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Abstract

Significance: Functional near-infrared spectroscopy (fNIRS), a well-established neuroimaging
technique, enables monitoring cortical activation while subjects are unconstrained. However,
motion artifact is a common type of noise that can hamper the interpretation of fNIRS data.
Current methods that have been proposed to mitigate motion artifacts in fNIRS data are still
dependent on expert-based knowledge and the post hoc tuning of parameters.

Aim: Here, we report a deep learning method that aims at motion artifact removal from fNIRS
data while being assumption free. To the best of our knowledge, this is the first investigation
to report on the use of a denoising autoencoder (DAE) architecture for motion artifact
removal.

Approach: To facilitate the training of this deep learning architecture, we (i) designed a specific
loss function and (ii) generated data to mimic the properties of recorded fNIRS sequences.

Results: The DAE model outperformed conventional methods in lowering residual motion arti-
facts, decreasing mean squared error, and increasing computational efficiency.

Conclusion: Overall, this work demonstrates the potential of deep learning models for accurate
and fast motion artifact removal in fNIRS data.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique to
monitor brain activity indirectly. It measures the intensity of near-infrared light diffusely
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scattered through cortical tissues to quantify changes in oxyhemoglobin concentration (HbO)
and deoxyhemoglobin concentration (HbR) with respect to cortical regions.1–4 HbO and HbR
time series can reflect changes in neurovascular coupling and hence, neuronal activity. fNIRS
has been widely used in cognitive,5–9 motor skill studies,10–15 and brain–computer interface
technique.16

Although the fNIRS technology has been improved over the years, the processing of fNIRS
data set can still be a challenging task. Especially, it is still difficult and time-consuming to
identify and correct for motion artifacts caused by the changes in the coupling between optodes
and scalp. Such artifacts are expressed as peaks or shifts in the time-series signals. Since the
magnitudes of the peaks or shifts are usually much higher than the hemodynamic response func-
tion (HRF), the fNIRS signals are significantly contaminated and do not reflect the cortical activ-
ities. The phenomenon is more noticeable when the motion of the head and limbs are inevitable
or even required in the experiment protocols, such as speeches,17 walking,18 and surgical
tasks.11,12 The problem has been exacerbated by the recent rise of wearable or wireless
fNIRS devices,19,20 which extend mobile ranges of these devices for tasks such as running
or team working, that are more susceptible to motion artifacts. Thus, an efficient methodology
to remove motion artifacts is essential to utilize fNIRS in those scenarios.

A few strategies that have been developed over the years include keeping any trials with
motion artifacts during the data processing. This may be used only when large datasets are col-
lected and is not the current predominant practice. Another strategy is to identify trials/channels
with motion artifacts by visual inspection or to use functions such as hmrMotionArtifact function
in the prevalent fNIRS data processing toolbox HomER2 and then discard them from further
analysis. Though, the most appropriate methodology is to process these trials/channels using
advanced time-series data processing methods. These include spline interpolation,21 wavelet fil-
tering,22 principal component analysis (PCA),23 Kalman filtering,24 and correlation-based signal
improvement (Cbsi).25 The performance of these methods, however, largely depends on a set of
assumptions to describe motion artifacts and the subjective selection of associated tuning of
parameters (Table 1). As an example, Ref. 29 demonstrated that selecting the PCA parameter,
i.e., the percentage of variance in the data that PCA removed27 to be 0.80 and 0.97 produced
significantly different results. Thus, a method that does not require the subjective fine-tuning of
the parameters, or does not rely on stringent assumptions, is highly desirable. Here, we propose a
deep learning method to learn the noise features automatically.

Over the last decade, deep neural networks have emerged as a powerful tool to suppress noise
in image datasets in a fast and efficient manner. Deep learning models have been shown to pro-
duce competitive denoising results while retain more texture details when compared to conven-
tional methods.30–33 Deep learning networks also showed superior performance when applied to
medical imaging problems. For example, denoising autoencoder (DAE) model could denoise
mammograms [structural similarity index measure (SSIM) from 0.45 to 0.73] and dental x-ray
data (SSIM from 0.62 to 0.86).34 A DAE model achieved 10% higher peak signal-to-noise ratio
(PSNR) and SSIM than the conventional algorithm in chest radiograms.35 A recent study36

showed that a long short-term memory (LSTM) network increased the accuracy of voxels clas-
sification in fMRI data by more than 20%. Another study37 showed that the deep learning model
could completely remove the Gibbs phenomena in diffusion MRI data. DAE model has also been
applied to denoising EEG data and increased PSNR values in EEG channels.38 A previous
study39 employed artificial neural network model to optimize the weights of wavelet basis to
denoise fNIRS data and achieved higher contrast-to-noise ratio (CNR) than conventional wavelet
denoising methods. Another study40 detected motion artifact types using machine learning mod-
els on broadband fNIRS data.

