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Abstract. Multispectral images enable robust night vision (NV) object
assessment over day-night conditions. Furthermore, colorized multispec-
tral NV images can enhance human vision by improving observer object
classification and reaction times, especially for low light conditions. NV
colorization techniques can produce the colorized images that closely
resemble natural scenes. Qualitative (subjective) and quantitative (objec-
tive) comparisons of NV colorization techniques proposed in the past
decade are made and two categories of coloring methods, color fusion
and color mapping, are discussed and compared. Color fusion directly
combines multispectral NV images into a color-version image by mixing
pixel intensities at different color planes, of which a channel-based
color fusion method is reviewed. Color-mapping usually maps the color
properties of a false-colored NV image (source) onto that of a true-
color daylight target picture (reference). Four coloring-mapping meth-
ods—statistical matching, histogram matching, joint histogram matching,
and look-up table (LUT)—are presented and compared, including a new
color-mapping method called joint-histogram matching (JHM). The experi-
mental NV imagery includes visible (Red-Green-Blue), image-intensified,
near infrared, and long-wave infrared images. The qualitative evaluations
are conducted by visual inspections of the colorized images, whereas the
quantitative evaluations are achieved by a newly proposed metric, objec-
tive evaluation index. From the experimental results according to both
qualitative and quantitative evaluations, the following conclusions can
be drawn: the segmentation-based colorization method produces very
impressive and realistic colors but requires intense computations; color
fusion and LUT-based methods run very fast but with less realistic results;
the statistic-matching method always provides acceptable results; histo-
gram matching and joint-histogram matching can generate impressive
and vivid colors when the color distributions between source and target
are similar; and the statistic-matching then joint-histogram matching
(SM-JHM) method is a reliable and efficient method recommended from
both qualitative and quantitative evaluations. © 2012 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.8.087004]
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1 Introduction
Multispectral images present complementary information
that typically includes visual-band (e.g., RGB or intensified)
imagery and infrared imagery [e.g., near infrared (NIR) and
long-wave infrared (LWIR)]. Imagine a night-time object
assessment task that may be executed on the ground or by
aircraft equipped with a multispectral imaging system.
Multispectral images enable night vision (NV) but it is
inconvenient to directly observe and analyze multiple images
of a scene. Instead, analyzing the synthesized (fused or color-
ized) multisensory image is more informative and efficient
for target recognition.1 The fused multispectral imagery
(in gray scale) can increase the reliability of interpretation2,3

and supports machine analysis (computer vision), whereas
the colorized multispectral imagery (in colors) improves

observer situational awareness,4 reaction time,5 and percep-
tual analysis (human vision).6 This paper focuses on the dis-
cussion and comparisons of several NV coloring methods
using multispectral images.

A NV colorization technique can produce colorized
imagery with a naturalistic and stable color appearance by
processing multispectral NV imagery. Although appropri-
ately false-colored imagery is often helpful for human obser-
vers in improving their performance on scene classification
and reaction time tasks,6,7 inappropriate color mappings
can also be detrimental to human performance.5,8 A possible
reason is lack of physical color constancy.5 Another draw-
back with false coloring is that observers need specific
training with each of the false color schemes so that they
can correctly and quickly recognize objects. With colorized
night-time imagery rendered with natural colors, users
should be able to readily recognize and identify objects
without any training.0091-3286/2012/$25.00 © 2012 SPIE
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Toet9 proposed an NV colorization method that transfers
the color characteristics of daylight imagery into multispec-
tral NV images. Essentially, this color-mapping method
matches the statistical properties (i.e., mean and standard
deviation) of the NV imagery to that of a natural daylight
color image (manually selected as the “target” color distri-
bution). Thus, this method is referred as to “statistic match-
ing.” However, this color-mapping method colorizes the
image regardless of scene content, and thus the accuracy
of the coloring is dependent on how well the target and
source images are matched. In other words, the statistic-
matching method weighs the local regions of the source
image by the “global” color statistics of the target image,
and thus yields less naturalistic results (e.g., biased colors)
for images containing regions that differ significantly in their
colored content.

To address this bias problem in global coloring, Zheng
and Essock10 presented a “local coloring” method that can
colorize the NV images to resemble daylight imagery. The
local-coloring method renders the multispectral images with
natural colors segment by segment (i.e., “segmentation-
based”), and also provides an automatic association between
the source and target images (i.e., by avoiding the manual
scene-matching in global coloring).

The segmentation-based colorization can usually produce
a vivid NV image closely resembling the colors in a natural
scene. However, the segmentation-based coloring procedure
involves many processes and heavy computations, such as
image segmentation and pattern classification. Zheng11

recently introduced a channel-based color-fusion method,
which is fast enough for real-time applications. Note that
the term “color fusion” in this paper refers to combing multi-
spectral images into a color-version image with the purpose
of resembling natural scenes.

Hogervorst and Toet12,13 recently proposed a new color-
mapping method using a look-up table (LUT). The LUT is
created between a false-colored image (formed with multi-
spectral NV images) and its color reference image (aiming
at the same scene but taken during the daytime). The colors
in the resulting colored NV image resemble the colors in the
daytime color image. This LUT-mapping method, which
runs fast for real-time implementations, is summarized along
with the statistic-matching method in their recent paper.13

The quality of colorized images can be assessed by sub-
jective/objective measures. However, subjective evaluation
normally costs time and resources and should be related
to a standard, such as the National Imagery Interpretability
Rating Scale (NIIRS). Moreover, the subjective evaluation
methods cannot be readily and routinely used for real-time
and automated systems. On the other hand, objective evalua-
tion metrics can automatically and quantitatively measure the
image qualities.14 In the past decade, many objective metrics
for grayscale image evaluations have been proposed.15–17

However, the metrics for grayscale images cannot be directly
extended to the evaluations of colorized images. Recently,
some objective evaluations of color images have been
reported in the literature. To objectively assess a color-fusion
method, Tsagaris18 proposed a color image fusion measure
(CIFM) by using the amount of common information be-
tween the source images and the colorized image, and also
the distribution of color information. Yuan et al.19 presented
an objective evaluation method for visible and infrared color

fusion utilizing four metrics: image sharpness metric, image
contrast metric, color colorfulness metric, and color natural-
ness metric. In this paper, we introduce an objective evalua-
tion index (OEI) to quantitatively evaluate the colorized
images. Given a reference (daylight color) image and several
versions of the colorized NV images from different coloring
techniques, all color images are first converted into Interna-
tional Commission on Illumination (CIE) LAB space, with
dimension L for lightness and a and b for the color-opponent
dimensions.20 Then the OEI metric is computed with the four
established metrics, phase congruency metric (PCM), gradi-
ent magnitude metric (GMM), image contrast metric (ICM),
and color natural metric (CNM).

