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Abstract. We use a bio-optical model of the optical properties of natural seawater to investigate
the effects of subsurface chlorophyll layers on passive and active remote sensors. A thin layer of
enhanced chlorophyll concentration reduces the remote sensing reflectance in the blue, while
having little effect in the green. As a result, the chlorophyll concentration inferred from ocean
color instruments will fall between the background concentration and the concentration in the
layer, depending on the concentrations and the depth of the layer. For lidar, an iterative inversion
algorithm is described that can reproduce the chlorophyll profile within the limits of the model.
The model is extended to estimate column-integrated primary productivity, demonstrating that
layers can contribute significantly to overall productivity. This contribution also depends on the
chlorophyll concentrations and the depth of the layer. Using passive remote sensing alone to
estimate primary productivity can lead to significant underestimation in the presence of subsur-
face plankton layers. Active remote sensing is not affected by this bias. © The Authors. Published
by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.9.095989]
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1 Introduction

There has been a significant effort to describe passive remote sensor signals for case 1 waters
with a semianalytic approach.1–8 For case 1 waters, the optical properties are assumed to be
dominated by pure water contributions and the effects of chlorophyll-containing phytoplankton.
In the semianalytic approach, analytic relationships between optical properties of the water are
combined with empirical dependencies on chlorophyll concentration. In these studies, the optical
properties are assumed to be homogeneous, determined by the value of chlorophyll concentra-
tion at the surface.

More recently, the approach has been extended to include case 2 waters,9–13 generally coastal
waters, where the effects of suspended and dissolved materials that are not related to chlorophyll
on the optical properties are important. In these investigations, the main motivation was the
estimation of chlorophyll concentration from passive remote sensing signals in coastal and estua-
rine waters.

Other work has focused on deriving additional information from passive remote sensors.
One area of investigation has been to obtain information about phytoplankton cell size.14–17

Another is to identify phytoplankton functional groups.18–21 A third area is to detect harmful
algal blooms.22–25

There have been several investigations into the effects of nonuniform vertical distribution of
chlorophyll on passive remote sensing signals. Sathyendranath and Platt26 investigated the
effects on the blue-green ratio and found relative errors in excess of 100% in estimates of photic
depth and total chlorophyll concentration in the photic zone. Gordon27 used a Monte-Carlo sim-
ulation to test the hypothesis that the reflectance of a stratified ocean is the same as that of a
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homogeneous ocean with a constant chlorophyll concentration equal to the depth-weighted aver-
age of the actual profile, and found that the hypothesis was accurate to within 25% for the cases
tested. Stramska and Stramski28 used a sophisticated radiative transfer model to investigate the
effects of a nonuniform depth profile, reporting differences from the uniform profile greater than
70%, with the larger differences produced by lower surface chlorophyll concentrations. Pitarch
et al.29 considered retrieval of the chlorophyll profile using passive remote sensing with some
success.

Approximate models of active remote sensor signals have also been developed.30 The most
successful is probably the quasisingle-scattering approximation,2,31–33 which has been shown to
provide good agreement with measured values.34 This model has recently been used to obtain an
expression for the lidar extinction-to-backscatter ratio for lidar inversions35 that can provide the
depth profile of phytoplankton directly.

Roughly, half of the global photosynthesis takes place in the upper ocean, and inversion
models have been developed to quantify this production using satellite data.36–38 These models
are generally based on surface chlorophyll concentration from ocean color and sea-surface tem-
perature from thermal radiometers. These estimates do not always agree with in situ estimates of
productivity, and stratification has been suggested as one possible reason for the discrepancy.38

Stratification is important, because phytoplankton are often seen to occur in thin (3 to 5 m or
less) layers associated at the pycnocline at the base of the surface mixed layer.39–41 Most of the
observations have been in coastal regions, but thin layers have also been observed in the open
ocean.39 These layers can contain a significant fraction of the total chlorophyll in the water col-
umn,42,43 affecting not only primary production, but also the grazing success of zooplankton and
higher-trophic levels.

In this work, we consider a semianalytic bio-optical model to describe passive and active
remote sensor signals. To illustrate the effects of stratification, a layer of relatively high-chloro-
phyll concentration is embedded within a lower-background concentration. The effects of such a
layer on primary productivity and on satellite estimates of primary productivity are estimated.

