage of hyperspectral data analysis to prepare them to compression.

Data decompression contains the following stages. First, ancillary information (the sets of
k̂ðnÞ, σ̂20ðnÞ, and IminðnÞ, n ¼ 1; : : : ; N) are decoded. Then, for sub-bands having k̂ðnÞ < 0,

Fig. 4 (a) Maximal and (b) minimal values versus sub-band index n for sub-band images, data set
EO1H1800252002116110KZ.
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the final decompressed images are obtained as IdijðnÞ ¼ IGAdij ðnÞσ̂0ðnÞ; i ¼ 1; : : : ; IIm;
j ¼ 1; : : : ; JIm. Here fIGAdij ðnÞg denotes the originally decompressed image for the n-th sub-
band. This means that decompressed data are simply stretched to the original range.

For the sub-bands having negative IminðnÞ, inverse transform and range shifting are per-
formed according to the following expression:

IdijðnÞ ¼ ðIGAdij ðnÞ∕2Þ2k̂ðnÞ − 3

8
k̂ðnÞ − σ̂20ðnÞ∕k̂ðnÞ − jIminðnÞj; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm:

(10)

Finally, for sub-bands with non-negative k̂ðnÞ and IminðnÞ, the final decompressed data are
obtained as follows:

IdijðnÞ ¼ ðIGAdij ðnÞ∕2Þ2k̂ðnÞ − 3

8
k̂ðnÞ − σ̂20ðnÞ∕k̂ðnÞ; i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm; (11)

i.e., using inverse VST in its original form that corresponds to direct VST (5).
We have analyzed both WOVST and WVST component-wise lossy compression of real-life

hyperspectral data. Both approaches have led to comparable (very similar) results. Because of
this, below we present data only for the approach of WVST.

This has been done25 for the Hyperion hyperspectral data EO1H1800252002116110KZ.
Recall that for real-life data, the true sub-band images are not available. Hence, compression
performance can be described by the attained CR(n) as well as by losses introduced by com-
pression. These losses can be characterized byMSEncðnÞ calculated for the original fInijðnÞg and
compressed fIcijðnÞg images in each sub-band.

Although the recommended QS for the coder AGU used within WVST approach is equal to
4.5, we have also used some other values of QS. The obtained plots ofMSEncðnÞ are represented
in Fig. 5 in logarithmic scale, three values of QS, namely, 2.5, 3.5, and 4.5 are considered.
Besides, we also present the plot of σ2eqðnÞ.

As expected, an increase of QS leads to larger MSEncðnÞ for any given sub-band. However,
values of MSEncðnÞ for losses introduced in different sub-bands differ considerably, up to three
orders. And MSEncðnÞ are of the same order asσ2eqðnÞ for each sub-band. Moreover, for
QS ¼ 3.5, the plots of MSEncðnÞ and σ2eqðnÞ practically coincide.

These are interesting and important observations but let us further check what happens for
other real-life data sets. Figure 6 presents the plots of MSEncðnÞ and σ2eqðnÞ for another real-life
Hyperion data set, only the case QS ¼ 3.5 is analyzed. As seen, the shapes of σ2eqðnÞ depend-
ences in Figs. 5 and 6 are very similar. And again the plots MSEncðnÞ and σ2eqðnÞ for QS ¼ 3.5

practically coincide.
This is not surprising. First, this means that the coder introduces the losses that mainly relate

to noise filtering. Second, similar effects were earlier observed for lossy compression of images
corrupted by additive noise:48 MSEnc in the neighborhood of OOP and additive noise variance
were approximately equal. Moreover, this property was put into the basis of automatic iterative

Fig. 5 Dependences (for three values of QS) and data set EO1H1800252002116110KZ.

Zemliachenko et al.: Lossy compression of hyperspectral images based on noise parameters estimation. . .

Journal of Applied Remote Sensing 083571-13 Vol. 8, 2014



procedure of OOP attained in Ref. 48. Thus, the approximate coincidence of the plots
MSEncðnÞ and σ2eqðnÞ indirectly confirms that we have compressed data in the neighborhood
of OOP.