Certainly, a color presentation of multispectral NV images
can provide a better visual input for human users. Users
expect the colored images to closely resemble natural day-
light pictures; along with a coloring process fast enough
for real-time applications. In this paper, six NV coloring
methods (i.e., color fusion, statistic matching, histogram
matching, joint histogram matching, LUT-mapping, segmen-
tation-based coloring) are explored and compared, using
both qualitative and quantitative evaluations and employing
a new color-mapping method of joint-histogram matching
that is developed in the paper. Conclusions are drawn based
the experimental results. The rest of paper is organized as
follows. Multispectral image preprocessing and color space
transform are briefly described in Sec. 2, channel-based color
fusion is reviewed in Sec. 3, color-mapping methods are pre-
sented in Sec. 4, quantitative evaluation metrics are defined
in Sec. 5 and the experiments and discussions are given in
Sec. 6. Conclusions are drawn in Sec. 7.

2 Preprocessing and Color Space Transform
All NV colorization methods require preprocessing and
color space transform, which are briefly reviewed in this
section.

2.1 Multispectral Image Preprocessing

Multispectral images include visible (RGB), image-
intensified (enhanced visible), NIR, and LWIR images.
Before performing multispectral colorization, preliminary
preprocessing, registration, and image fusion methods are
required.21 Standard image preprocessing such as denoising,
normalization, and enhancement can support image registra-
tion, fusion, and colorization. Noise can be reduced accord-
ing to the nature of the clutter that depends on a particular
application. For example, a random noise can be suppressed
by a Gaussian filter applied to noisy RGB and NIR images.

Night-vision images (NIR and LWIR) were acquired
under different background and lighting conditions, which
may cause images to have different background (brightness)
and contrast (dynamic range). We employed a general image
normalization (also called contrast stretching) to standardize
all multispectral images as:

IN ¼ ðI0 − IMinÞ
LMax − LMin

IMax − IMin

þ LMin; (1)

where IN is the normalized image, I0 is the original image;
IMin and IMax are the maximum and minimum pixel values
in I0, respectively; LMin and LMax are the expected mini-
mum and maximum pixel values in IN, which normally
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equal 0 and 1, respectively. After image normalization,
IN ∈ ½0; 1�, a common reference is established.

The image contrasts of NIR images are significantly
affected by illumination conditions. Nonlinear enhance-
ments, such as histogram equalization or histogram match-
ing, usually increase noise while enhancing an NIR image.
A linear enhancement such as piecewise contrast stretching
is preferred. Equation (1) is still applicable but just applied
within each range of an intensity interval. For example, given
½IMin; IMax� ¼ ½0; 0.8�, and ½LMin; LMax� ¼ ½0; 1.0�, after
piecewise contrast stretching, the pixels within [0, 0.8]
will be linearly scaled to [0, 1.0], while those pixels origin-
ally within [0.8, 1.0] are unchanged. To simplify the nota-

tion, this transform can be denoted as S
½0;1:0�
½0;0:8� hereafter,

where S is the scaling operation.
Image registration is a required preparation for image

fusion and colorization. In general, image registration aligns
multiple images (e.g., NIR and LWIR) by performing affine
transformations that allow translation, rotation, and scaling.
Similarity metrics are used to decide the optimized transfor-
mation parameters. The details of image registration can be
found elsewhere.22,23

Image fusion is a necessary step for most coloring meth-
ods. For example, the fused image is expected in color fusion
(Sec. 3) and segmentation-based colorization (Sec. 4.5).
Image fusion actually combines multisensory images into
one image. An advanced discrete wavelet transform (aDWT)
fusion method is used in our experiments, where the details
of image fusion are documented elsewhere.24

2.2 Color Space Transform

All color-mapping methods are performed in a transformed
color space, called lαβ space. In this subsection, the RGB to
LMS (long-wave, medium-wave and short-wave) transform
is discussed first. Then, an lαβ space is introduced from
which the resulting data representation is compact and sym-
metrical, and provides a higher decorrelation than the second
order. The reason for the color space transform is to decorr-
elate three color components (i.e., l, α, and β) so that the
manipulation (such as statistic matching and histogram
matching) on each color component can be performed inde-
pendently. Inverse transforms (e.g., lαβ space to the LMS,
LMS to LMS, LMS to RGB) are needed to complete the
NV colorization process.9

The actual conversion (matrix) from RGB tristimulus to
device-independent XYZ tristimulus values depends on the
characteristics of the display being used. Fairchild25 sug-
gested a “general” device-independent conversion (without
a priori knowledge about the display device) that maps
white in the chromaticity diagram to white in the RGB
space and vice versa.

2
4X
Y
Z

3
5 ¼

2
4 0.5141 0.3239 0.1604

0.2651 0.6702 0.0641

0.0241 0.1228 0.8444

3
5
2
4 R
G
B

3
5: (2)

The XYZ values can be converted to the LMS space using
the following equation

2
4 L
M
S

3
5 ¼

2
4 0.3897 0.6890 −0.0787
−0.2298 1.1834 0.0464

0.0000 0.0000 1.0000

3
5
2
4X
Y
Z

3
5: (3)

A logarithmic transform is employed here to reduce the
data skew that existed in the above color space:

L ¼ log L; M ¼ log M; S ¼ log S: (4)

Ruderman et al.26 presented a color space, named lαβ
(Luminance-Alpha-Beta), which can decorrelate the three
axes in the LMS space:
2
4 l
α
β

3
5 ¼

2
4 0.5774 0.5774 0.5774

0.4082 0.4082 −0.8165
1.4142 −1.4142 0

3
5
2
4 L
M
S

3
5: (5)

The three axes can be considered as an achromatic
direction (l ∝ rþ gþ b), a yellow-blue opponent direction
(α ∝ rþ gþ b), and a red-green opponent direction (β ∝
r − b). The lαβ space has the characteristics of compact,
symmetrical and decorrelation, which highly facilitates the
subsequent process of color-mapping (see Sec. 4).

3 Color Fusion Methods
A fast color fusion method, termed as channel-based color
fusion, was introduced to facilitate real-time applications.11

The term of “color fusion” means combing multispectral
images into a color-version image with the purpose of resem-
bling natural scenes. Relative to the “segmentation-based
colorization” (refer to Sec. 4.5), color fusion performs a
trade-off between color realism with processing speed.

The general framework of channel-based color fusion is
as follows: prepare for color fusion, preprocessing (denois-
ing, normalization, and enhancement) and image registra-
tion; form a color fusion image by properly assigning
multispectral images to red, green, and blue channels; then
fuse multispectral images (gray fusion) using aDWT algo-
rithm;24 and replace the value component of color fusion
in color natural metric (HSV) color space with the gray-
fusion image, and finally transform the fused image back
to RGB space.

In NV imaging, there may be several bands of images
available, for example, visible (RGB), image intensified (II),
NIR, medium-wave infrared (MWIR), and LWIR. On the
basis of the available images and the context, we only discuss
two-band color fusions: (II� LWIR), and (NIR� LWIR),
with the symbol ‘�’ denotes the fusion of multiband images.