Herein, we report on the use of a DAE model associated with a dedicated loss function
purposely designed to remove the motion artifacts. To train such a deep learning network,
we implemented an autoregression (AR) model to generate a large synthetic fNIRS dataset.
The performance of our DAE methodology was established using this synthetic data set and
benchmarked against the current conventional methods used by the fNIRS community.
Moreover, the performances of the DAE were successfully validated on an open-access exper-
imental dataset.
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2 Methods

2.1 Data Collection for the Experimental Dataset

The data used in this study were adopted from a public available dataset.41 This fNIRS dataset
contains motion artifacts (reading aloud, nodding their head up and down, nodding sideways,
twisting right, twisting left, shaking head rapidly from side to side and raising their eyebrows)
under resting state of eight participants. The details of this dataset can be found in Ref. 42. We
also used a finger tapping dataset,43 which had not been seen by the model before to further test
the ability of the model on a real task dataset.

2.2 fNIRS Data Simulation

The fNIRS data simulation procedure is presented in Fig. 1(a). The simulated noisy HRF data
(F 0ðtÞ) consist of the superposition of three components: the clean HRF (FðtÞ), the motion arti-
fact (ΦMAðtÞ) and the resting-state fNIRS (ΦrsðtÞ) components:

Table 1 The motion artifact removal models for fNIRS.

Model name and
references Assumptions Implementation steps Drawbacks

Spline
interpolation21

The shape of the motion
artifact is captured by spline
interpolation.

1. Identify the noise. Denoise performance
depends on the noise
detection method. The
interpolation degree needs
to be tuned.

2. Model the noise by cubic
spline interpolation.

3. Subtract the interpolation
from the original signal.

4. Reconstruction.

Wavelet filtering22,26 The wavelet coefficients
are assumed to be normally
distributed, and the outliers
are accounted as motion
artifacts.

1. Wavelet discrete
decomposition.

Probability threshold alpha
needs to be tuned.

2. Identify the outliers in the
coefficients larger than the
probability threshold alpha.

3. Set the outliers to zeros.

PCA23,27 The first several
components of the PCA
represent the variance
caused by motion artifacts.
Motion artifacts are likely to
occur in most channels at
the same time.

1. Apply PCA to produce
uncorrelated components.

The number/portion of the
components to be removed
needs to be tuned. It is
limited by the total number
of channels available. As a
spatial filtering method,
PCA depends on the
geometry of the probes.

2. Remove the components
that have the highest
contribution to the variance
of the original data.

Kalman filtering24 The state is assumed to be
motion-free.

1. Predict the state of the
next time step.

Build-up errors may happen
as prediction time
increases.282. Correct the prediction

based on the measured
signal.

3. Repeat steps 1 and 2.

Cbsi25 HbO and HbR are
negatively correlated.
Motion artifacts are
independent of Hb. The
ratio between HbO and
HbR is the same,
irrespective of the presence
of artifacts.

1. HbO 0 ¼ HbO−α·HbR
2 , The impacts of motion

artifacts may differ between
HbO and HbR.

2. HbR 0 ¼ −ð1α · HbO 0Þ,
where
α ¼ stdðHbOÞ∕stdðHbRÞ.
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EQ-TARGET;temp:intralink-;e001;116;342 F 0ðtÞ|ffl{zffl}
noisyHRF

¼ FðtÞ|{z}
cleanHRF

þ ΦMAðtÞ|fflfflffl{zfflfflffl}
motion artifacts

þ ΦrsðtÞ|fflffl{zfflffl}
resting−state fNIRS

: (1)

We simulated the clean HRF component (FðtÞ) by gamma functions as suggested in steps in
Ref. 44. Instead of using 54 μM · mm in all the simulated HRF, we were randomly selecting
values from a uniform distribution between 30 and 80 μM · mm, such that the DAE could learn
from a variety of learning samples. The HbR amplitude is always half of the HbO amplitude. The
motion artifacts (ΦMAðtÞ) consisted of two types: spike noise and shift noise. Spike artifacts were
simulated as Laplace distribution function45 given as