The earlier simulation results and compression data for real-life images show that QS for
AGU in practice should be about 4. A slightly smaller value (QS ¼ 3.5) is recommended
for “more careful” lossy compressions when the primary task is not to introduce too many losses.
In turn, slightly larger QS (e.g., QS ¼ 4.5) can be used if it is desirable to provide a larger CR. In
fact, QS plays the role of PCC for the considered case of component-wise lossy compression of
hyperspectral data.

Now consider the dependences of CR(n) for the proposed component-wise automatic com-
pression procedure WVST based on an AGU coder. The data are presented for lossy compression
with QS ¼ 3.5 (see Fig. 7, solid lines, denoted as AGU with VST). For comparison purposes, we
also give data for the lossless coder (archiver) RAR applied component-wise (dash-dot lines,
denoted as RAR). Figure 7 represents the plots for two considered real-life data sets.

As it follows from the analysis, CR(n) for the proposed procedure varies from about 4.5 to 25
[Fig. 7(a)] and from 4.5 to 40 [Fig. 7(b)]. CR values are about 6.0 for most sub-band images of
the first data set and about 7.0 for the second data set. In turn, the values of CR(n) for archiver
RAR are considerably smaller, and they vary from about 1.5 to 2.0 for both data sets. Therefore,
the proposed procedure provides improvement of CR by, at least, 3 times compared to the loss-
less counterpart.

It could be interesting to look at what kind of losses are introduced into compressed images.
Processed hyperspectral images are of quite a large size IIm × JIm ¼ 256 × 3072 pixels. Therefore,
we have cut from them only some of the most informative fragments. Figure 8 presents the
original and compressed images for the 220’th sub-band of hyperspectral image (data set
EO1H1800252002116110KZ). As seen, noise is noticeable in the original image [Fig. 8(a)].

In the compressed image [Fig. 8(b)], valuable information at the edges of small-sized objects
and textures, are not distorted while the noise is partly suppressed. The effects of noise filtering
are well seen in homogeneous image regions. Therefore, the desired positive effects are attained
for this component image compressed with CR about 6.0; see Fig. 7(a).

Another example is shown in Fig. 9. This is the sub-band that can be considered good (high
quality), i.e., characterized by high SNR and practical invisibility of the noise in the original data
[see Fig. 9(a)]. Concerning the compressed image [see Fig. 9(b)], the introduced distortions are not
observed by visual inspection, and both images in Fig. 9 look identical. CR for this sub-band image
is about 5.5, i.e., quite large. In fact, for this sub-band, one deals visually with lossless compression
described in several papers dealing with lossy compression of medical and optical images. 53–55

The presented examples demonstrate that the proposed approach to component-wise lossy
compression performs well enough, providing reasonable filtering of images in components
with relatively small SNR and “invisible” distortions into sub-band images with relatively
large SNR. The question now is whether or not CR can be further increased without increasing
the distortion level.

Fig. 6 Dependences (QS ¼ 3.5) and data set EO1H2010262004157110KP.
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5 Compression of Difference Images with Sub-Band Grouping

The component-wise compression procedure described above does not exploit the interband
correlation of hyperspectral data known to be high.1,4,5 Meanwhile, this inherent property allows
increasing CR by employing spectral redundancy of the data without increasing losses.4,5,13,38–40

There are numerous possible approaches to carry out 3-D compression. Our goal here is not to
compare them and/or to find the best (optimal) approach. Instead, we would like to test how

Fig. 8 Fragments of (a) original and (b) compressed image in 220’th sub-band.

Fig. 7 Dependences on sub-band index for two proposed procedures and RAR:(a) data set
EO1H1800252002116110KZ and (b) data set EO1H2010262004157110KP.
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efficient the 3-D compression could be in the case of VST-based image preprocessing. Besides,
we would like to show what benefits can be provided by such preprocessing.

It has already been demonstrated in the paper41 that setting QS or SF that are too large for
sub-band images with small dynamic range. When these images are included into a 3-D group
and jointly compressed, this can lead to destroying data in such sub-bands after decompression
(due to lossy compression).

