Journal of

Apphed Remote Sensing

RemoteSensing.SPIEDigitalLibrary.org

Ocean color measurements with the
Operational Land Imager on
Landsat-8: implementation and
evaluation in SeaDAS

Bryan A. Franz
Sean W. Bailey
Norman Kuring
P. Jeremy Werdell

SPIE.



Ocean color measurements with the Operational
Land Imager on Landsat-8: implementation
and evaluation in SeaDAS

Bryan A. Franz,>* Sean W. Bailey,® Norman Kuring,” and
P. Jeremy Werdell®
INASA Goddard Space Flight Center, Code 616.2, Greenbelt, Maryland 20771, United States
"Futuretech Corporation, 7307 Hanover Parkway, Greenbelt, Maryland 20770, United States

Abstract. The Operational Land Imager (OLI) is a multispectral radiometer hosted on the
recently launched Landsat8 satellite. OLI includes a suite of relatively narrow spectral bands
at 30 m spatial resolution in the visible to shortwave infrared, which makes it a potential
tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling
from beneath the ocean surface that carries information on the biogeochemical constituents
of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color,
processing support was implemented in Sea-viewing Wide Field-of-View Sensor (SeaWiFS)
Data Analysis System (SeaDAS), which is an open-source software package distributed by
NASA for processing, analysis, and display of ocean remote sensing measurements from a vari-
ety of spaceborne multispectral radiometers. Here we describe the implementation of OLI
processing capabilities within SeaDAS, including support for various methods of atmospheric
correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral
remote sensing reflectance (Rrs; sr™!). The quality of the retrieved Rrs imagery will be assessed,
as will the derived water column constituents, such as the concentration of the phytoplankton
pigment chlorophyll a. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.9.096070]
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1 Introduction

We define ocean color as the spectral distribution of reflected visible solar radiation upwelling
from beneath the ocean surface. Variations in this water-leaving remote sensing reflectance dis-
tribution, Rrs(4), the ratio of radiance emerging from beneath the ocean surface to the solar
irradiance reaching the ocean surface, are governed by the optically active biological and chemi-
cal constituents of the upper ocean through their absorption and scattering properties. A primary
driver for variations in ocean color is the concentration of the phytoplankton pigment chlorophyll
a (Ca; mgm™3), and bio-optical algorithms have been developed that relate measurements of
Rrs(1) to Ca that provide a proxy for phytoplankton biomass.' As marine phytoplankton account
for roughly half the net primary productivity on Earth,” ocean color measurements are critical to
our understanding of planetary health and the global carbon cycle. Other bio-optical and bio-
geochemical properties that can be inferred from Rrs(1) include spectral absorption by colored
dissolved organic matter (CDOM), concentrations of total suspended sediments, measurements
of water clarity, such as marine diffuse attenuation coefficient and euphotic depth, and the pres-
ence of harmful algal blooms. Ocean color, thus, also provides a valuable tool for monitoring
water quality and changes in the marine environment that can directly impact human health and
commerce, especially in coastal areas and near lakes and inland waterways, where much of the
human population resides.
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Landsat-8 was launched into a sun-synchronous polar orbit on February 11, 2013, carrying
with it the Operational Land Imager® (OLI, Table 1). Prelaunch simulations based on radiometric
performance specifications demonstrated that the sensor, while primarily designed for land
applications, has the potential to provide useful measurements of aquatic environments, includ-
ing the separation and quantification of Ca, CDOM, and suspended sediments in the water col-
umn.*> A significant advantage of OLI over existing global ocean color capable missions is the
30 m spatial resolution, which is more than an order of magnitude higher than NASA’s Moderate
Resolution Imaging Spectroradiometer® (MODIS) currently operating from the Aqua spacecraft
(MODISA) and the Sea-viewing Wide Field-of-View Sensor’ (SeaWiFS) that operated from
1997 to 2010. Increased spatial resolution is of particular benefit in studying heterogeneous
coastal and inland waters, where the typical 1 km resolution of existing global sensors cannot
resolve the fine spatial structure of the water constituents or separate water from land near coasts
and in narrow rivers and bays. Thus, OLI on Landsat-8 has the potential to make a valuable
contribution to ocean color science and environmental monitoring capabilities for aquatic eco-
systems, especially in coastal environments and inland waters.