3.1 Color Fusion of (II � LWIR)

Suppose a color fusion image (FC) consists of three color
planes, FR, FG, FB; the color fusion of II and LWIR images
are formed by using the following expressions,

FR ¼ S
½0;0:7�
½0;1:0�ðILWIRÞ; (6a)

FG ¼ S
½0:2;1�
½0:1;IGmax�ðIIIÞ; (6b)

FB ¼ S
½0:1;0:75�
½0;1:0� ð½1.0 − ILWIR� • IIIÞ; (6c)
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VF ¼ FusðIII; ILWIRÞ; (6d)

where S
½0:2;1�
½0:1;IGmax� denotes piecewise contrast stretching

defined in Eq. (1); IGmax ¼ minð½μII þ 3σII�; 0.8Þ are the
mean and standard deviation of an II image; ½1.0 − ILWIR�
is to invert LWIR image; symbol ‘•’ means element-by-
element multiplication; VF is the value component of FC
in HSV space; and Fus() means image fusion operation
using the aDWT algorithm.24 Although the limits given in
contrast stretching are obtained empirically according to the
NV images available, it is viable to formulate the expressions
and automate the fusion based upon a set of conditions (e.g.,
imaging devices, imaging time, and application location).
Notice the transform parameters in Eqs. (6a) to (6d) are
applied to all color fusion operations in our experiments.

3.2 Color Fusion of (NIR � LWIR)

A color fusion of NIR and LWIR is formulated by,

FR ¼ S
½0:2;0:9�
½0;1:0� ðILWIRÞ; (7a)

FG ¼ S
½0:2;1�
½0:1;IGmax�ðINIRÞ; (7b)

FB ¼ S
½0:1;0:7�
½0;1:0� ð½1.0 − LLWIR� • INIRÞ; (7c)

VF ¼ FusðINIR; ILWIRÞ; (7d)

where IGmax ¼ minð½μNIR þ 2σNIR�; 0.8Þ and min() is an
operation to get the minimal number. Other parameters
and operators are the same as that in Eqs. (6a) to (6d).

4 Color-Mapping Methods
All color-mapping methods described in this section are per-
formed in lαβ color space. Thus, the color space conversion
from RGB to lαβ must be done prior to color mapping, and
then the inverse transform to RGB space is necessary after
the mapping. Certainly, two images, a source image and a
target image, are involved in a color-mapping process
(refer to Fig. 1). The source image is usually a color-fusion
image (in Secs. 4.1 to 4.3) or a false-colored image (in
Sec. 4.4); while the target image is normally a daylight
picture containing the similar scene. The target image may
have a different resolution as depicted in Secs. 4.1 to 4.3;
however, the LUT described in Sec. 4.4 is established
using the registered target (reference) image.

4.1 Statistic Matching

A statistic matching (stat-match) is used to transfer the color
characteristics from natural daylight imagery to false color
night-vision imagery, which is formulated as:

IkC ¼ ðIkS − μkSÞ
σkT
σkS

þ μkT; for k ¼ fl; α; βg; (8)

where IC is the colored image, IS is the source (false-color)
image in lαβ space; μ denotes the mean and σ denotes the
standard deviation; the subscripts ‘S’ and ‘T’ refer to the

source and target images, respectively; and the superscript
‘k’ is one of the color components: fl; α; βg.

After this transformation, the pixels comprising the multi-
spectral source image have means and standard deviations
that conform to the target daylight color picture in lαβ
space. The colored image is transformed back to the RGB
space [refer to Fig. 2(e)] through the inverse transforms
[i.e., lαβ space to the LMS, exponential transform from
LMS to LMS, and LMS to RGB, refer to Eqs. (2) to (5].9

4.2 Histogram Matching

Histogram matching (i.e., histogram specification) is usually
used to enhance an image when histogram equalization
fails.27 Given the shape of the histogram that we want the
enhanced image to have, histogram matching can generate
a processed (i.e., matched) image that has the specified his-
togram. In particular, by specifying the histogram of a target
image (with daylight natural colors), a source image (with
false colors) resembles the target image in terms of histogram
distribution after histogram matching.

Histogram matching can be implemented as follows.
First, the normalized cumulative histograms of source

Source (false-colored) &
Target (daylight image)

Form 1D histogram 
by stacking HJ

column-by-column

Create a 2D joint 
histogram: HJ

Calculate 1D  
histogram

Color space transform: 
from RGB to l

JHM-colorized image

Compute the normalized 
accumulative histogram: 

h (for both l & )

Do 1D histogram 
matching from Source to 
Target (for both l & )

l

Color space transform: 
from l to RGB 

Fig. 1 Diagram of joint histogram matching [demonstrated with
joint-HM(βα)].
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image ½hS ¼ SðukÞ� and target image ½hT ¼ TðvkÞ� are
calculated, respectively.

hS ¼ SðukÞ ¼ ðL − 1Þ ·
XL−1
0

nk
N

; (9)

where N is the total number of pixels in the image, nk is the
number of pixels that have gray level uk, and L is the number
of gray (bin) levels in the image. Typically, L ¼ 256 for a

digital image. But we can round the image down to m
(m < L, e.g., m ¼ 64) levels, and thus its histogram is called
a m-bin histogram. Clearly, SðukÞ is a nondecreasing func-
tion. Similarly, hT ¼ TðvkÞ, where vk is the gray level in the
target image, can be computed [see the “Target” curve in
Fig. 2(c)].

Second, considering hS ¼ hT [i.e., SðukÞ ¼ TðvkÞ] for
histogram matching, the matched image is accordingly
computed as

Fig. 2 Illustration of color-mapping techniques using only daylight RGB pictures: (a) and (b) source (Lotus) and target (Tulip) images; (c) and (d) the
cumulative histograms of Luminance (l), and the 1-D histograms from the 2-D JHs of Beta-Alpha (βα) in processing (g); (e) and (f) the mapped
images using statistic-matching, and histogram-matching (HM), respectively; (g)–(i) the mapped images using joint-HM (βα), statistic-matching
then joint-HM (βα), and joint-HM (lα), respectively. Notice that the contrasts of all color images were increased by 10%.
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vk ¼ T−1½SðukÞ�; k ¼ 0; 1; 2; :::; L − 1: (10)

It is then straightforward to find a discrete solution of
the inverse transform, T−1½SðÞ� [see the “Mapping” curve in
Fig. 2(c)] as both TðÞ and SðÞ can be implemented with look-
up tables (LUT).

Similar to the statistic matching (described in Sec. 4.1),
histogram matching also serves for color-mapping and is
performed component-by-component in lαβ space [refer to
Fig. 2(f)]. Specifically, with each color component (say the α
component, treated as a grayscale image) of a false-colored
image, we can compute SðukÞ. With a selected target image,
TðvkÞ can be calculated with regard to the same color com-
ponent (say α). Using Eq. (10), the histogram matching can
be completed regarding that color component (α). Histogram
matching and statistic matching can be applied separately or
jointly and when applied together, for instance, it is referred
to “statistic matching then histogram matching.”

4.3 Joint Histogram Matching

As described in Sec. 4.2, histogram matching is applied to
each color component (plane) separately. It is possible to dis-
tort the color distributions of themapped image [see Fig. 2(f)].
To avoid color distortion, we introduce a new color-mapping
method, joint histogram matching (joint-HM).

In lαβ space, α and β represent the color distributions;
while l is the intensity component. In this paper, a joint
histogram (also called two-dimensional (2-D) histogram)
of “two color planes” (α versus β) is calculated and then
matched from the source to the target. The intensity compo-
nent (l) is matched individually (using the same procedure as
described in Sec. 4.2). A diagram of joint histogram match-
ing is illustrated in Fig. 1. In the literature, the joint histo-
gram usually means the joint (2-D) intensity distribution of
“two grayscale images,” which is often used to compute the
joint entropy22 for image registration.