EQ-TARGET;temp:intralink-;e002;116;231fðtÞ ¼ A · exp

�
−
jt − t0j

b

�
; (2)

where A represents the peak amplitude, b represents the scale parameter, and t0 represents the
time point of the “peak.” Shift noise was simulated as a positive or negative change in DC value.
All the parameters to determine noise functions were first derived from the experimental fNIRS
dataset. The parameters for each artifact were then drawn from the parameter values in the exper-
imental data. As described in Ref. 45, the resting-state fNIRS (ΦrsðtÞ) was simulated using an
AR model that included five lagged terms. We first fitted an AR model to the experimental
resting-state data to determine the model parameters. Then, these parameters were used to sim-
ulate the resting-state fNIRS.
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Fig. 1 Illustration of the fNIRS data simulation process and the designed DAE model. (a) The
green lines are the experimental fNIRS data, including noisy HRF and resting fNIRS data, while
the blue and red lines are simulated ones. The AR models are fitted to the experimental resting-
state fNIRS time series data, based on whose parameters the simulated resting fNIRS data are
generated. The HRFs are simulated from gamma functions. The shift and spike noise are simu-
lated based on the same distribution of the parameters from the experimental HRF. The simulated
noisy HRF data (black line) is the sum of the simulated HRF, the shift noise, the spike noise, and
the resting-state fNIRS. (b) DAE model: the input data of the DAE model are the simulated noisy
HRF, and the output is the corresponding clean HRF without noise. The DAE model incorporates
nine convolutional layers, followed by max-pooling layers in the first four layers and upsampling
layers in the next four layers, with one convolutional layer before the output. The parameters are
labeled in parentheses for each convolutional layer, in the order of kernel size, stride, input chan-
nel size, and kernel number.
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2.3 Denoising Autoencoder Model Design

The DAE concept was proposed by Vincent et al.,46 and it has numerous applications. For our
purpose, two essential design criteria needed to be established: architectural hyperparameters
and specific loss function. Based on prior knowledge and empirical evidence, our final DAE
model consisted of the nine stacked convolutional layers shown in Fig. 1. The convolutional
layers were followed by max-pooling layers (the first four layers), followed by the next four
upsampling layers, and one more convolutional layer before the output. A smaller network top-
ology containing only four layers produced a significant reduction in performance (see our pre-
vious work47). The network was trained using backpropagation to minimize the loss function.
The time-series data of the simulated noisy HRF (F 0ðtÞ) was the input data, and the output data
were the simulated clean HRF ðFðtÞ).

The loss function was specially designed for this problem. First, the loss function minimized
the discrepancy between the predicted fNIRS data with the ground truth data. For this purpose,
we adopted the mean squared error (MSE) loss function (Lmse) here:

EQ-TARGET;temp:intralink-;e003;116;561Lmse ¼
1

n

X
ðŷi − yiÞ2; (3)

where yi represents ground-truth value and ŷi represents the predicted value.
Next, the loss function minimized the total variation of the predicted signal:

EQ-TARGET;temp:intralink-;e004;116;491Lvar ¼
1

n

X
ðŷi − ûÞ2; (4)

where û is the mean value of ŷi.
Finally, the loss function minimized the number of motion artifacts in the output data, which

we evaluated using the hmrMotionArtifact function in HomER2. The motion artifact detection is
twofold: (i) the standard deviation (std) exceeds the standard deviation threshold or (ii) the
amplitude change (amp) exceeds the amplitude threshold. Here, we designed the standard
deviation loss function (Lstd) for (i) and the amplitude loss function (Lamp) for (ii), as described
in Eqs. (5)–(8):

EQ-TARGET;temp:intralink-;e005;116;360Lstd ¼
1

Nstd

XT
i¼1

X
j∈jjΔidcj>m

Δidcj; (5)

EQ-TARGET;temp:intralink-;e006;116;295Lamp ¼
1

Namp

XT
i¼1

X
j∈jjΔidcj>Camp

Δidcj; (6)

where

EQ-TARGET;temp:intralink-;e007;116;251m ¼ σΔ1dc
· Cstd; (7)

EQ-TARGET;temp:intralink-;e008;116;207Δidcj ¼ dcj − dcðjþ 1Þ: (8)