The measurement of ocean color from spaceborne instruments is challenging because the
water-leaving signal is only a small fraction of the total signal reflected by the Earth into the sensor
field of view. Approximately 90% of the visible radiation observed by Earth-viewing satellite sen-
sors is sunlight reflected by air molecules and aerosols in the atmosphere. The removal of this
atmospheric signal to retrieve Rrs(4) is referred to as atmospheric correction. NASA’s Ocean
Biology Processing Group distributes a software package called the SeaWiFS Data Analysis
System (SeaDAS)? that provides the research community with a standardized tool for the produc-
tion, display, and analysis of ocean color products from a host of Earth-viewing multispectral
radiometers. SeaDAS contains within it the multisensor level 1 to level 2 generator (12gen) that
can read level 1 observed top-of-atmosphere (TOA) radiances from a variety of sensors, perform
the atmospheric correction process, and retrieve Rrs(4) and various derived geophysical properties.
The 12gen code can be adapted to work with any sensor that has a sufficient set of spectral bands
covering the blue to green region of the visible spectrum (i.e., 400 to 600 nm), with at least two
bands in the near-infrared (NIR) to shortwave IR (SWIR) to support the atmospheric correction.

OLI has a sufficient set of spectral bands for ocean color retrievals (Table 2). Precise atmos-
pheric correction also requires that the radiometric performance (signal relative to noise) and
digital resolution (number of bits available to encode the observed radiance) are sufficiently
high to detect the relatively small water-leaving radiance signal above the sensor noise. In
the sections that follow, we assess the radiometric performance of the OLI instrument for
ocean color applications and detail the adaptation of 12gen in SeaDAS to support OLI atmos-
pheric correction. We also present results of an initial system-level vicarious calibration, where
match-ups to in sifu radiometry are used to refine the Rrs(4) retrieval performance of the com-
bined OLI instrument and atmospheric correction process. Finally, we show some results of
ocean color retrieval over the coastal and inland waters of Chesapeake Bay and compare
them with coincident MODISA retrievals and in sifu measurements.

Table 1 Landsat-8 Operational Land Imager (OLI) mission
and sensor characteristics.

OLI start date March 8, 2013
Spatial resolution 30 m
Swath width 185 km

Eq. crossing time 10 a.m. £ 15 min
Repeat frequency 16 days
Native digitization 12 bit

Data availability Within 24 h
Data policy Free and open
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Table 2 Landsat-8 OLI spectral bands and signal-to-noise ratios (SNR).

Band 1 2 3 4 5 6 7
Nominal center (nm) 443 482 561 655 865 1609 2201
Width (nm) 16.0 60.1 57.4 37.5 28.2 84.7 186.7
Ltyp (W/m? umsr) 69.8 55.3 275 13.4 4.06 0.353 0.0467
SNR at Ltyp (OLI) 344 478 279 144 67 30 14
SNR at Ltyp (ETM+) — 53 37 17 11 3 <1

2 Data and Sensor Characteristics

OLI data are freely available for direct download or bulk ordering from the website of the U.S.
Geological Survey (USGS), which operates the Landsat-8 mission. The observed TOA radiances
(Level-1T) are provided in GeoTIFF format, with each spectral band in a separate file that has
been mapped to a common Universal Transverse Mercator (UTM) projection. The full suite
of spectral band files are packaged into a compressed tape archive (tar) file that also includes
a Landsat Metadata (MTL) file in text form containing scene-specific time and location
information.

OLI is a push-broom design with 14 separate detector assemblies aligned across the orbit
track to create a swath of ~185 km width or ~7000 pixels. The 14 detector assemblies alternate
between slightly forward-pointing and slightly aft-pointing, and the spectral bands are aligned
along track such that the amount of forward and aft pointing varies by band.’ The effect is that
each spectral band views the same point on the Earth at a slightly different time and with a
slightly different atmospheric path (characterized by sensor zenith and azimuth angles), and
the path angles alternate fore and aft across the swath. Cross-track variations in geolocation
and spectral band registration are effectively removed by mapping of the native observations
to a common UTM projection in the Level-1T product, but the TOA radiances retain character-
istics of their observational geometry that must be considered in ocean color retrieval.

Accurate atmospheric correction over the comparatively dark ocean requires precise knowl-
edge of the solar and viewing path geometry. For the bands of interest to ocean color, the spectral
variation in view zenith and azimuth angle is on the order of 0.2 deg and can be safely ignored, but
mean variation in solar and view zenith and azimuth across the swath must be known, and the fore
and aft variation between detector assemblies must be accounted for or significant along-track
banding artifacts due to atmospheric correction error will be evident in the Rrs(4) retrievals. The
Level-1T data product does not include this additional geometry information, but USGS has devel-
oped software to estimate it for each scene pixel for each sensor band from information contained
in the scene MTL file. This USGS software has been incorporated into SeaDAS/I2gen to auto-
matically produce band-averaged solar and viewing geometry sufficient for ocean color retrieval.