How to calculate the normalized cumulative histogram
(denoted as h) from a 2-D joint histogram (denoted as
HJ) needs further discussion. For histogram matching, h is
expected to be a nondecreasing function. As illustrated in
Fig. 1, we propose to form a one-dimensional (1-D) histo-
gram by stacking HJ column-by-column and then perform
histogram matching, as defined in Eq. (10). Of course, to
correctly index a 1-D transform [T−1ðÞ], the proper calcula-
tion of um (with m bins) using two gray levels (e.g., β and α)
is expected. If HJ is computed as (β versus α), its matching
process is denoted as joint-HMðβαÞ [see Figs. 1 and
2(g)]. Theoretically joint-HMðβαÞ and joint-HMðαβÞ should
be the same, but our process (the formation of 1-D histogram
from a 2-D HJ) makes them eventually different. Another
interesting aspect of joint-HMðlαÞ is presented in Fig. 2(i).
As shown in Fig. 2(d), the histogram of the mapped image
(the “Mapped” curve) is sort of a trade-off between two his-
tograms, “Source” and “Target.” This is expected since we
want no color distortion (i.e., preserving its own colors to
some extent) during color mapping. In addition, joint-HM
can be also applied together with statistic matching such
as “statistic matching then joint-HM,” referred to as SM-
JHM [see Fig. 2(h)].

4.4 Look-Up Table

Hogervorst and Toet12,13 proposed a color-mapping method
using a look-up table (LUT). The LUT is created using one
image pair: a false-colored image (formed with two-band NV
images) and a reference (i.e., target) daylight image. This
method yields a colored NV image similar to the daytime
image colors. The implementation of this LUT method is
described as follows.

(1) Create a false-colored image (of three color planes)
by assigning LWIR to R, NIR image to G plane,
and zeros to B, respectively;

(2) Build RG color map (i.e., a 256 × 256 LUT) and
convert the false-colored image to an indexed image
(0 to 65535) associated with the RG color map;

(3) For all pixels in the indexed false-colored image
whose index value equals 0:

(a) Locate all corresponding pixels in the reference
(i.e., target) color image (that must be strictly
aligned with the false-colored image);

(b) Calculate the averaged lαβ values of those corre-
sponding pixels and then convert them back to
RGB values;

(c) Assign the RGB values to index 0 in the look-
up table;

(4) Vary the index value from 1 to 65535 and repeat the
processes described in Step 3. At the end, the LUT
will be established.

Once the LUT is created, the LUT-based mapping proce-
dure is simple and fast [see Fig. 3(i)], and thus can be
deployed in real-time. However, the LUT creation thor-
oughly relies on the aligned reference image corresponding
to the same scene. Any misalignment, using a different refer-
ence color image, or coloring a different NV imagery (i.e.,
aiming at a different direction), will usually result a degraded
colorization. To make the LUT colorization independent of
viewing direction, Hogervorst and Toet12,13 further suggested
deriving the LUT table from more than one corresponding
image pair (false-colored versus daylight) such that all mate-
rials relevant for a given surroundings are represented in the
imagery from which the LUT is derived.

4.5 Segmentation-Based Colorization

In segmentation-based colorization (also called “local color-
ing”) method,9 multispectral NV imagery is rendered
“segment-by-segment” with the statistical color properties
of natural scenes by using either statistic matching or histo-
gram matching. Therefore, this is not a new color-mapping
technique but just uses the existing methods differently.
Eventually, the colorized images resemble daylight pictures.
The main steps of segmentation-based colorization are
summarized below, but the details are given elsewhere.9 A
false-color image (source image) is first formed by assigning
multispectral (two or three band) images to three RGB chan-
nels. The false-colored images usually have an unnatural
color appearance. Then, the false-colored image is segmen-
ted using the features of color properties, and the techniques
of nonlinear diffusion, clustering, and region merging. A set
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of “clusters” are formed by analyzing the histograms of the
three components of the diffused image in lαβ color space.
Those clusters are merged to “segments” if their similarity
values in lαβ space are greater than a preset threshold.
The averaged mean, standard deviation, and histogram of
a large sample of natural color images are used as the target
color properties for each color scheme. The target color
schemes are grouped by their contents and colors such as
plants, mountain, roads, sky, water, buildings, people, etc.
The association between the source region segments and
target color schemes is carried out automatically utilizing
a classification algorithm, such as the nearest neighbor para-
digm. The color-mapping procedures (statistic-matching
then histogram-matching) are carried out to render natural
colors onto the false-colored image segment by segment.
The mapped image is then transformed back to the RGB
space. Finally, the mapped image is transformed into HSV
space and the “value” component of the mapped image is
replaced with the “fused NV image” (a grayscale image).
Note that this fused image replacement is necessary to
allow the colorized image to have a proper and consistent
contrast.

5 Quantitative Metrics for Colorization
Evaluations

Three image quality metrics for grayscale images and one
metric for color images are reviewed in Sec. 5.1. A new
objective metric, termed object evaluation index28 (OEI),
is introduced in Sec. 5.2, which is defined with the four

metrics. The color-related metrics are defined in the CIELAB
space, where CIE stands for the International Commission on
Illumination and LAB is for L�a�b�. The perceptually uni-
form CIELAB space consists of an achromatic luminosity
component L� (black-white) and two chromatic values a�
(green-magenta) and b� (blue-yellow). The coordinates
L�a�b� (CIE 1976) can be calculated using the CIE XYZ
tri-stimulus values.20

5.1 Four Image Quality Metrics

5.1.1 Phase congruency metric

The phase congruency (PC) model is also called the “local
energy model” developed by Morrone et al.29 This model
postulates that the features in an image are perceived at
the points where the Fourier components are maximal in
phase. Based on the physiological and psychophysical evi-
dences, the PC theory provides a simple but biologically
plausible model of how mammalian visual systems detect
and identify the features in an image.29–32 The PC can be
considered as a significance measure of local structures in
an image.

According to the definition of PC,29 there are many dif-
ferent implementations developed so far. A widely-used
method developed by Kovesi30 is adopted in this paper.
Given a 1-D image fðxÞ, Me

n and Mo
n represent the even-

symmetric and odd-symmetric filters at scale n, respectively.
Me

n and Mo
n form a quadrature pair: enðxÞ and onðxÞ.