In the above equations, dc is the projected optical intensity value derived from the predicted
hemoglobin value ŷi via the Beer–Lambert Law dci ¼ ðŷi∕εdÞ, where ε is the attenuation coef-
ficient, and d is the photo path length. Nstd represents the number of all the time points in 1 ∼ T
and Δidcj > m; while Namp represents the number of all the time points in 1 ∼ T and
Δidcj > Camp. σΔ1

dc is the standard deviation of changes in dc in one time step. Camp and
Cstd were motion detection thresholds in amplitude and standard deviation changes. Those values
work as the same role as AMPthresh and STDEVthresh in the HomER2 function
hmrMotionArtifact. If the signal changes by more than Camp over the time interval, then this
time point is marked as a motion artifact. If the signal changes by more than
STDEVthresh � stdevðdÞ over the time interval, then this time point is marked as a motion artifact.
The goal of Lstd and Lamp is to decrease the amplitudes of the “jump/peak” signal that are defined
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as motion artifacts by the threshold values of Camp and Cstd. The users can change those values to
change their criteria to define and detect motion artifacts as they would do in homer2.

Finally, the loss function to train the deep learning network (Loss) is a linear combination of
the four individual loss functions above [Eqs. (3)–(6)] with hyperparameters, θ1, θ2, θ3 as shown
as

EQ-TARGET;temp:intralink-;e009;116;675Loss ¼ Lmse þ θ1 × Lvar þ θ2 × Lstd þ θ3 × Lamp; (9)

where θ1, θ2, θ3 were set to be 1, 1, and 10, respectively, to balance the magnitude of each term.

2.4 Model Training

We trained our DAE model using the PyTorch package in Python 3. We adopted a leave-one-
subject-out cross validation scheme by simulating data from experimental data from all subjects
but one and then tested the model on the one subject that has been left out. We repeated this
procedure until we tested all the subjects. We randomly split the simulated dataset into training,
validation, and testing datasets in the ratio of 8:1:1. The model was trained on the training dataset
and validated on the validation dataset. After completing the model training, its performance was
evaluated using the testing dataset. The learning rate was set at 0.0001 and divided by 10 every
25 epochs. The model was trained for 100 epochs, and the parameters were saved at the epoch
corresponding to the least validation loss. The optimization method was “ADAM.”48 After suc-
cessful training and validation on the synthetic datasets, the DAE model was applied to the
experimental dataset.

2.5 Conventional Denoising Methods

We compared the performance of our deep learning denoising network to models that we
obtained by applying the following competitive methods that have recently been proposed
in the literature: (i) spline interpolation, (ii) wavelet filtering, (iii) PCA, (iv) Kalman filtering,
and (v) Cbsi. These methods have been widely used in the fNIRS community, and we imple-
mented these functions using HomER2.49 Each method, summarized in Table 1, has been thor-
oughly discussed, analyzed, and compared in two review papers.29,44 Table 1 also summarizes
the assumptions imposed on each method and briefly discusses their known drawbacks. The data
flow of the data processing of these conventional denoising methods and DAE is presented in
Fig. S1 in the Supplemental Material. All methods are performed before block average. The
motion artifacts were detected prior to spline by hmrMotionArtifactByChannel function from
homer2. We detected the motion artifacts in the OD signals by hmrMotionArtifact for all the
methods. For CBSI and DAE, since they work on concentration values, we first converted it
to OD value by hmrConc2OD in homer2 and use hmrMotionArtifact to detect motion artifacts.
The standard deviation threshold (STDEVthresh in homer2) is set to 20 and the amplitude thresh-
old (AMPthresh in homer2) is set to 0.3 to detect the motion artifacts in this particular work. But
users can change these values according to suggestions in homer2 or their experience. For PCA,
we were using target recursive PCA.27 After the sensitivity analysis, we ended up selecting 0.97
for PCA threshold values and 0.75 for wavelet method (see more details in Sec. 3.2). For Kalman
filters, the initial state vector x0 were set as the first values of the signals, and the initial error
covariance matrix P0 is set as the square of the first values of the signals.