Accurate atmospheric correction and Rrs(4) retrieval also requires a sensor with sufficient
signal-to-noise ratio (SNR) over ocean waters to detect and differentiate the water-leaving signal.
For relatively clear, low-productivity waters typical of the open oceans, an inadequate SNR will
contribute to a large relative error in Rrs(4) in the green and red spectral range, where pure water
absorption and minimal particle scattering contributions produce a comparatively small water-
leaving reflectance. In contrast, turbid coastal and inland waters with high sediment loads present
less of a challenge in the green and red due to the high particle scattering contributions, but for
these waters, a low SNR will often lead to a high relative error in Rrs(443) retrievals, as high
absorption by Ca and CDOM depresses the water-leaving signal in the blue. Finally, depending
on the atmospheric correction approach, low SNR in the NIR or SWIR channels can contribute
to noise and systematic bias across the visible spectral range, due to error in estimating the aero-
sol contribution to the observed signal.'

OLI is the most advanced radiometer ever flown on a Landsat platform, with SNRs roughly
an order of magnitude higher than the predecessor Enhanced Thematic Mapper Plus (ETM+)
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instrument of Landsat-7 and 12-bit rather than 8-bit digital resolution.'' The SNRs reported for
OLI or ETM+, however, are based on radiances typical of land observations. To assess potential
OLI performance over oceans, the sensor noise model'! was applied to typical radiances (Ltyp)
interpolated from values reported in Ref. 10, which were themselves based on average radiances
observed by MODISA over ocean targets at ~45 deg solar zenith angle. Using these Ltyps, the
derived OLI SNRs (Table 2) can be directly compared to those of SeaWiFS and MODISA, as
also reported in Ref. 10. In general, the OLI SNRs are lower than those of SeaWiFS or MODISA,
but visible-band SNRs are within 50% of SeaWiFS (specified or observed), and OLI SWIR-band
SNRs are equally similar to comparable MODISA SWIR bands. The biggest discrepancy is at
865 nm, where the OLI SNR of 67 is substantially lower than the SeaWiFS specification (287),
but is still within a factor of 3 of the observed SeaWiFS SNR.!? It should also be recognized that
OLI observations are at a much higher spatial resolution than SeaWiFS or MODIS, and spatial
averaging over a few pixels could significantly increase the SNRs, as demonstrated in Ref. 5.
Similar SNR results have been previously reported by Pahlevan et al., based on statistical analy-
sis of uniform OLI scenes over oceans.'” Given the SNR equivalency with successful heritage
ocean color sensors, the OLI radiometric performance appears sufficient for many ocean color
applications.

For context, the SNRs of ETM+ are also reported in Table 2 for equivalent spectral bands
using the same Ltyps and the high-gain noise model developed for the instrument.'® Results
confirm the significant advancement of the OLI radiometric performance over ETM+. The num-
bers also suggest that the NIR and SWIR bands of ETM+- are effectively unusable for the atmos-
pheric correction approach that we propose here for OLI, as noise in the NIR channel is
equivalent to 10% of the signal and noise in the longest SWIR spectral band actually exceeds
the typical radiance over oceans.

3 Processing Approach

3.1 Atmospheric Correction Algorithm

While 12gen supports a variety of atmospheric correction methods and variations,'*'® many

of which can be applied to OLI, the default approach described here follows the NASA
standard processing in use for all global ocean color missions. Namely, the TOA radiance
over water, Lt(4), is modeled as the sum of atmospheric, surface, and subsurface contri-
butions as

Lt(2) = Lr(2) + La(2) + 1(A)LE(2) + T(2)Lg(A) + t(2)Lw(2), (1)

where 1 is a sensor spectral band wavelength, Lr(4) is multiple scattering by air molecules
in the absence of aerosols (Rayleigh scattering), La(1) includes multiple scattering from
aerosols in the absence of Rayleigh as well as Rayleigh—aerosol interactions, #(4) and
T(4) are diffuse and direct atmospheric transmittance from surface to sensor, Lf(1) is
the contribution from whitecaps and foam on the surface that is diffusely transmitted to
the TOA, Lg(4) is the specular reflection (glint) from the surface that is directly transmitted
to the sensor field of view, and Lw(4) is the water-leaving radiance that is diffusely trans-
mitted to the TOA. All terms are dependent on the viewing and solar path geometries.
Gaseous transmittance terms are not shown for clarity, but atmospheric transmittance losses
due to ozone and NO2 are also considered.