In this sense, VST applied component-wise before compression provides several favorable
prerequisites. First, noise becomes additive and has practically the same intensity in all sub-
bands (some differences in variance of the noise in sub-band images can be detected due to
errors of SD noise parameters estimation). Second, dynamic ranges of sub-band images after
direct VST become closer, and this allows avoiding the abovementioned drawback of 3-D
compression.

The abovementioned prerequisites can be exploited in several ways dealing with setting fixed
QS or SF for groups of sub-band images. Note that there are many ways for forming such groups.
For example, for Hyperion data there can be two groups where the first one includes sub-band
images from one (optical) sensor, and the second group contains sub-band data for an infrared
sensor. It is also possible to have more groups containing fixed or individual numbers of sub-
bands for each group. Finally, all sub-band images can be considered as 3-D data array and
compressed together.

Having this in mind, we have decided not to analyze optimality of data groupings here. In this
section, we consider one way of lossy compression while the next section deals with another
way. And even for the second way, which provides better results, we cannot guarantee that it is
the best. Our primary goal is only to demonstrate the sufficient increase in CR due to exploiting
interband correlations.

Thus, let us assume that the first stage of the proposed procedure is the same as earlier,
i.e., for component-wise preprocessing. After determining the parameters of the noise in all
sub-bands, the corresponding VST, image shifting, and/or normalization (if needed) are carried
out (see the corresponding expressions in the previous section). Then, we propose to divide this
hyperspectral image into a few groups. Below we examine the case of two groups where the first
one contains sub-bands with indices from 13 to 57, and the second group includes sub-band
images with indices from 83 to 224. This means that we process and further compress only
essential Hyperion data (see Fig. 1 and the discussion at the beginning of Sec. 2).

For each group, we consider the first sub-band image as a reference. For other images in each
group, the following operations with obtained difference images are performed:

Fig. 9 Fragments of (a) original and (b) compressed image in 145’th sub-band.
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1. The first (reference) image IGAð1Þ is compressed with a set QS (recom-
mended QS ¼ 3.5).

2. For the second image in the considered group, the difference image is obtained as
Insδij ð2Þ ¼ IGAij ð1Þ − IGAij ð2Þ, i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm; it is then compressed
using QS ¼ 4.0.

3. The third and other images in the group are obtained as follows:

a. earlier compressed difference images Insδðq − 1Þ are decompressed by obtaining
Insδdðq − 1Þ. q denotes the sub-band image index in a group and Q defines the num-
ber of sub-band images in this group;

b. the supplementary image is calculated as Idecij ðq − 1Þ ¼ IGAij ðq − 2Þ − Insδdij ðq − 1Þ;
i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm;

c. the difference image is derived as Insδij ðqÞ ¼ Idecij ðq − 1Þ − IGAij ðqÞ; ; q ¼ 3; : : : ; Q.
d. the obtained difference image InsδðqÞ is compressed using QS ¼ 4.0.

Due to the use of decompressed images in the calculation of difference, there is no accu-
mulation of errors.

Let us explain the main idea of this approach. Due to the considerable interband correlation
and applied VST, the difference images have smaller dynamic ranges than the corresponding
reference image. If the interband correlation is very high, then difference images mostly
have a noise-like appearance (similar effects take place in frames of video when there is practi-
cally no motion between neighbor frames37). Small dynamic ranges of the data and their noise-
like structure allow their efficient compression because many DCT coefficients in blocks after
quantization become quite equal to zero and such data are well coded. Note that if noise in
neighbor images IGAðqÞ and IGAðq − 1Þ is uncorrelated, then the noise variance in the difference
image is larger than in each of these sub-band images. Then, according to the results of studies in
Sec. 2 and papers,48,49 QS for the difference images should be larger than for the reference
images.