Responses of the quadrature pair form a response vector:

Fig. 3 Night-vision coloring comparison (Case# ST014 in NV-set 1—taken at sunset; 640 × 480 pixels): (a-c) Color RGB, NIR, and LWIR images,
respectively; (d)–(f) the colorized images using channel-based color fusion of (NIR� LWIR), statistic-matching, and histogram-matching,
respectively; (g)–(i) the colorized images using joint-HM, statistic-matching then joint-HM, and LUT-mapping [reference ¼ ðaÞ], respectively.
The settings in the color-mappings of (e)–(h) are source ¼ ðdÞ and target ¼ ðaÞ. Notice that the contrasts of all color images were increased
by 10%.
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�
enðxÞ
onðxÞ

�
¼

�
fðxÞ �Me

n

fðxÞ �Mo
n

�
; (11a)

and the local amplitude at scale n is

AnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2nðxÞ þ o2nðxÞ

q
: (11b)

Let

FðxÞ ¼
X
n

enðxÞ; HðxÞ ¼
X
n

onðxÞ: (11c)

The 1-D PCM can be computed as

PCðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðxÞ þH2ðxÞ

p
P

n AnðxÞ þ ε
; (11-d)

where ε is a small positive constant.
In order to calculate the quadrature pair of filters Me

n and
Mo

n, Gabor filters
33 or log-Gabor filters34 can be applied. In

this paper, we use log-Gabor filters (e.g., wavelets at scale
n ¼ 4) due to its following two features: log-Gabor filters,
by definition, have no direct current (DC) component; and
the transfer function of the log-Gabor filter has an extended
tail at the high frequency end, which makes it more capable
to encode natural images than ordinary Gabor filters.35 The
transfer function of a log-Gabor filter in the frequency
domain is

GðωÞ ¼ e
−
½logðω∕ω0Þ�2;

2σ2r ; (12a)

where ω0 is the filter’s center frequency and σr controls the
filter’s bandwidth.

To compute the PCM of 2-D grayscale images, we can
apply the 1-D analysis over several orientations and then
combine the results according to some rules that optimize
performance. The 1-D log-Gabor filters described above
can be extended to 2-D ones by applying a Gaussian function
across the filter perpendicular to its orientation.30,34,36,37 The
2-D log-Gabor function has the following transfer function

G2ðω; θjÞ ¼ e
−
½logðω∕ω0Þ�2

2σ2r · e
−
ðθ−θjÞ2
2σ2θ ; (12b)

where θj ¼ jπ
2 J and j ¼ 0; 1; 2; : : : ; J − 1 is the number of

orientations and σθ determines the filter’s angular band-
width. By modulating ω0 and θj and convolving G2 with
the 2-D image, we get a set of responses at each point
ðx; yÞ as ½en;θjðx; yÞ; on;θjðx; yÞ�. The local amplitude at
scale n and orientation θj is

An;θj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n;θjðx; yÞ þ o2n;θjðx; yÞ

q
(13a)

and the local energy along orientation θj is

Eθj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
θj
ðx; yÞ þH2

θj
ðx; yÞ

q
; (13b)

where

Fθjðx; yÞ ¼
X
n

en;θjðx; yÞ; Hθjðx; yÞ ¼
X
n

on;θjðx; yÞ:

(13c)

The 2-D PCM at ðx; yÞ is defined as

PC2Dðx; yÞ ¼
P

jEθjðx; yÞP
n

P
j An;θjðx; yÞ þ ε

; (13d)

where ε is a small positive constant. It should be noted that
PC2Dðx; yÞ is a real number within [0,1]. The PCM of an
image is defined as

PCM ¼ 1

MN

X
ðx;yÞ

PC2Dðx; yÞ

¼ 1

MN

X
ðx;yÞ

P
jEθjðx; yÞP

n

P
j An;θjðx; yÞ þ ε

; (13e)

where M × N is the size of the image. The range of PCM
is [0,1].

5.1.2 Gradient magnitude metric

The image gradient magnitude (GM) is computed to encode
contrast information. So, PC and GM are complementary
and reflect different aspects of the human visual system
in assessing the local image quality, with GM measuring
the sharpness of an image. The perception of sharpness is
related to an image’s clarity of detail. Image gradient com-
putation is a traditional topic in image processing and gra-
dient operators can be expressed by convolution masks.
One commonly used gradient operator is the Sobel operator.
The partial derivatives of image fðx; yÞ, Gx and Gy, along
horizontal and vertical directions using the Sobel operators
are

Gx ¼
1

4

2
4 1 0 −1
2 0 −2
1 0 −1

3
5 � fðx; yÞ;

Gy ¼
1

4

2
4 1 2 1

0 0 0

−1 −2 −1

3
5 � fðx; yÞ:

(14a)

The GM of fðx; yÞ at pixel ðx; yÞ is defined as

Gðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
: (14b)

The averaged GM over all pixels is called image GMM,

GMM ¼ 1

MN

X
x;y

Gðx; yÞ ¼ 1

MN

X
x;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
; (14c)

where M × N is the size of the image.

5.1.3 Image contrast metric

An image with excellent contrast has a wide dynamic range
of intensity level and appropriate intensity. Both the dynamic
range of intensity level or the overall intensity distribution of
the image can be provided by a histogram. A global contrast
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metric19 is proposed using the histogram character. The
histogram of image with levels in the range [0, N − 1] is
a frequency-distribution function defined as the overall
intensity distribution of an image

hðXkÞ ¼ nk; (15a)

where Xk is the k’th level of input and nk is the number of the
pixels in the image having level Xk. The probability density
function (PDF) is computed by

PðXkÞ ¼ nk∕n; (15b)

where n is the total number of the pixels of the image. The
dynamic range value β is defined as

β ¼
XL−1
k¼0

SðXkÞ; (15c)

where

SðXkÞ ¼
�
1; if PðXkÞ > 0

0; otherwise
: (15d)

The dynamic range matrix α of histogram is defined as

α ¼ β

2 N − β
; (15e)

where α ∈ ½0; 1�. Note that a larger value of α means a wider
dynamic range in the histogram, which leads to better con-
trast. The local image contrast metric is defined as

C ¼ α
XN−1

k¼0

Xk

N
PðXkÞ: (15f)

For color images, the image contrast metric is determined
by both gray contrast and color contrast. Because human per-
ception is more sensitive to the luminance on contrast eva-
luation, we employ the L� channel in the CIELAB space to

evaluate the color contrast. Thus, image contrast is deter-
mined by the histogram of gray intensity and the histogram
of color luminance L� (see Fig. 4). For the gray intensity I,
the gray contrast metric is defined as

Cg ¼ αI
XNI−1

k¼0

Ik
N
PðIkÞ; (16a)

where αI and PðIkÞ can be calculated as above for gray inten-
sity. For the L� channel, the color contrast metric is

Cc ¼ αc
XNL�−1

k¼0

L�
k

NL�
PðL�

kÞ; (16b)

where αc and PðL�
kÞ can be calculated as above for the

L� channel. The global image contrast metric (ICM) is
defined as

ICM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1C2

g þ ω2C2
c

q
; (16c)

where ω1 and ω2 are the weights of Cg and Cc. For simpli-
city, we choose ω1 ¼ ω2 ¼ 0.5. ICM varies within [0,1]. The
evaluation of image contrast metric of color fusion image is
shown in Fig. 4.