The TOA radiances collected by OLI are measured over the full spectral band-pass of each
sensor band, thus all terms on the right-hand side of Eq. (1) must be modeled or derived for the
sensor-specific spectral response functions (SRFs). OLI spectral response functions were
obtained from Ref. 19. The Rayleigh scattering term, which is the dominant contribution
over the visible spectral regime, is determined from precomputed look-up tables (LUT) of
Rayleigh reflectance that were derived through vector radiative transfer simulations spanning
a wide range of realistic solar and viewing geometries.'* The OLI SRFs were used to derive
band-pass-integrated solar irradiances (F), Rayleigh optical thicknesses (z,) and depolarization
factors (D, Table 3), where solar irradiance is taken from Ref. 20 and hyperspectral Rayleigh
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optical thickness was computed using the model of Bodhaine et al.,>' and assuming a standard
pressure of 1013.25 mb, temperature of 288.15 K, and CO, concentration of 360 ppm. The band-
integrated optical thicknesses and depolarization factors were then used in the radiative transfer
simulations to derive the OLI sensor-specific Rayleigh reflectance tables for a wind-roughened
ocean surface, including effects of multiple scattering and polarization. In application, the
Rayleigh reflectances retrieved from the LUT are selected based on geometry and wind
speed and then adjusted to account for changes in surface pressure,” including the effect of
terrain height as needed to support retrievals over inland lakes and rivers. The glint>* and white-
cap”*? contributions are modeled from knowledge of the environmental conditions (pressure,
wind speed) and the sensor SRFs.

The primary unknowns in Eq. (1) are the water-leaving radiances that we wish to retrieve and
the aerosol radiance, which is highly variable and must be inferred from the observations. The
estimation of aerosol radiance follows the method of Gordon and Wang,'> with updated aerosol
models and the selection approach described in Ref. 14. This approach uses a pair of bands in the
NIR or SWIR, where water is highly absorbing, thus water-leaving radiance is negligible or can be
accurately estimated,'® allowing aerosol radiance to be directly retrieved. The spectral slope in
measured aerosol radiance between the two NIR-SWIR bands is used to select the aerosol
type from a set of precomputed aerosol models,'* where the aerosol models were derived from
vector radiative transfer simulations specific to the OLI spectral band centers (Table 2), and include
effects of multiscattering by aerosols as well as Rayleigh—aerosol interactions. The retrieved aero-
sol model is then used to extrapolate the measured aerosol radiance into the visible spectral regime.

In practice, any pair of bands can be used in the aerosol model selection process, with the
only requirement being that the water-leaving radiance signal can be considered negligible or
known. Using our initial SeaDAS implementation, Vanhellemont et al.”® explored several com-
binations of OLI bands 5, 6, and 7 in the NIR and SWIR with comparable results. For this
analysis, we chose to use the combination of OLI bands 5 and 7 (865 and 2201 nm, respectively),
with any non-negligible water-leaving radiance derived using the iterative bio-optical modeling
approach of Bailey et al.'® This choice takes advantage of the longest SWIR wavelength, where
water absorption is strongest, to help separate the radiometric contribution of in-water sediments
from aerosol contributions, while using the higher SNR and spectral separation of the NIR chan-
nel to determine aerosol type.

With La(4) known at all spectral bands, the water-leaving radiance can be computed as in
Eq. (2) and then normalized to derive the water-leaving reflectance as in Egs. (3) and (4), where
Ed(4) is the down-welling solar irradiance just above the sea surface, #,(4) is the atmospheric
diffuse transmittance from Sun to surface, Fy(1) is the mean extraterrestrial solar irradiance
averaged over the OLI SREF, f((4) is the Earth—Sun distance correction for the time of the obser-
vation, and 6 is the solar zenith angle. Finally, B(4) is a bidirectional reflectance correction to
account for effects of inhomogeneity of the subsurface light field and reflection and refraction
through the air—sea and sea—air interface.”’

t(A)Lw(A) = Lt(4) — [Lr(4) + La(2) + #(A)Lf(1) + T(1)Lg(4)], 2)

Rrs(4) = Lw(4)/Ed(A)/B(A), 3)

Table 3 Landsat-8 OLI band-averaged atmospheric coefficients.