Let us partly illustrate the aforesaid by images and their characteristics. Consider a fragment
of the 20’th and 19’th sub-bands for the first Hyperion subset. In the original images (before
VST), minimal values for both sub-bands are equal to zero and maximal values are on the order
of 17,000. After VST in these sub-bands, minimal values became equal at 269 and 243 while
maximal became 875 and 804 for the 20’th and 19’th sub-bands, respectively. Thus, the dynamic
range has considerably changed to a narrower one after VST. The 20’th sub-band image after
VST and image normalization (dynamic range compressing to fit the interval 0–255) is shown in
Fig. 10(a). The difference image has the range from 25 to 72, i.e., it is considerably smaller than
for images after VST. This difference image, without any changes of dynamic range, is presented
in Fig. 10(b). It really has many quasi-homogeneous regions with little noise (its variance is
about 2). Meanwhile, this difference image contains “some objects” that have much less contrast
with respect to the surrounding background than the corresponding contrasts in the sub-band
images (after VST).

Decompression is performed in inverse order. First, the reference and difference images are
decompressed. Then, decompressed sub-band images are calculated for nonreference sub-bands
as Idecij ðqÞ ¼ IGAdij ðq − 1Þ − Insδdij ðqÞ;i ¼ 1; : : : ; IIm; j ¼ 1; : : : ; JIm where IGAd defines the
decoded sub-band image. After this, the inverse transform is carried out individually for
each sub-band image according to the rules described above in Sec. 4. As seen, both procedures
of compression and decompression can be fully automatic.

The dependence MSEncðnÞ has been obtained for the considered approach denoted as group
processing (GP) AGU with VST. These dependences are practically the same as those for com-
ponent-wise compression with QS ¼ 3.5 [see the corresponding plots in Fig. (6)]. Hence, it is
possible to conclude that compression is provided in the neighborhood of OOP for each
sub-band.

Consider now dependences CR(n). They have already been presented above by dashed lines
in Fig. 7. As seen, the compression procedure GP AGU WVST results in increasing the CR for
almost all sub-bands where difference images are compressed instead of fIGAij ðnÞg. The total CR
for hyperspectral data increases by about 2 times with respect to the component-wise compres-
sion. This happens for both data sets presented in Fig. 7, and the same improvement has been
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observed for other Hyperion data sets compressed by us. Therefore, we can state that by exploit-
ing the interchannel correlation of the data, one is sufficiently able to increase CR without
increasing the level of losses introduced by lossy compression.

6 Three-Dimensional Compression with Sub-Band Grouping

The approach proposed and described in Sec. 5 exploits interchannel correlation but, in fact,
it does not carry out the actual 3-D compression by processing hyperspectral images as 3-D
data arrays. Below we consider three ways of such compression, all applied to images after
VST described in Sec. 4:

Sub-band images are collected in groups of size 8 sub-bands (denoted as AGU8WVST);
Sub-band data are combined in 16 sub-band group (AGU16WVST);
All sub-band images are represented as a joint 3-D data array and then compressed

(AGUAllWVST).
Note that we have applied all these approaches separately for optical and infrared sensors

data subsets, the first contains 43 sub-bands and the other has 142 sub-bands. Since there are
remaining sub-bands for both subsets for groups of size 8 and 16, these sub-bands have been
collected into smaller size groups.

Compression has been done using 3-D modification of the AGU coder earlier employed and
studied in Refs. 13 and 40 with application to AVIRIS data. The 3-D AGU carries out the DCT
for spectral decorrelation of the data in each group and then performs as for the 2-D case.
In Ref. 13, groups of sub-band images have been adaptively formed based on the analysis
of noise variance in neighbor sub-bands. In Ref. 40, sub-band images have been normalized
before compression using the estimates of noise variance. In both cases, the noise was supposed
pure additive.

In our case, noise is also assumed additive, but it becomes such after applying VST with
properly adjusted parameters. For 3-D AGU, recommendations concerning the setting QS
are the same as for the 2-D case. Because of this, we used QS ¼ 3.5 in all our experiments
described in this section. To demonstrate that this is a proper choice, Fig. 11 presents
MSEncðnÞ and σ2eqðnÞ dependences for the approach AGU8WVST on the first Hyperion data

Fig. 10 Sub-band image (a) after VST and (b) the difference image.
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set. These dependences practically coincide, and this shows that compression is performed in
the neighborhood of OOP for all sub-band images.