2 Semianalytic Bio-Optical Model

In the semianalytic ocean color model of Gordon et al.,1

EQ-TARGET;temp:intralink-;e001;116;357

R
Q

¼ 0.0949
bb

aþ bb
þ 0.0794

�
bb

aþ bb

�
2

; (1)

where R is the irradiance reflectance just below the surface, Q is the ratio of upwelling radiance
to upwelling irradiance, bb is the integral of the scattering coefficient over all possible scattering
directions where the scattering angle is greater than 0.5π, and a is the absorption coefficient. This
equation is simplified by assuming that the second term is small. Gordon et al.1 continue with the
approximation for the diffuse attenuation coefficient

EQ-TARGET;temp:intralink-;e002;116;252Kd ¼
1.054ðaþ bbÞ

cosðθsÞ
; (2)

where θs is the solar zenith angle. They use a nominal solar zenith angle of 25 deg, with the
assertion that the resulting error is less than 10% for angles between 0 deg and 34 deg. Rather
than take this approach, we will consider a zenith angle of 0 deg; the correction for other zenith
angles is straightforward and will be included in the estimates of primary productivity. The result
of these approximations is

EQ-TARGET;temp:intralink-;e003;116;147

R
Q

¼ 0.10
bb
Kd

: (3)

For passive remote sensing, we are interested in the remote sensing reflectance, Rrs, defined
as the ratio of the upwelling radiance to the downwelling irradiance just above the surface.
Mobley44 has shown that Rrs can be approximated by 0.54R∕Q, so we have
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EQ-TARGET;temp:intralink-;e004;116;735Rrs ¼ 0.054
bb
Kd

: (4)

We expect this approximation to be valid for values less than about 0.01 sr−1. Equation (4) was
developed under the assumption that the optical properties of the water are constant with depth. If
they are not, it should be possible to estimate the remote sensing reflectance, to the same level of
approximation, by the expression

EQ-TARGET;temp:intralink-;e005;116;653Rrs ¼ 0.11

Z
∞

0

bbðzÞ exp
�
−2

Z
z

0

Kdðz 0Þdz 0
�
dz: (5)

This equation was developed to have the expected exponential attenuation with depth and to
reduce to Eq. (4) when bb and Kd are constant.

We can relate the remote sensing reflectance to chlorophyll concentration, C, using the model
described by Morel and Maritorena.3 In this model, we have

EQ-TARGET;temp:intralink-;e006;116;560bb ¼
1

2
bw þ 0.416C0.766

�
0.002þ 0.01½0.5 − 0.25 log10ðCÞ�

�
λ

550

�
υ
�
; (6)

where bw is the scattering coefficient of pure seawater, λ is the wavelength in nm, and υ is a
variable exponent given by

EQ-TARGET;temp:intralink-;e007;116;491υ ¼ 0.5 log10ðCÞ − 0.15 for 0.02 < C < 2 mgm−3 υ ¼ 0 for C > 2 mgm−3: (7)

Mobley44 presents a table of bw based on the work of Morel.45 These values can be approximated
by

EQ-TARGET;temp:intralink-;e008;116;436bw ¼ 100.6301−9.019×10
−3λþ5.351×10−6λ2 ; (8)

with an error in the fit of less than 1% for λ between 350 and 600 nm. This equation neglects the
effects of temperature and salinity, and more accurate models are available46 that include these
dependencies. The difference between the Zhang et al.46 model and Eq. (8) can be significant
(e.g., 10% for λ ¼ 550 nm for a temperature of 20°C and a salinity of 35 PSU).

Morel and Maritorena3 also present a model for diffuse attenuation given by

EQ-TARGET;temp:intralink-;e009;116;343Kd ¼ Kw þ χCe; (9)

whereKw is the diffuse attenuation from pure seawater, and χ and e are parameters that vary with
wavelength. These three parameters are available in tables.5 It is occasionally convenient to have
approximations to the tabulated values, and we have done this by piecewise polynomial fits.
These are

EQ-TARGET;temp:intralink-;e010;116;264

Kw ¼ −81.373033þ 0.98491411λ − 0.0047381508λ2 þ 1.1334476 × 10−5λ3

− 1.3491818 × 10−8λ4 þ 6.3969794 × 10−12λ5; 350 ≤ λ < 515

Kw ¼ 907.42423 − 6.729768λþ 0.01871207λ2 − 2.311898 × 10−5λ3

þ 1.07099 × 10−8λ4; 515 ≤ λ < 605;

Kw ¼ −1419.824þ 8.654027λ − 0.01970537λ2 þ 1.985801 × 10−5λ3

− 7.46716 × 10−9λ4; 605 ≤ λ < 665;