2.6 Metrics for Model Evaluation

To evaluate the denoising performance for each model when applied to the simulated and the
experimental dataset, we used the number of motion artifacts remaining after applying the mod-
els measured by the hmrMotionArtifact function in HomER2. The fewer the motion artifacts
remaining, the better the model performance. The number of motion artifacts could not reflect
how well the methods could reserve the HRF in it, so we introduce another metrics as MSE to
access the ability to reserve the true HRF of each model. To further assess the processing speed,
we also employed computation time. The experimental data we adopted42 are the resting state
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data with various purposefully added motion artifacts. There is no brain activation in this dataset.
We added stim markers every 73.142 s and then we labeled this dataset as “No act.” in this paper.
So in this “No act.” dataset, the HRF should be zeros because there is no brain activation
involved. Then we added synthetic HRF (modified gamma function of amplitude of
54 μM · mm), to the stim marker locations and labeled this dataset as “Act.” dataset. In this
“Act.” dataset, the ground truth HRF should be a modified gamma function with amplitude
of 54 μM · mm. We used the software G*Power to do power analysis to control type-II error.
The power value of the testing dataset is 1.00; the power of No act. experimental dataset is 1.00;
the power of Act. experimental dataset is 0.99.

2.7 Sensitivity Analysis

To have a fair comparison, we determined the parameters for the competitive methods to estab-
lish models that achieve the best performance. In practice, the parameters could be adjusted by a
visual check of each trial data. However, for the large dataset we had in this study, a more auto-
matic method was required. Here, we adopted the sensitivity analysis method44 to identify the
best set of parameters. For spline interpolation, the interpolation parameter (pSpline) was varied
from 0 to 1; for wavelet filtering, the probability threshold (iqrWav) was varied from 0.1 to 1.5.50

The evaluation metrics for these models were MSE and the number of motion artifacts left after
applying the models.

3 Results

3.1 Data Simulation

In the dataset we used to train, there were seven subjects, with one run for each subject. We
generated 2000 runs of resting data from each subject’s experimental data. We added five trials
of HRFs onto each run and added no HRFs to 200 runs out of the 2000 runs to form the training
dataset. In other words, we generated 2200 runs from each subject and each run had five trials.
Since our model denoised channel by channel, the number of channels was one here. For each
round of training of the leave-one-subject-out crossover scheme, we left one subject’s data out.
Then, we had 77,000 training trials in total. Figure 2 shows an example of how we extracted
motion artifact period and resting period from experimental data, how we determined the shape
of the motion artifacts (e.g., height and duration) then simulated motion artifacts based on those
parameters, and how we simulated resting fNIRS data based on resting state period data and then
synthesize the simulated data. The DAE was applied on each trial before the trial average.
The SNRs of the experimental data and the simulated data are presented in Fig. S3 in the
Supplemental Material; the SNR values of simulated data are comparable to the experimental
data.

3.2 Sensitivity Analysis

The results of the sensitivity analysis are shown in Fig. S2 in the Supplemental Material. For
PCA, σPCA ¼ 0.99 yielded the lowest MSE and number of motion artifacts. In the literature,
σPCA ¼ 0.97 was selected in Refs. 29 and 44. In this work, we kept 0.97 for σPCA. For spline
interpolation, pSpline ¼ 0.99 yielded the lowest MSE and number of motion artifacts and was
also selected in Refs. 21, 29, and 44. Thus, pSpline ¼ 0.99 was selected in this work. For wavelet
filtering, we selected iqrWav ¼ 0.75 to keep both MSE and number of motion artifacts at a
low level.

3.3 Comparison of Models on Denoising Performance

We applied each model except PCA on the simulated testing dataset and derived the number of
residual motion artifacts. All the motion artifact removal models reduced the number of motion
artifacts. Using our DAE model resulted in the minimum number of motion artifacts, with 100%
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of the motion artifacts removed [Fig. 3(a)]. We then applied each model on experimental data
[Fig. 3(b)]. Here, on experimental data, the DAE model also derived the second minimum
residual motion artifacts next to the wavelet.

We further visualized examples from simulated and experimental data in Figs. 3(c)–3(h).
From the examples, the DAE model smoothed the signal while keep the evoked feature of the
HRFs. We further tested our model on a new, publicly available finger-tapping dataset that has
never been seen by the model. The testing results are shown in Fig. 4. We can see the residual
motion artifact of DAE model is lower than other models [Fig. 4(a)]. The recovered HRF shape
in the motor region was also acceptable by visual check [Figs. 4(b)–4(e)].