Band 1 2 3 4 5 6 7
Fo (W/m? um) 1896.52 2003.96 1820.79 1550.38 950.63 247.55 85.46
7, (Rayleigh) 2.352E-01 1.685E-01 9.020E-02 4.793E-02 1.551E-02 1.284E-03 3.697E-04

D, (Depolarization) 2.910E-02 2.874E-02 2.825E-02 2.792E-02 2.755E-02 2.724E-02 2.718E-02
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Ed(4) = 19(4)fo(4)Fo(4) cos(6y)- (€]

To remove the effect of sensor-specific spectral response from Rrs(4), the full-band-pass
water-leaving radiances are adjusted to that for square 11-nm band-passes® located at the nomi-
nal band centers (Table 2) using the model of Werdell et al.?° These nominal-band water-leaving
radiances are then converted to Rrs(A) using nominal-center-band mean solar irradiances.*

3.2 Bio-Optical Algorithm

The retrieved Rrs(4) at each visible sensor wavelength provide the basis for many derived geo-
physical product algorithms. The standard NASA algorithm for Ca is a three-band empirical
Rrs(4) band ratio algorithm (OC3)' that transitions to an empirical band-difference algorithm
(OCI)*! in clear waters. For OLI, the empirical coefficients were tuned using the NASA Bio-
Optical Marine Algorithm Dataset (NOMAD)* to adjust for the difference in center wave-
lengths relative to past sensors. The Ca algorithm uses the 443-, 561-, and 655-nm bands
for the band difference and the 443-, 482-, and 561-nm bands for the band ratio. It should
be noted that NOMAD is the same dataset used to tune the MODIS and SeaWiFS Ca algo-
rithms, and that no OLI data or coincident in situ measurements were used in the algorithm
development.

3.3 Vicarious Calibration

Given the stringent accuracy requirements of satellite ocean color retrievals for both the instru-
ment calibration and the atmospheric correction algorithm, an additional vicarious calibration
was derived. This temporally independent but wavelength-specific calibration minimizes
residual bias and enhances spectral consistency of the sensor + algorithm system under idealized
conditions.* The primary vicarious calibration source for all NASA ocean color missions is the
marine optical buoy (MOBY)** near Lanai, Hawaii, which has been continuously operated by
NOAA since 1996. A time-series of all OLI scenes covering the Lanai region was collected and
filtered to find cases of relatively clear, cloud-free atmospheric conditions and negligible Sun
glint. The full screening and averaging process is detailed in Ref. 33. Two scenes were found to
pass all screening criteria (Fig. 1), and vicarious calibration gains were derived for each
(Table 4). For this initial evaluation, the calibration of the atmospheric correction bands at
865 and 2201 nm was not altered.

The change in color between the two images in Fig. 1, which were collected about one
month apart, is due to the difference in solar geometry and a change in the aerosol conditions.
Notably, the vicarious calibration was highly consistent between the two scenes, suggesting
that the atmospheric modeling compensated well for the changes observed between the two
dates. The average vicarious gain in each band (Table 4) was implemented for all subsequent
processing.

4 Results and Discussion

The atmospheric correction approach discussed above and the vicarious calibration from Table 4
were applied to a series of OLI Level-1T scenes collected over the Chesapeake Bay region. Rrs
(443) and Rrs(561) retrievals from a partial OLI scene on September 5, 2013, focusing on the
mouth of the Bay from Cape Charles to Virginia Beach and the inlets of the James, York, and
Rappahannock Rivers, show good agreement with coincident Rrs(443) and Rrs(547) retrievals
from MODISA (Fig. 2). The MODISA data were collected on the same day and processed with
the same atmospheric correction approach, but using the sensor-specific spectral response func-
tions and a sensor-specific vicarious calibration. Also evident in this comparison is the enhanced
information content that 30 m spatial resolution provides relative to the >1 km resolution of
MODIS, allowing observations closer to the coasts and further into rivers and bays, and better
resolving the spatial variability of optically active constituents within the water bodies.
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(b)

Fig. 1 Operational Land Imager (OLI) images over Lanai, Hawaii, on (a) January 9, 2014, and
(b) February 10, 2014, showing location of the NOAA marine optical buoy (MOBY). Colocated
data from MOBY and OLI on these dates were used in the OLI vicarious calibration.