Kw ¼ −1373.958þ 6.150477λ − 9.177511 × 10−3λ2 þ 4.56626263 × 10−6λ3;

665 ≤ λ ≤ 700; (10)
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EQ-TARGET;temp:intralink-;e011;116;494

χ ¼ −11.5717 þ 0.0982478λ − 2.72055 × 10−4λ2 þ 2.48741 × 10−7λ3; 350 ≤ λ < 415;

χ ¼ −6.22839 þ 0.05027291λ − 1.440342 × 10−4λ2 þ 1.769267 × 10−7λ3

− 7.919928 × 10−11λ4; 415 ≤ λ < 675;

χ ¼ −1.5063þ 5.44393 × 10−3λ − 4.64286 × 10−6λ2; 675 ≤ λ ≤ 700; (11)

EQ-TARGET;temp:intralink-;e012;116;407

e ¼ 4.06652 − 0.0151677λþ 1.65361 × 10−5λ2; 350 ≤ λ < 400;

e ¼ 1.26402 − 7.31889 × 10−3λþ 2.27559 × 10−5λ2 − 2.08551 × 10−8λ3; 400 ≤ λ < 580;

e ¼ 0.799443 − 1.40758 × 10−3λþ 1.86375 × 10−6λ2; 400 ≤ λ < 675;

e ¼ −12.6864þ 0.0429771λ − 3.42857 × 10−5λ2; 675 ≤ λ ≤ 700. (12)

The number of segments, the degree of the polynomials, and the number of significant digits
for the coefficients have been selected so that the errors in chlorophyll concentration produced by
this approximation are 10% or less. The resulting error in the estimate of Kd is plotted in Fig. 1.
The errors are all less than 5%, except for very low-chlorophyll concentration near the minimum
absorption. Here, Kd is very small and the errors are dominated by those in our estimate of Kw.
The root-mean-square error for all values is 2.2%.

Several examples of remote sensing spectra (Fig. 2) confirm that the values are generally
below 0.01 sr−1, and the second term in Eq. (1) can be neglected. These examples also
show that the piecewise polynomial fit reproduces the remote sensing reflectance spectra
obtained from the tabulated parameters.

For active remote sensing, similar expressions can be used. We will restrict ourselves to a
broad-beam, unpolarized lidar for which the received signal can be written as30,33

EQ-TARGET;temp:intralink-;e013;116;183sðzÞ ¼ Aβðπ; zÞ exp
�
−2

Z
z

0

Kdðz 0Þdz 0
�
; (13)

where A is a calibration constant and βðπÞ is the volume scattering coefficient at a scattering
angle of π radians. The volume scattering function is the product of the scattering phase function
and the scattering coefficient. At the scattering angle of interest, this is the sum of water and
particulate contributions

Fig. 1 Relative error in Kd estimated from Eqs. (10)–(12), relative to that using the tabulated val-
ues for chlorophyll concentrations of C ¼ 0.01 ðþÞ, 0.1 (×), 1 (○), and 10 (□) mgm−3.
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EQ-TARGET;temp:intralink-;e014;116;488βðπÞ ¼ 0.114bw þ 0.151

�
bb −

1

2
bw

�
; (14)

where 0.114 is the phase function of pure seawater44 and 0.151 is a linear extrapolation of the
model of Sullivan and Twardowski47 to the scattering angle of π steradians. This can be evaluated
using Eqs. (6) and (8).

There are two reasons for preferring a broad beam. The primary one is that it provides the
minimum attenuation possible at a given wavelength,30,32 which results in the maximum pen-
etration depth. This is a consequence of the distribution of particulate scattering in the ocean,
which is dominated by scattering at small angles. Most scattered light will remain within a broad
beam, and not contribute to attenuation. For a narrow beam, this light will be scattered outside of
the beam, and does contribute to overall attenuation. A secondary advantage is that a broader
beam is less likely to pose a laser-exposure risk.48

The only reason to consider unpolarized lidar is that we do not currently have a good model
for polarization characteristics. This is an area that deserves more attention, since layers are
much more detectable by polarization lidar.34,39,49,50

3 Estimating Chlorophyll

The operational chlorophyll algorithms have the form

EQ-TARGET;temp:intralink-;e015;116;241 logðCÞ ¼
X4
n¼0

ai

�
log

�
RrsðλblueÞ
RrsðλgreenÞ

��
n
; (15)

where the blue and green wavelengths and the coefficients depend on the particular instrument.
To illustrate, we will use a modified version of the OC3M algorithm51 for the moderate resolution
imaging spectroradiometer. The OC3M algorithm is an empirical fit to a large dataset,52 and
Eq. (15) can be written as