The MSE values based on HbO for simulation testing dataset, experimental dataset are pre-
sented in Table 2 (the results based on HbR are in Table S1 in the Supplemental Material). The
DAE model achieved the lowest MSE in all the datasets. The MSE values were statistically

Second

DAE

Height

Duration

DAE DAE DAE DAE

(a)

(b) (c)

(d)

(e)

(f)

(g)

(h)

Fig. 2 An example of the fNIRS data simulation process and the designed DAE model. (a) An
example of experimental data. (b) The model artifact extracted from the experimental data in
(a). (c) The resting state period extracted from the experimental data in (a). (d) Simulated evoked
responses. (e) Motion artifact data simulated based on the parameters extracted from the motion
artifact in (b). (f) Resting state data simulated based on the data in (c). (g) Synthetic noised HRFs,
which is the sum of data in (d)–(f). (h) The expected output of DAE model, which is the same with
the data in (d).
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analyzed comparing between DAE model and each other model. We used paired t-test if the
samples were normal distributed (tested by Kolmogorov–Smirnov test) and paired sign test
if the samples were not normal distributed. The significance level was set at 0.05.

The computation time was also recorded and is presented in Table 3 (CPU: Intel® Core™
i9-9900K CPU @ 3.60 FHz). The DAE model achieved the shortest computational times, with

Fig. 4 The denoising results in the new dataset. (a) The number of residual motion artifacts for
experimental data. (b), (c) An example of processed data by different models. (d), (e) An enlarged
2D view of (b) and (c).
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Fig. 3 The denoising results. (a) The number of residual motion artifacts for the simulated testing
dataset. (b) The number of residual motion artifacts for experimental data. (c), (f) An example of
processed data by different models in the simulated dataset, (d), (g) in experimental data under
“No act.” condition, and (e), (h) under “Act.” condition. “No correction” indicates that no motion
artifact correction model was used. An enlarged two-dimensional (2D) view of (c)–(h) is in
Fig. S4 in the Supplemental Material.
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Cbsi as the second and PCA as the third. This result is expected as DAE, Cbsi, and PCA only
perform matrix multiplication. The spline method is no more than cubic interpolation, but it
requires a prior motion artifact detection step, which makes it slower than expected. Notably,
wavelet methods are computationally costly.

4 Discussion and Conclusion

We introduced a deep learning DAE network to suppress motion artifacts in recorded fNIRS
data. To train a DAE network, we used simulated data from an AR model. We validated the
efficiency of the trained DAE network by comparing its performance to models obtained from
other conventional modeling methods when applied to both simulated and experimental fNIRS
data. The data results showed that the DAE model yielded the lowest residual motion artifacts
and MSE compared with competitive models. The DAE model was also the fastest in
computation.

The limitation of labeled training data often jeopardizes the effectiveness of deep neural
networks.51 Self-supervised learning52,53 has been widely used to overcome this limitation.
Specifically, various pretext tasks have been used to train the deep network,54 such as colorizing

Table 3 The computation time for each model on testing data.

Model Computation time (s)

Spline 8.7

Wavelet 1202.1

Kalman 76.3

PCA 6.9

Cbsi 4.9

DAE 2.4

Table 2 The MSE based on HbO. The median value and the IQR value of MSE for each model
and the p-values in the comparison between each model and DAE.

Median (IQR)
(ðμMol · mmÞ2) Sim. testing Sig. test

Real testing
(w/o act.) Sig. test

Real testing
(act.) Sig. test

No correction 9086.23
(29798.72)

p = 0.000 10,663.50
(37,293.42)

p = 0.000 10,658.95
(37,320.75)

p = 0.000

Spline 3699.08
(9695.42)

p = 0.000 11,483.56
(37,471.50)

p = 0.000 11,238.91
(35,722.56)

p = 0.000

Wavelet 4023.11
(18,566.72)

p = 0.000 4438.63
(12524.89)

p = 0.000 4500.36
(13281.81)

p = 0.000

Kalman 7630.74
(31,175.33)

p = 0.000 6309.14
(22,436.39)

p = 0.000 6648.38
(23,806.81)

p = 0.000

PCA — — 11,362.13
(47,714.05)

p = 0.000 10,717.19
(48,408.62)

p = 0.000

Cbsi 4273.20
(15,380.82)

p = 0.000 3899.61
(22613.30)

p = 0.000 4198.70
(22,892.76)