Dependences MSEncðnÞ have also been obtained for the approaches AGU16WVST and
AGUAllWVST. They are very similar to the one represented in Fig. 11 for the approach
AGU8WVST. Similarly, we also obtained dependences MSEncðnÞ for the second considered
Hyperion data set. These dependences have been compared between each other as well as
to σ2eq. All four dependences are very similar. Thus, we deal with compression in the OOP neigh-
borhood and can compare the analyzed approaches from the viewpoint of the provided CR.

One way to present dependences of CR is used in Fig. 12. Note that CR cannot be individu-
ally determined for each sub-band since sub-band images are compressed in groups. Thus, we

Fig. 11 Dependences (QS ¼ 3.5, approach AGU8WVST) and, data set
EO1H1800252002116110KZ.

Fig. 12 Dependences CR(n) for approaches AGU8WVST (blue), AGU16WVST (yellow),
AGUAllWVST (violet) and component WVST (red) for the data set EO1H1800252002116110KZ.
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assign CR attained for a given group to all sub-band images of this group and show them by
horizontal segments. For comparison purposes, CR(n) for component-wise compression with
VST is also presented. As seen, the values of CR vary from one group to another. Larger
CRs are usually provided for groups of sub-bands having smaller SNR as for the group starting
from n ¼ 13.

The obtained values of CR have been collected in Table 2 to compare performances for the
considered approaches. Data analysis shows the following. Optical subset images are com-
pressed better than infrared images. Compression with groups containing 16 sub-bands is
more efficient than for the approaches AGU8WVST and AGUAllWVST. Note that similar
effects have been earlier observed in the paper.40 It is quite difficult to explain this at the moment.
Probably, the reason is in the correlation degree between neighbor sub-bands that decrease
sub-bands with more distant wavelengths (indices).

In any case, 3-D compression considerably provides (several times) larger CR than in the
case of component-wise compression.

7 End-Member Analysis

In this section, we will show that lossy compression does not introduce negative effects in the
unmixing task, under the hypothesis that the linear setting can be admitted in practice. Recall that
the linear mixing model (LMM) assumes that the radiance or reflectance spectrum associated
with each pixel can be locally viewed as a linear combination of a limited number of distinct
materials, commonly known as endmembers.56 The fractions, in which these materials appear in
an observed mixed pixel, are called fractional abundances. The LMM hypothesis especially
holds when the macroscopic mixture of distinct materials, with relatively constant spectral prop-
erties, takes place for each observed pixel in the area of interest. In practice, when endmembers
are unknown, end-member signatures should be extracted or estimated first. However, some end-
member extraction algorithms can simultaneously provide abundance estimates.

Consider the end-member analysis carried out on the previously considered Hyperion data set
using two different and popular methods for extracting endmembers among observed data such as
the vertex component analysis (VCA)57 and the sequential maximum angle convex cone (SMACC)
method.56 Both methods are sequential, producing a set of endmembers in sequential order. Once
the number of endmembers and their spectral signatures are initially extracted by virtual dimen-
sionality (VD) and VCA, abundances can be subsequently estimated via the least-squares approach
with or without additional constraints (abundance non-negativity and/or sum-to-one constraints).
SMACC provides abundance images simultaneously to endmembers to determine the fractions of
the total spectrally integrated radiance or reflectance of a pixel contributed by each resulting end-
member. Whether abundance constraints should be imposed or not depends on practical applica-
tion. It has been argued that if the number of endmembers and their signatures are accurate, the two
constraints should be automatically satisfied.58 Note that the non-negativity constraint is more
important than the sum-to-one constraint. Due to noise and spectral variability, reinforcing the
sum-to-one constraint may be prone to induce additional estimation error.

We have performed our analysis in the following manner. We have considered the three cases
investigated above in the paper: the Hyperion original image and its two lossy compressed ver-
sions (WOVST and WVST). These data sets have first been cropped to obtain reduced size

Table 2 Values of CR for different three-dimensional (3-D) approaches to lossy compression for
two considered data sets.