EQ-TARGET;temp:intralink-;e016;116;143y ¼ 0.2424 − 2.7423xþ 1.8017x2 þ 0.0015x3 − 1.2280x4; (16)

where the blue wavelength is 443 or 488 nm, depending on which has the larger value of Rrs, and
the green wavelength is 547 nm. One can check the self-consistency of the model by using
chlorophyll concentration to calculate remote sensing reflectances and then applying the OC3M
algorithm on these reflectances to estimate chlorophyll concentration. The result (Fig. 3) shows a

Fig. 2 Remote sensing reflectance, Rrs, versus wavelength, λ, for the tabulated parameters
(solid lines) and the piecewise polynomial fit (dashed lines) for several values of chlorophyll
concentration C.
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bias in estimated chlorophyll concentration, especially at high chlorophyll concentrations, where
the assumptions of the model may not be valid.

The OC3M algorithm can be modified to fit our bio-optical model, with the result

EQ-TARGET;temp:intralink-;e017;116;448y ¼ 0.3925 − 3.4848xþ 5.7269x2 − 7.8295x3 þ 3.1113x4: (17)

This provides a self-consistent model that can be used to investigate the effects of layers on
inferred values of chlorophyll.

To estimate C from 532 nm lidar data, we will use the modified lidar extinction-to-back-
scatter ratio35

EQ-TARGET;temp:intralink-;e018;116;369Slidar ¼
Kd − Kw

βðπÞ − 0.114bw
: (18)

Fig. 3 Estimated chlorophyll concentration,Cest, as a function of the concentration used in the bio-
optical model, C, for the OC3M algorithm (long dashes) and the modified algorithm of Eq. (17)
(solid line). Short dashes provide the desired one-to-one relationship.

Fig. 4 Estimated chlorophyll concentration,Cest, as a function of the concentration used in the bio-
optical model,C, for the iterative lidar inversion. The short dashed line is the first estimate, the long
dashed line is the second estimate, and the solid line is the 10th estimate, which is indistinguish-
able from the actual value.

Churnside: Bio-optical model to describe remote sensing signals from a stratified ocean

Journal of Applied Remote Sensing 095989-6 Vol. 9, 2015



If Slidar is known, the chlorophyll concentration can be estimated from Eqs. (9) and (18)

EQ-TARGET;temp:intralink-;e019;116;723Cest ¼
�
Kd − Kw

χ

�1
e ¼ f½21.1βðπÞ − 4.09 × 10−3�Sg1.5; (19)

where numerical values for λ ¼ 532 nm were used in the second step. The attenuation coeffi-
cient, needed to find β below the surface, can be estimated from Eq. (18) by

EQ-TARGET;temp:intralink-;e020;116;654Kdest ¼ S½βðπÞ − 1.94 × 10−4� þ 0.0452: (20)

The actual estimate of C can be found iteratively. We begin with a value of S ¼ 100 and
calculate Cest. That value is used to calculate a new estimate for S from Eq. (19), which is
used to calculate a new Cest. The first estimate is close to the actual value for small concentrations
(Fig. 4). By the 10th iteration, the estimate is within 2.5% of the actual value, even for very high
values of C. To obtain depth profiles, one starts at the surface sample and works progressively
deeper, using the estimated attenuation profile to obtain the actual value of β from the measured
signal at each depth.

4 Primary Productivity

We can investigate the effects of thin layers on primary productivity using a model based on
chlorophyll concentration.36,37 We will use the vertically generalized production model, which
takes the form

EQ-TARGET;temp:intralink-;e021;116;458PP ¼ PB
optD

Z
Zeu

0

n
1 − exp

h
− EðzÞ

Emax

io
exp½−βpEðzÞ�n

1 − exp
h
− Eopt

Emax

io
exp½−βpEopt�

CðzÞdz; (21)

where PP is the daily primary productivity in the euphotic zone (mgCm−2 day−1), PB
opt is the

maximum carbon fixation rate within the water column, [mgC ðmg chlÞ−1 h−1], D is the photo-
period (hour), Zeu is the depth of the euphotic zone, E is the photosynthetically active radiation
(PAR;mol quantam−2), Emax is the daily PAR at the inflection point between light limitation and
light saturation in the absence of photoinhibition, βp is a photoinhibition parameter, Eopt is the
daily PAR at the depth of PCmax, and C is the chlorophyll concentration (mgm−3).