5.1.4 Color natural metric

Given a daylight image f1ðx; yÞ and a colorized image
f2ðx; yÞ, if a colorized image is similar to the daylight
image then the colorized image is considered good quality.
Since a human is sensitive to hue in addition to luminance,
we compare the a� and b� channels of the reference image
with that of the colorized image using the gray relational ana-
lysis (GRA) theory.38

We first convert two images, f1 and f2, to L�a�b� space.
L�
i ðx; yÞ, a�i ðx; yÞ, and b�i ðx; yÞ are the L�a�b� values of fi at

pixel ðx; yÞ. The gray relation coefficient between a�1 and a�2
at pixel ðx; yÞ is defined as

ξaðx; yÞ ¼
mini minj ja�1ði; jÞ − a�2ði; jÞj þ 0.5maxi maxj ja�1ði; jÞ − a�2ði; jÞj
ja�1ðx; yÞ − a�2ðx; yÞj þ 0.5maxi maxj ja�1ði; jÞ − a�2ði; jÞj þ ε

; (17a)

where ε is a small positive constant. The gray relation coefficient between b�1 and b�2 at pixel ðx; yÞ is defined as

ξbðx; yÞ ¼
mini minj jb�1ði; jÞ − b�2ði; jÞj þ 0.5maxi maxj jb�1ði; jÞ − b�2ði; jÞj
jb�1ðx; yÞ − b�2ðx; yÞj þ 0.5maxi maxj jb�1ði; jÞ − b�2ði; jÞj þ ε

: (17b)

In the definitions of ξaðx; yÞ and ξbðx; yÞ, minð⋅Þ and
maxð⋅Þ are operated over whole image. However, it is pos-
sible that minð⋅Þ and maxð⋅Þ are operated over a small neigh-
borhood of ðx; yÞ. The gray rational degrees of a� and b�
information for two images are defined as

Ra ¼
X
ðx;yÞ

ωðx; yÞξaðx; yÞ; (17c)

Rb ¼
X
ðx;yÞ

ωðx; yÞξbðx; yÞ; (17d)

where ωðx; yÞ is the weight of the gray rational coefficient,
which satisfies

X
ðx;yÞ

ωðx; yÞ ¼ 1: (17e)

For simplicity, we choose ωðx; yÞ ¼ 1
M×N where M and N

are the length of vectors x and y, respectively. The CNM is
defined as

CNM ¼
ffiffiffiffiffiffiffiffiffiffiffi
RaRb

p
: (17f)
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CNM varies within [0,1]; the larger the CNM, the more simi-
lar the two images.

5.2 Objective Evaluation Index

With the four metrics defined in Sec. 5.1, a new OEI is pro-
posed to quantitatively evaluate the qualities of colorized
images. Given the reference image f1 and the colorized
image f2, the OEI is calcualted in two steps. First the
local similarity maps of the two images are computed,
and then the similarity maps are integrated into a single simi-
larity score.

The two images are first converted into L�a�b� space. For
L� information, the PC maps are calculated and denoted as
PC1 and PC2 for f1 and f2 images, respectively. The simi-
larity measure, SPC, between PC1 and PC2 at pixel ðx; yÞ is
defined as

SPCðx; yÞ ¼
2 PC1ðx; yÞPC2ðx; yÞ þ K1

PC2
1ðx; yÞ þ PC2

2ðx; yÞ þ K1

; (18a)

where K1 is a positive constant. In practice, the determina-
tion of K1 depends on the dynamic range of PC values. SPC
varies within [0,1]. Similarly, the similarity measure based
on the two GM values is defined as

SGðx; yÞ ¼
2G1ðx; yÞG2ðx; yÞ þ K2

G2
1ðx; yÞ þG2

2ðx; yÞ þ K2

; (18b)

where K2 is a positive constant. SG varies within [0,1]. Then,
SPCðx; yÞ and SGðx; yÞ are combined into one similarity mea-
sure, SLðxÞ, where subscripts L is for L � a � b space, as
follows

SLðx; yÞ ¼ ½SPCðx; yÞ�λ1 ½SGðx; yÞ�λ2 ; (18c)

where λ1 and λ2 are parameters to adjust the relative impor-
tance of PC and GM features.

With the aid of the similarity SLðx; yÞ at each pixel ðx; yÞ,
the overall similarity between f1 and f2 can be calculated
with the averaged SLðx; yÞ over all pixels. However, the
image saliency (i.e., local significance) usually varies with
the pixel location. For example, edges convey more crucial
information than smooth areas. Specifically, a human is sen-
sitive to phase congruent structures,39 and thus the larger
PCðx; yÞ value between f1 and f2 implies a higher impact
on evaluating the similarity between f1 and f2 at location
ðx; yÞ. Therefore, we use PCmaxðx; yÞ ¼ max½PC1ðx; yÞ;
PC2ðx; yÞ� to weigh the importance of SLðx; yÞ in formulat-
ing the overall similarity. Accordingly, the OEI between f1
and f2 is defined as follows

OEI ¼
0
@
P

ðx;yÞPCmaxðx; yÞSLðx; yÞP
ðx;yÞ

PCmaxðx; yÞ

1
A

γ1

× ðSICMÞγ2

× ðCNMÞγ3 ; (19a)

where

PCmaxðx; yÞ ¼ max½PC1ðx; yÞ; PC2ðx; yÞ�; (19b)

SICM ¼ 2 ICMðf1Þ × ICMðf2Þ þ K3

ICMðf1Þ2 þ ICMðf2Þ2 þ K3

; (19c)

CNM is previously defined in Eq. (17f) and K3 and
γi (i ¼ 1, 2, 3) are positive constants. The diagram of calcu-
lating OEI is shown in Fig. 5. The range of OEI is [0,1]. The
larger the OEI value of a colorized image is, the more similar
(i.e., the better) the colorized image is to the reference image.
Error pooling is the integration of methods with tradeoffs
between γ1, γ2, and γ3.

γ1, γ2, and γ3 are the weights of three components in the
OEI metric, with the selection of γi being critical for the OEI
calculation. The values of γi are empirically decided, and the
typical values of γ1 and γ2 are between 0.8 ∼ 1.1 and γ3 is
between 0.05 ∼ 0.2. Ki (i ¼ 1, 2, 3) are constants to increase
the metric stability. In our experiments presented in Sec. 6,
we chose γ1 ¼ γ2 ¼ 1, γ3 ¼ 0.2; K1 ¼ 0.85, K2 ¼ 160,
K3 ¼ 0.001; and λ1 ¼ λ2 ¼ 1.

6 Experimental Results and Discussions
To demonstrate and compare different color-mapping meth-
ods, two daylight pictures were used as source [Fig. 2(a);
Lotus] and target [Fig. 2(b); Tulip] images, respectively
(collected by authors). The colored results using statistic
matching (stat-match), histogram matching (HM), joint
histogram matching [joint-HMðβαÞ], and stat-match then
joint-HM (βα) are presented in Fig. 2(e) to 2(h), respectively.
Figure 2(e) shows the background (water, leaf) painted with
the Tulip’s colors; whereas Fig. 2(f) appears oversaturated in
colors (i.e., color distortion). The Lotus shown in Fig. 2(g)
[or Fig. 2(h)] has the closest colors to the Tulip but its back-
ground colors are altered. Two histograms of “Mapped” and
“Target” shown Fig. 2(d) indicate the color difference
between the mapped image and the target image. This result
may imply that a source image can be ideally colorized when
its color distribution (e.g., histogram) is similar with that of a
target image. Another result of the joint-HMðlαÞ is exhibited
in Fig. 2(i), where Lotus shows in light and pure colors but its
background (water) is distorted. Notice that the following

Fig. 4 Diagram of calculation of the contrast metric.
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experimental results of joint histogram matching were con-
ducted by using joint-HMðβαÞ.