The Rrs(A) retrievals from OLI were applied to the empirical Ca algorithm and compared
with the equivalent product from MODISA (Fig. 3). In general, OLI Ca retrievals for this day
over the main stem of the lower Chesapeake Bay region are lower than those retrieved from
MODISA. Assuming MODISA is correct, this would suggest that the Rrs(443) or Rrs(482)
retrievals are too high relative to Rrs(561), i.e., the spectral dependence is biased toward the
blue, which may be due to uncertainty in the vicarious calibration or error in the aerosol retrieval.
Unfortunately, there is also considerable uncertainty in the MODISA instrument calibration in
the latter period of the mission,* so interpretation of this result as error in the OLI retrieval
should be made with caution.

The spatial detail of the OLI ocean color retrievals is well illustrated in Fig. 4, where the red,
green, and blue Rrs(4) products at 655, 561, and 443 nm, respectively, have been combined into
a quasi true-color image. This image, collected on February 28, 2014, shows striking detail of the
presence of suspended sediments and other optically active biogeochemical constituents around
coastal landforms and where rivers enter the Bay. Sediment plumes, for example, are clearly
evident offshore of the Potomac and Rappahannock Rivers despite February 2014 being an aver-
age year with regard to streamflow’® and free of any notable winter storms. The barrier islands
between Hills Bay and Winter Harbor (between the Rappahannock and York Rivers) show sig-
nificant suspended sediment loads, likely either from advective oceanward transport from the
Rappahannock River or from wind-driven resuspension. Likewise, some of the shallowest areas
of Chesapeake Bay, e.g., east of Smith and Tangier Islands, show substantial (re)suspended

Table 4 OLI vicarious calibration gains.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
Jan 09, 2014 1.01932 1.04007 1.00720 1.01239 1.0 0.94364 1.0
Feb 10, 2014 1.01771 1.04022 1.00734 1.01740 1.0 0.91266 1.0
Avg. gain 1.0185 1.0401 1.0073 1.0149 1.0 0.9282 1.0
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(b) OLI

(c) MODIS
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Fig. 2 Images of water-leaving reflectances, Rrs, for OLI bands at (a) 443 nm and
(b) 561 nm, retrieved over Chesapeake Bay on 5 September 2013, with MODIS Aqua retrievals
of (¢) 443 nm and (d) 547 nm shown for comparison. The MODIS data was collected on the same
day, about 3 h later, and Rrs(4) was retrieved using standard NASA ocean color processing in
SeaDAS.

sediment loads. The high spatial resolution and relatively high SNR of OLI makes it possible to
resolve the spatial structure of these estuarine features.

To further demonstrate the advantage that OLI spatial resolution provides over MODIS,
Fig. 5 shows the same Rrs(1) composite zoomed in to the mouth of the Potomac River,
with MODISA scan-pixel boundaries for the same day overlaid. The OLI images show fine
detail in ocean color that cannot be resolved by the larger MODIS pixels. OLI, thus, provides
an unprecedented opportunity to directly observe this MODIS subpixel variability in suspended
sediments and organic material, which can provide valuable insight into uncertainties in MODIS
ocean color retrievals®” and improved understanding of differences observed in validation match-
ups to localized in situ measurements.

Rrs(4) composite images and Ca retrievals were generated for five scenes obtained over
Chesapeake Bay between September 2013 and April 2014 (Fig. 6). The general similarity
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1

(b) MODIS

Chlorophyll @ (mg m3)

0.01 0.07 0.45 2.99 20.00

Fig. 3 Images of chlorophyll a concentration retrieved from OLI and MODIS Aqua over
Chesapeake Bay on September 5, 2013. The MODIS data were collected on the same day,
about 3 h later. The chlorophyll a concentration was retrieved using standard NASA ocean
color processing in SeaDAS.