EQ-TARGET;temp:intralink-;e022;116;327PB
opt ¼ 1.2956 þ 0.2749T þ 0.0617T2 − 0.0205T3 þ 2.462 × 10−3T4 − 1.348 × 10−4T5

þ 3.4132 × 10−6T6 − 3.27 × 10−8T7; (22)

where T is the water temperature in °C.

EQ-TARGET;temp:intralink-;e023;116;264Emax ¼ 0.3195E0; (23)

where E0 is the daily PAR at the surface in molm−2.

EQ-TARGET;temp:intralink-;e024;116;221Eopt ¼ E0 expðþ0.00137 − 0.075E0 þ 0.00171E2
0 − 1.84 × 10−5E3

0 þ 7.56 × 10−8E4
0Þ; (24)

EQ-TARGET;temp:intralink-;e025;116;176βp ¼ 0.1 for E0 ≤ 3 molm−2 ¼ −0.0203 lnðE0Þ þ 0.124 for E0 > 3 molm−2: (25)

Surface PAR was estimated using MODTRAN453 with no clouds and the appropriate stan-
dard aerosol model. For the example of year day 180 and latitude of 45°N, this would be the
midlatitude summer model. Values were integrated over the 400 to 700 nm PAR band and over
daylight hours. Subsurface values were estimated using an assumed attenuation coefficient of6
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EQ-TARGET;temp:intralink-;e026;116;735KPAR ¼ 0.121C0.428: (26)

Behrenfeld and Falkowski37 concluded that replacing the chlorophyll profile by the surface
concentration produces acceptable results. In this case, satellite estimates of surface chlorophyll
concentration, aerosol optical depth, and sea-surface temperature can provide global estimates of
oceanic primary productivity using the approximate equation

EQ-TARGET;temp:intralink-;e027;116;664PP ¼ 0.66125PB
optDCð0ÞZeu

Eð0Þ
Eð0Þ þ 4.1

; (27)

where Zeu is estimated from54

EQ-TARGET;temp:intralink-;e028;116;607Zeu ¼ 568.2C−0.746
tot for Zeu < 102 m ¼ 200C−0.293

tot for Zeu > 102 m; (28)

with

EQ-TARGET;temp:intralink-;e029;116;563Ctot ¼ 38.0Cð0Þ0.425 for Cð0Þ < 1 mgm−3 ¼ 40.2Cð0Þ0.507 for Cð0Þ < 1 mgm−3: (29)

This and similar models allow global estimation of primary productivity from satellite data,
although there are differences between models and between modeled and measured
productivity.38

5 Stratified Water Example

To illustrate the effects of stratification, we will consider the case of a layer of water with C ¼ Cl

within region with a background level,C ¼ Cb. The top of the layer is at depth z0 and the bottom
at z1 (Fig. 5). For this geometry, it is straightforward to perform the integrations in Eq. (5), with
the result

EQ-TARGET;temp:intralink-;e030;116;410Rrs ¼ Rbf1 − expð−2Kbz0Þ½1 − expð−2KlLÞ�g þ Rlfexpð−2Kbz0Þ½1 − expð−2KlLÞ�g; (30)

where L is the layer thickness, L ¼ z1 − z2, Kb and Kl refer to diffuse attenuation estimated
using Cb and Cl, and Rb and Rl refer to remote sensing reflectance calculated with Eq. (4) using
Cb and Cl. This result was presented in a slightly more general form by Zaneveld and Pegau.55

Fig. 5 Schematic of layer used for calculations. A layer with chlorophyll concentration Cl and
thickness L is located with its top at a depth z0. Background chlorophyll concentration above
and below the layer is Cb .
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As expected, Eq. (30) reduces to Rrs ¼ Rb for Cl ¼ Cb, for L ¼ 0, or for z0 ¼ ∞. Similarly, it
reduces to Rrs ¼ Rl for z0 ¼ 0 or for L ¼ ∞.