Two sets of multispectral NV images were used in our
experiments, which were taken at night-time and referred
as to “NV-set 1” and “NV-set 2,” respectively. In NV-set
1, three triplets of multispectral images (as shown Figs. 3,
6, and 7 collected at Alcorn State University), color RGB,
NIR, and LWIR were colored by using different coloring
methods as described in Sec. 4. The three-band input images
are shown in Figs. 3, 6, and 7(a) to 7(c), respectively with the
image resolutions given in the figure captions. The RGB
images and LWIR images were taken by a FLIR SC620
two-in-one camera, which has a LWIR camera (of
640 × 480 pixel original resolution and 7.5 to 13 μm spec-
tral range) and an integrated visible-band digital camera
(2048 × 1536 pixel original resolution). The NIR images
were taken by a FLIR SC6000 camera (640 × 512 pixel
original resolution and 0.9 to 1.7 μm spectral range). Two
cameras (SC620 and SC6000) were placed on the same fix-
ture and turned to aim at the same location. The images were
captured during sunset and dusk during autumn.

Of course, image registration and fusion as described in
Sec. 2.1 were applied to the three band images shown in
Figs. 3, 6, and 7, where manual alignment was employed
to the RGB image shown in Fig. 7(a) since it is so dark
and noisy. To better present the color images (including
the daylight RGB images and the colorized NV images),
contrast and brightness adjustments (as described in figure
captions) were applied. Notice that piece-wise contrast
stretching [Eq. (1)] was used for NIR enhancement. As
referred in Eq. 7(d), the fused images (shown elsewhere9)
were obtained using the aDWT algorithm.24 The channel-
based color fusion [defined in Eqs. (7)] was applied to
the NIR and LWIR images [shown in Figs. 3, 6, and 7(b)
to 7(c)], and the results are illustrated in Figs. 3, 6, and
7(d). The resulted images from two-band color fusion
[Figs. 3, 6, and 7(d)] resemble natural colors, which
makes scene classification easier. The paved ground appears
reddish since it has strong heat radiations (at dusk) and thus
causes strong responses in LWIR images. In the color-fusion

images, the trees, buildings and grass can be easily distin-
guished from ground (parking lots) and sky. The car is
clearly identified in Fig. 7(d), where the water area (between
ground and trees and shown in cyan color) is certainly
noticeable. However, it is hard to realize any water area
in the original images [Fig. 7(a) to 7(c)].

All color-mapping methods were applied to the three
triplets and their results are presented in Figs. 3, 6, and 7.
The source images are the color-fusion images [Figs. 3, 6,
and 7(d)], while the target images are the color RGB images
[Figs. 3 and 6(a)]. Figure 7(a) cannot be used as a target
image as it is too dark and noisy. Figures 3, 6, and 7(e)
show the colored images with the statistic-matching method,
which are more similar to the daylight pictures in contrast
with the color-fusion images. The three results [Figs. 3, 6,
and 7(e)] are equivalently good, which means that the statis-
tic matching is reliable. The histogram matching results
shown in Figs. 3, 6, and 7(f) are oversaturated, which
turns to be more suitable for segmentation-based colorization
[see Fig. 8(c) and 8(g)]. The joint histogram matching [i.e.,
joint-HMðβαÞ] is illustrated in Figs. 3, 6, and 7(g), where the
mapped images are better than the color fusions, but preserve
the reddish colors which existed in the source images.
Figure 7(i) is also a colored image using joint-HMðβαÞ by
choosing [target ¼ Fig. 6(a)], which appears slightly better
than Fig. 7(g) [target ¼ Fig. 3(a)]. The comparable results
[shown in Fig. 7(g) and 7(i)] demonstrate that the color-
mapping methods can flexibly choose a target image with
similar scenery. The “stat-match then joint-HM” (SM-JHM)
means that a joint-HM is performed with inputs of [source ¼
the colored image from stat-match, such as Fig. 3(e);
target ¼ the RGB image such as Fig. 3(a)]. Their results
are presented Figs. 3, 6, and 7(h), which are better than
the results from either stat-match or joint-HM. In fact,
“stat-match then joint-HM” is overall the best among all
color-mapping methods described in Sec. 4. Two examples
of LUT-mapping colorization are given in Figs. 3 and 6(i).
Figure 3(i) (an ideal case of LUT mapping) shows impressive
colors; whereas in Fig. 6(i) the exhibits are noisy and dis-
torted. The noise in the LUT-colorized image may be caused

Fig. 5 Diagram of calculating OEI in L�a�b� space.
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partially by the noisy reference image (taken at dusk) and
partially by the pixel-based process during LUT table
creation. In fact, many LUT-colored results (about 50% of
30 samples) are similar with Fig. 6(i). Some cases (e.g.,
Fig. 7) are not directly applicable to LUT colorization
since no daylight reference image can be used. When using
the LUT established in a different case at daytime (but
aiming at different direction at night time), the colored
results (not presented in this paper) usually appear worse.
For surveillance or navigation applications where cameras
move around (i.e., aiming at various directions), the LUT
table may be created by using several pairs of night-time/
daytime images taken on the camera moving along a path.12

The qualitative evaluations of six methods over three
cases (shown in Figs. 3, 6, and 7) in NV-Set 1 are
summarized in Table 1. Three categries of quality measure-
ments are used for the qualitative evaluations, which are
contrast, details, and colorfulness. The score of each mea-
surement is rated from 3 to 1 to represent low, average,
and high quality, respectively. Specifically, a high contrast
means an adequate level of brightness and contrast, high
details represent high clarity of detailed contents, and
high colorfulness preserves more natural colors (i.e., closely
resembles the daylight image). Columns 3 to 5 in Table 1
present the rated scores of three categories, where three
scores in each cell corresponds to three cases shown in
Figs. 3, 6, and 7, respectively. Notice that Fig. 7(i) is another
sample of JHM and thus no score is given for LUT (shown ×

at the bottom row). The averaged scores are listed in the last
column, where the quality rank is shown within a pair of
curly brackets. It is clear that the quality order of colorization
methods from the best to the worst: SM-JHM (stat-match
then joint-HM), SM (stat-match), LUT, CBCF (channel-
based color fusion), JHM (joint-HM), HM (histogram
matching). The same acronyms of six colorization methods
are used in Table 2.