Fig. 4 Three-band water-leaving reflectance, Rrs(1), composite image over the mouth of
Chesapeake Bay showing detailed distribution patterns of sediments and colored organic matter
that can be retrieved from OLI using standard NASA ocean color processing in SeaDAS. The
composite was generated using the red, green, and blue reflectances at 655, 561, and 443 nm,
respectively.
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Fig. 5 Three-band water-leaving reflectance composite image from OLI at the location where
the Potomac River enters Chesapeake Bay. MODIS Aqua scan pixel boundaries for the same
date are overlaid to demonstrate the subpixel variability revealed by the higher spatial resolution
of OLI.

of the ocean color images suggests good temporal stability of the OLI calibration and good
performance of the atmospheric correction algorithm over a wide range of solar geometries.
These five scenes represent all available relatively cloud-free, glint-free scenes of Chesapeake
Bay currently available from OLI, thus, Fig. 6 provides an indication of the frequency at which a
mid-latitude location may be monitored with OLI, considering cloudy days and the 16-day
repeat cycle of Landsat-8. Due to the solar and viewing path geometry, OLI observations
between late spring and early fall over mid-latitude oceans of the northern hemisphere are
heavily contaminated by specular reflection of the Sun by the sea surface. Our algorithm
attempts to remove this Sun glint contribution,® but residual error in high glint conditions
(glint-favorable geometries) can dominate the subsurface signal and substantially degrade
Rrs(4) retrieval quality, or cause the retrieval process to fail completely due to contamination
of the aerosol selection bands.

For a more quantitative assessment of OLI ocean color retrieval performance, the distribution
of Ca and Rrs(4) over Chesapeake Bay was compared to same-day retrievals from MODISA.
Following Werdell et al.,* data from the five scenes of Fig. 6 were geographically stratified into
lower and middle Bay regions to produce the regional frequency distributions of Fig. 7. Also
shown is the mean distribution from SeaWiFS over the mission lifespan (1997 to 2010), to pro-
vide additional context on expected range of values. Results show relatively good agreement
between OLI and MODISA Rrs(1) distributions, especially in the green [i.e., Rrs(561) of
OLI compared with Rrs(547) of MODISA), and both sensors are in good agreement with
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Fig. 6 OLI true-color images, Rrs(4) composite images, and chlorophyll a retrievals from all avail-
able clear scenes over Chesapeake Bay.

the SeaWiFS mission mean. Agreement is not quite as good for the bluest band, with OLI Rrs
(443) being elevated relative to MODISA Rrs(443). This gives rise to a larger blue/green ratio
from OLI, and thus lower Ca retrievals relative to MODISA, as previously presented in Fig. 3.
These differences may simply be the result of uncertainty in the OLI vicarious calibration
derived from just two MOBY measurements, or the as yet uncorrected atmospheric correction
bands, but the discrepancy may also arise from error in MODISA retrievals due to degradation in
temporal calibration,* or possibly contamination by stray light where the high contrast in the
NIR between dark water and adjacent bright land can lead to overestimation of aerosol contri-
butions and, thus, underestimation of Rrs(443) for MODISA.* Instrumental stray light contami-
nation has been found to be minimal in OLL"!

The Ca values from OLI and MODISA in the middle Bay do straddle the range of
values measured over previous years by SeaWiFS, and the OLI retrievals of Ca in the lower
Bay are in very good agreement with expectation based on historical SeaWiFS retrievals.
Also shown in Fig. 7 is the distribution of in situ Ca measurements collected at regular
spatial and temporal sampling intervals over a 26-year period from 1984 to 2010, showing
that these OLI Ca retrievals fall within the range of values expected from historical field
observations.
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Fig. 7 Comparison of OLI, MODIS Aqua, and Sea-viewing Wide Field-of-View Sensor (SeaWiFS)
chlorophyll a and Rrs(4) retrieval distributions in the middle and lower Chesapeake Bay, following
Ref. 38. OLI (red) and MODIS (blue) data were collected over the same five dates shown in Fig. 6.
SeaWiFS data (gray shaded) show the average over the mission lifetime (1997 to 2010). /n situ
chlorophyll a measurements shown in black were collected within the same region at regular spatial
and temporal sampling intervals over the period from 1984 to 2010 (Chesapeake Bay Program*?).

5 Conclusions

While there is a long history of efforts to utilize earlier Landsat missions and associated sensors,
such as ETM+ on Landsat-7, for water quality assessment of coastal and inland waters,*"*? the
comparatively poor radiometric performance (demonstrated here by the much lower SNR of
ETM+ relative to OLI) has largely restricted these efforts to retrieval of suspended sediments
only, where high backscatter provides a sufficiently robust signal to compensate for sensor noise
and digitization error. These past efforts also generally relied on minimal atmospheric correction
or simplifying assumptions, such as attributing the Rayleigh-subtracted reflectance in the SWIR
as glint 4 aerosol reflectance and removing this from the visible bands by assuming a flat spec-
tral dependence.*” Based on an analysis of the sensor signal to noise for typical ocean radiances,
and comparison with successful heritage ocean color sensors, we conclude that OLI has the
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requisite spectral bands and sufficient radiometric performance to support the standard atmos-
pheric correction approach used for NASA’s global ocean color missions, including determina-
tion and removal of aerosol contributions based on realistic aerosol models and OLI observations
in the NIR and SWIR, and to enable the quantitative retrieval of water column constituents from
the derived spectral water-leaving reflectance distributions.