Approaches to
compression

Data set
EO1H1800252002116110KZ

Data set
EO1H2010262004157110KP

Optical Infrared Optical Infrared

AGU8WVST 18.34 12.82 18.89 14.26

AGU16WVST 20.81 14.65 25.62 14.02

AGUAllWVST 17.43 13.00 34.97 13.40
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sub-images (each with a size of 800 × 256 × 187with spectral indices from 13 to 57 and from 83
to 224) containing a minimum number, i.e., two, of very small clouds. Abundance maps have
been derived both from the unconstrained least-squares (UCLS) linear unmixing method and the
SMACC method for an increasing number of endmembers within a specific interval (from 14 to
26), binding the estimated virtual dimensionality of the lossy compressed sub-images.

Unfortunately, the evaluation of unmixing is a difficult task, and this is also confirmed here
due to the unavailability of ground-truth data. Thus, we have decided to resort to the standard
pixel reconstruction error for comparing the linear decomposition obtained on the original and
compressed sub-images. However, we have to stress that the pixel reconstruction error obtained
after direct unmixing of the original noisy sub-image is just a rough reference, not totally inform-
ative for our purpose, as it mainly translates the error introduced by the linear unmixing process
itself while being applied on a noisy observation.

The obtained results are presented in Fig. 13. Each figure shows one specific approach, either
VCA and UCLS or SMACC, the dependencies of the mean pixel reconstruction error according
to the number of endmembers considered. The average is calculated based on the whole spatial
extent available. The general conclusions we can give are the following. Pixel reconstruction
error decreases when using more endmembers for both approaches, as is generally the case
for all unmixing and especially linear methods. The level of the mean pixel reconstruction
error after lossy compression remains close to that obtained without lossy compression, meaning
that the lossy compression approaches operating at OOP are consistent in terms of preserving
useful information and mainly removing noise.

Note that we have not considered methods imposing more constraints in the unmixing
process (mentioned above), as the pixel reconstruction error is increased in such a case, at a
level larger than the one observed in the difference between the pixel reconstruction error for
the original and lossy compressed sub-images. Concerning the SMACC method, the pixel
reconstruction errors for the original sub-image and the lossy compressed one without VST
are quite similar for a number of endmembers larger than 17. The evaluation could be more
reasonable in terms of abundance accuracy. But it cannot be performed here due to the
unavailability of ground-truth data.

The first results obtained here need to be extended in the future based on the experiments
on synthetic data to better discriminate in the pixel reconstruction error and in the accuracy of
abundance maps the relative influence of unmixing and lossy compression, both in linear and
nonlinear unmixing frameworks.

8 Conclusions and Future Work

Several approaches to component-wise and 3-D lossy compression of hyperspectral data are
proposed and studied. The novelty is that all of them in one way or another take into

Fig. 13 RMSE versus (a) endmembers number for VCA and UCLS or (b) SMACC approaches for
three considered sub-images, Original, WOVST, and VST lossy compressed.
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consideration the prevailing contribution of the SD noise component in sub-band images. The
performance of these approaches is studied and compared.

In the case of component-wise compression, two approaches are proposed and investigated.
One of them exploits VST while another approach does not. It is shown that both approaches
provide comparable performance from the viewpoint of decompressed image quality and CR
reached for data compressing in the neighborhood of optimal operation point. Fully automatic
procedures for such compressions are described.

A set of original 3-D lossy compression approaches are considered. All of them exploit inter-
channel correlation in hyperspectral data, and all employ VST as a useful preprocessing oper-
ation. The use of VST allows easy reaching of OOP and compression parameter settings. All of
these approaches provide considerable benefit in CR with respect to component-wise compres-
sion under conditions of the same level of introduced distortions. Initial studies concerning the
size of the groups are carried out. It is demonstrated that the group size equal to 16 could be a
good practical choice. The fact that the proposed approaches are fully automatic makes them
useful for applying onboard a hyperspectral sensor carrier, both airborne and space-borne.

End-member analysis for original and compressed data is performed as well. It shows that the
proposed approach to compression does not introduce distortions that can be crucial for solving
the final tasks of hyperspectral data processing as, e.g., unmixing.
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