We considered the example of two wavelengths used in the OC3M algorithm, 443 nm in the
blue and 547 nm in the green, and a 3-m thick layer whose chlorophyll concentration was 10
times the background concentration. The factor-of-ten enhancement is consistent with reported
values that include a range of 4-55 in Monterey Bay, California56 and a median value of 12 in
open water in the Arctic Ocean.57 A minimum value of three was used as a criterion for the
existence of a layer in East Sound, Washington,40 suggesting typical values were much higher.
However, other measurements in Monterey Bay have produced average values of about
three,42,58 suggesting that there is a high degree of variability. Figure 6 presents the results
for layers at depths (to the center of the layer) of 5 and 10 m, along with the results without
a layer. The effect of the layer is most pronounced at the blue wavelength, especially at the
shallower depth and at lower values of chlorophyll concentration. The effect is small at the

Fig. 6 Remote sensing reflectance, Rrs, as a function of background chlorophyll concentration,
Cb , for wavelengths of 443 and 547 nm. For each wavelength, curves are plotted for no layer (solid
line) and 3-m thick layers at depths of 5 m (short-dashed line) and 10 m (long-dashed line).

Fig. 7 Estimated chlorophyll concentration, Cest, as a function of background concentration, Cb ,
for the case of no layer (solid line), a 3-m layer at the surface (short dashed line), and at depths of
2.5, 5, and 10 m (dashed lines with increasing dash length).
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green wavelength, where Rrs is nearly constant over a wide range of chlorophyll concentrations.
The spectra of Fig. 2 illustrate that this lack of sensitivity is a consequence of the selection of
547 nm as the green wavelength.

The shift in remote sensing reflectance will affect the inferred chlorophyll concentration.
Using the same conditions of a 3-m thick layer whose concentration is 10 times the background
concentration, we investigated the effects of layer depth (Fig. 7). At low-background concen-
trations, the concentration inferred from remote sensing reflectance is generally higher than the
background concentration for shallow layers. At higher background concentrations, the layer has
much less of an effect unless it is right at the surface.

To illustrate the effects on primary productivity, we will consider a midlatitude (45°N), mid-
summer (year day 180) example (Fig. 8). As the background chlorophyll concentration
increases, deeper layers see less light and contribute less to the total productivity. For a

Fig. 8 Calculated column-integrated primary productivity, PP, as a function of background chloro-
phyll concentration, Cb , for the case of no layer (solid line), and 3 m layers at depths of 2.5, 5, 10,
20, and 40 m (dashed lines with increasing dash length).

Fig. 9 Estimated column-integrated primary productivity, PPest, as a function of calculated pro-
ductivity, PP, for 3 m thick layers at depths of 2.5, 5, 10, 20, and 40 m (dashed lines with increasing
dash length). Solid line is PPest ¼ PP.
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layer at 40 m, the contribution from the layer goes to zero when CB ¼ 1 mgm−3. For a layer at
20 m, this happens at CB ¼ 6 mgm−3. The maximum productivity for this example generally
occurs for a layer at 5 to 10 m deep.

The comparison of calculated productivity with that estimated from satellite measurements
(Fig. 9) shows that significant errors can occur when thin layers are present. For layers at depths
of 5 to 10 m, productivity is underestimated by more than a factor of two. For the deepest layer,
the satellite estimate is about 8% greater than the calculated value. This is a result of the approx-
imations inherent in Eq. (24) rather than an effect of the layer.

6 Conclusions

The remote-sensing reflectance of the ocean will be affected by the presence of thin layers of
enhanced chlorophyll concentration. For case 1 waters, a bio-optical model was used to dem-
onstrate that this effect depends on the background chlorophyll concentration, enhancement in
the layer, depth of the layer, and optical wavelength. Because of the wavelength dependence,
estimates of chlorophyll concentration-based ratios of remote sensing reflectance at different
wavelengths will also be affected. This effect leads to estimates of primary productivity that
are too low when ocean color alone is used.

Thin layers at 5–10 m depths produce the worst estimates of chlorophyll concentration and
primary productivity. This is significant for productivity at midlatitudes because the seasonal
thermocline that would support layers at these depths is typically shallow in spring and summer
when productivity is greatest. In fact, thin layers within this depth range are common in
Monterey Bay, California,59 East Sound, Washington,40 West Sound, Washington,49 and else-
where.39 Deeper layers are also common, and the total column-integrated chlorophyll concen-
tration will be underestimated where these occur. These layers receive less sunlight, however,
and their contribution to total primary productivity is small.

The same bio-optical model can be used to describe the signal from a profiling lidar. With the
application of a previously developed relationship between backscatter and attenuation and a
new inversion technique, the lidar signal reproduces the profile of chlorophyll concentration,
including the characteristics of the layer. As a result, estimates of primary productivity obtained
from lidar do not exhibit the same bias inherent in those obtained from ocean color. With this
model, future work will concentrate on combining active and passive sensors to improve esti-
mates of chlorophyll concentration and primary productivity using the spectral information from
passive sensors and the profile information from active sensors.
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