NASA’s standard atmospheric correction and ocean color retrieval algorithms, as originally
developed for SeaWiFS and MODIS, were modified to support the OLI data format and sensor
spectral characteristics, and an initial vicarious calibration was performed. Evaluation of OLI
ocean color retrieval over a time-series of Chesapeake Bay scenes demonstrated relatively good
agreement with other ocean color sensors and with historical field measurements in the region.
The observed agreement may further improve as instrument temporal calibration is refined and
additional MOBY measurements are incorporated to reduce uncertainty in the OLI vicarious
calibration, but these initial results demonstrate that OLI can be a valuable tool for ocean
color science and environmental monitoring applications.

We showed that a primary advantage of OLI over heritage global ocean color imagers, such
as MODIS, is the much higher spatial resolution that allows resolving the fine-scale distribution
of suspended sediments and bio-optical water constituents in coastal and estuarine environments.
A limitation of OLI for routine observation and monitoring of these dynamic regions is the nar-
row swath and relatively infrequent 16-day repeat cycle, coupled with observational losses due to
cloud cover and the confounding effects of Sun glint. Use of high spatial resolution OLI in
combination with the more frequent (one-to-two day) repeat cycle of existing wide-swath, mod-
erate-resolution global imagers can, thus, provide complementary observations to better under-
stand and monitor spatial and temporal ecosystem dynamics in nearshore environments, as well
as for understanding the inherent uncertainty in moderate-resolution sensors due to unresolved
subpixel variability.

The higher spatial resolution of OLI does lead to additional challenges relative to moderate-
resolution sensors. For example, our algorithm for Sun glint correction is based on a statistical
model developed by Cox and Munk,* which provides the probability distribution function for
surface facets being oriented in the specular direction, parameterized as a function of wind speed.
The validity of this statistical relationship degrades as resolution increases and individual wave
orientations are resolved, as is the case for OLI. Alternative methods based on observed radi-
ometry have been investigated for higher spatial resolution sensors (see Ref. 44 for a review), and
we suggest that development of an improved glint correction approach for OLI should be a focus
of future work.

Another challenge for quantitative ocean color measurement in nearshore environments,
which has not been addressed here, is the adjacency effect wherein observations of dark
water pixels are contaminated by light reflected from adjacent bright land surfaces that is sub-
sequently scattered into the sensor field of view by the atmosphere.”™ The adjacency effect
impacts both moderate and higher spatial resolution ocean color observations, as the influence of
land reflectance on water observations can extend over 20 km from the coast,*® but the impact
increases with proximity to the bright reflecting source, thus, it is a still greater concern for the
higher-resolution OLI observations that extend closer to the land/water boundary, and particu-
larly for observations in narrow rivers and small lakes that are surrounded by land. More work is
needed to assess the impact of atmospheric adjacency and develop a viable correction strategy to
mitigate this effect.

Support for atmospheric correction and ocean color product retrieval from OLI has now been
incorporated into 12gen, a component of NASA’s open-source SeaDAS software package that is
made freely available to the research and applications community for the processing, visualization,
and analysis of satellite radiometry from a host of ocean color capable sensors. In addition to the
processing algorithms described here, SeaDAS provides many alternative methods and variations
that are applicable to OLI, as well as a wide range of derived product algorithms beyond Ca. For
atmospheric correction, for example, use of alternate band pairs for aerosol selection, fixed aerosol
type based on in situ knowledge, and alternate methods for resolving the water-leaving radiance
contribution in the NIR to SWIR can now be evaluated.'”'® Additional products that can be derived
from the retrieved Rrs(A) within SeaDAS include inherent optical properties (e.g., absorption coef-
ficient of phytoplankton and CDOM and particle backscattering coefficient) using various
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inversion models*®* and measures of water clarity, such as marine diffuse attenuation and

euphotic depth.>! With OLI support now in SeaDAS (version 7.2), these and other applications
of OLI can now be operated to further explore the potential of the sensor for ocean color science
and aquatic ecosystem monitoring applications.
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