p = 0.000

DAE 144.19(214.42) — 226.81(121.91) — 296.55(58.60) —
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grayscale images,55 image inpainting,56 and image jigsaw puzzle.57 In these tasks, inputs and
labels were synthesized from the unlabeled training set. Then, these synthetic samples were used
for training. In the work of Ref. 44, an fNIRS synthesis method was proposed as adding known
HRFs to experimental resting-state data. However, this method was limited by the experimental
resting-state fNIRS data available. As in our problem, we introduced a similar strategy to train
the proposed deep network, but by simulating the resting-state fNIRS data by the AR model.
Eighty thousand samples were simulated in this work to be able to cover the large range of HRF
and noise parameters obtained from the experimental dataset. The trained DAE model was dem-
onstrated to be efficient in fNIRS denoising. In the future, this fNIRS data synthesis scheme
could be harnessed to develop more powerful deep learning models of fNIRS data processing.
When applied to other real datasets, the range of HRF amplitude in the training data could be
adjusted to the specific range. For example, in this paper, the range was predefined as 30 to
80 μM · mm and the ground truth (simulated HRF amplitude) in real data is 54 μM · mm.
So the true HRF is covered by the predefined HRF range. However, in most cases when we
do not know what the true HRF amplitude is, we suggest to use a larger predefined HRF range.
Other than that, larger training sample size would also give optimized performance.

We simulated our dataset aiming to train our DAE model in this work. However, the synthetic
dataset might be biased unfavorably to other models here by violating their assumptions. For
example, PCA depends heavily on the covariance of motion artifacts across the channels. Our
simulated dataset was not designed to have multiple motion artifacts across the channels at a
similar time point. Thus, we did not apply PCA onto our simulation dataset.

We would also like to mention that we did not simulate our data in a way that the motion
artifacts were locked with the evoked signal, which is a feature of motion artifacts in some study
paradigms. Our simulated motion artifacts were randomly distributed along the time regardless
of the stimulus. In the case that motion artifacts are locked with the stimulus, general linear
model (GLM) could be a better option, since it is intrinsically robust to motion artifact locked
by the evoked signal. Also, GLM is capable of including variety of regressers, such as short
separator and accelerometer data to directly regress out motion artifacts. Even though we did
not consider this specific scenario herein, it could be the focus of future work, including the use
of DAE model incorporating short separator and accelerometer.

Multiple models have been suggested in the past to remove motion artifacts in fNIRS data.
However, the effectiveness of each model depends on the underlying assumptions and the exper-
imental protocol. For example, PCA has been used to remove systemic physiology and motion
artifacts that were common across the channels in infant fNIRS data.58 Still, the effects changed
with the extent of principal component filtering.58 In another study,27 targeted PCA performed
better than wavelet filtering and spline interpolation when the motion artifacts were temporally
independent of the stimuli. Since our data simulation method did not guarantee the covariance of
motion artifacts across the channels, we did not expect PCAwould work well on our simulated
data. PCA is also sensitive to parameter changes. Cooper et al.44 compared PCA, wavelet, and
spline on a synthetic HRF dataset. Their results demonstrated that spline produced the most
significant improvement for MSE and R2, while wavelet analysis produced the highest increase
in CNR. Our simulation results also showed that the spline and wavelet models decreased MSE.
In another study,29 wavelet and Cbsi were shown to be most effective in a real speech study
where motion artifacts coincided with stimuli. However, Cbsi did not show superior performance
here.

It is also worth mentioning that motion artifact correction is also possible using hardware
design changes. For example, an acceleration sensor could be used in experiments to capture the
motion data.59,60 Short separation detectors were proposed to remove the physiological
artifacts61–65 and could also be used to remove motion artifacts.66 It could also be combined
with other filter models to better remove motion artifacts.67 However, our work did not consider
such hardware designs. Coupling of DAE with hardware solutions may be of interest in future
studies.

Though real-time motion artifact removal was not the goal of this study, such requirements
have been considered in Refs. 68 and 69. Our research indicates the superiority of DAE com-
pared to other models with regard to computational speed. However, the design and software
implementation of our current DAE model were not focusing on computational efficiency. It is
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well appraised that increased network complexity leads to increased inference time. Hence,
future studies could focus on optimizing network architecture toward increased computational
efficiency. Moreover, the custom GPU implementation of the DAE model is expected to greatly
improve inference speed. Last, deep learning models, such as LSTM, could be used for real-time
application.

In conclusion, we demonstrated that our DAE model has promising performances in low-
ering the number of motion artifacts and decreasing MSE metrics. To train the DAE model, we
suggested an fNIRS synthesis method to generate a large amount of fNIRS data. The results
showed the potential suitability and superiority of DAE for fNIRS motion artifact removal.
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