The quantitative evaluations using the OEI metric defined
in Eq. (19) (refer to Sec. 5.2) are presented in Table 2 (cor-
responding to Figs. 3 and 6, respectively), where the ranks of
metric values (1 for the largest OEI) are given within round
parentheses. Keep in mind that the larger the OEI value of a
colorized image the better its quality. According to the OEI
values in Table 2, the quality order of colorized images in
Fig. 3 from the best to the worst are (i), (h), (e), (d), (f),
(g); and the quality order in Fig. 6 are (e), (h), (f), (i),
(d), (g). To have an overall rank, the sums of the rank num-
bers in Figs. 3 and 6 are calculated and shown in Table 2. The
rank of colorization methods (1 for the best) is given within
the curly brackets. The order of colorization methods from
the best to the worst: SM-JHM, SM, LUT, HM, CBCF, JHM.
For a fair comparison, the averaged scores are recalculated
with the rated scores of Figs. 3 and 6, which together with
their qualitative ranks (same as Table 1) are exhibited at the
far right column of Table 2. Both quantitative and qualitative
evaluations support each other for the top three ranks, i.e.,
SM-JHM, SM, LUT. Statistical matching (SM) may cause

Fig. 6 Night-vision coloring comparison (Case# AT008 in NV-set 1—taken at sunset; 640 × 480 pixels): (a–c) Color RGB, NIR, and LWIR images,
respectively; (d)–(f) the colorized images using channel-based color fusion of (NIR� LWIR), statistic-matching, and histogram-matching, respec-
tively; (g)–(i) the colorized images using joint-HM, statistic-matching then joint-HM, and LUT-mapping [reference ¼ ðaÞ], respectively. The settings
in the color-mappings of (e)–(h) are source ¼ ðdÞ and target ¼ ðaÞ. Notice that the contrasts of all color images were increased by 10%, and the
brightness of (a) and (i) were increased by 10%.

Optical Engineering 087004-12 August 2012/Vol. 51(8)

Zheng, Dong, and Blasch: Qualitative and quantitative comparisons of multispectral night vision : : :



color bias10 when the target (daylight) image is taken at a
diffrent location from the source image. The joint-HM
(JHM) can prevent (or reduce) color distortion when the
source and target are similar in colors (see Fig. 2). On the
other hand, JHM may increase color distortion if the source
significantly differs from target (refer to the buildings and
parking lots in Fig. 3). The JHM is typically combined
with statistic-matching (i.e., SM-JHM), which makes the
NV colorization better than any individual (either SM or

JHM; see Fig. 3). Keep in mind the limitation of LUT
method, i.e., both source and reference aiming at the
same location. Although the performance of CBCF is
poor, a realistic color fusion (as the source image) is always
expected by other color-mapping methods. The OEI evalua-
tions cannot be applied to Figs. 7 and 8 as no daylight images
are available for the required reference images.

In NV-set 2, two pairs of multispectral images, image
intensified (II) and LWIR, were analyzed by using color
fusion and segmentation-based colorization methods as
described in Sec. 4. The two input images are shown in
Fig. 8(a) and 8(b) (provided by U.S. Army NVESD) and
Fig. 8(e) and 8(f) (provided by the Netherlands TNO9,13),
respectively. Two input images in NV-set 2 were preregis-
tered. The false-colored images (not shown here) were
obtained by assigning II images to blue channels, infrared
(IR) images to red channels, and providing averaged II
and IR images to green channels. The segmentation was
done in lαβ space through clustering and merging opera-
tions. With the segment map (not shown here), the histo-
gram-matching and statistic-matching were performed
segment by segment in lαβ space. After the training process
was performed, the source region segments were automati-
cally recognized and associated with proper target color
schemes. The final colored images by segmentation-based
colorization are shown in Fig. 8(c) and 8(g). From a visual
examination, the colored images appear natural, realistic, and
colorful. The details of segmentation-based colorization and

Fig. 7 Night-vision coloring comparison (Case# AT012 in NV-set 1—taken at dusk; 640 × 480 pixels): (a–c) Color RGB, NIR, and LWIR images,
respectively; (d)–(f) the colorized images using channel-based color fusion of (NIR� LWIR), statistic-matching, and histogram-matching, respec-
tively; (g)–(i) the colorized images using joint-HM, statistic-matching then joint-HM, and joint-HM with different settings [source ¼ ðdÞ, target ¼
Fig. 6(a)], respectively. The settings in the color-mappings of (e)–(h) are source ¼ ðdÞ and target ¼ Fig. 3(a). Notice that the contrasts of all
color images were increased by 10%, and the brightness of (a) were increased by 20%.

Table 1 Qualitative evaluations (rated scores) of six methods over
three cases (Figs. 3, 6, and 7) in NV-Set #1.(Rate: 1 ¼ high,
2 ¼ average, 3 ¼ low; × ¼ not applicable).

Method Plot Contrast Details Colorfulness Avg. {rank}

CBCF (d) 2, 1, 2 2, 1, 1 3, 3, 3 2.0 {3}

SM (e) 2, 2, 1 1, 2, 1 2, 1, 1 1.4 {2}

HM (f) 3, 3, 3 3, 3, 3 2, 3, 3 2.9 {5}

JHM (g) 3, 1, 2 3, 1, 2 3, 2, 2 2.1 {4}

SM-JHM (h) 1, 2, 1 1, 2, 2 1, 1, 1 1.3 {1}

LUT (i) 1, 3, x 2, 3, x 1, 2, x 2.0 {3}
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experimental results (such as the colorized images with sta-
tistic-matching and histogram-matching methods) were pre-
sented in Zheng and Essock’s paper.10

A two-band channel-based color fusion [described in
Eqs. (6)] was applied to the II and LWIR images [shown
in Fig. 8(a) to 8(b) and 8(e) to 8(f)], and the results are
illustrated in Fig. 8(d) and 8(h). The color-fusion results
are reasonably good, especially in representing vegetation.
Compared to the segmentation-based colorization results,
the channel-based color fusion seems less realistic, such
as the sky and roads. However, the processes of channel-
based color fusion eliminates the need for segmentation
and classification, and also reduces the color transforms.
The processing speed is much faster than that of segmenta-
tion-based colorization. The LUT-mapping12,13 method may
not be directly applied to NV-set 2 since no daylight refer-
ence images are available (see Fig. 8). However, other map-
ping methods (e.g., joint-HM, stat-match then joint-HM) are
applicable here by choosing a target image of similar scenery
(such as Fig. 7), but those results are not presented here due
to the limited space.

The qualitative (subjective) evaluations of NV coloration
are based on casual visual inspections with three general
categories. More qualitative measurements, subjective eva-
luations (by a group of subjects), and statistical analysis
will be introduced in the future. The quantitative (objective)
evaluations using the OEI require a reference (daylight)
image. Thus we will continuously improve the OEI metric
by relaxing the requirement of a reference image. We will
further investigate color fusion, joint-HM, and SM-JHM
methods, and their interactions for speed and visualization,
as well as conduct more comprehensive comparisons.

7 Conclusions
A set of qualitative and quantitative comparisons of NV col-
orization techniques is offered in this paper. We review a
channel-based color fusion procedure; explore statistic
matching, histogram matching, and LUT-based approaches;
introduce new joint histogram matching and stat-match then
joint-HM (SM-JHM) methods; and compare them with a
segmentation-based colorization using both qualitative and
quantitative evaluations. The quantitative evaluations using

Table 2 The OEI (order) values of six methods over two cases (Figs. 3 and 6) in NV-Set #1. (The “qualitative rank” is recalculated with the rated
scores of Figs. 3 and 6 in Table 1).

Method Plot Fig. 3 Fig. 6 Sum {rank} Qualitative rank

CBCF (d) 0.5640 (4) 0.5376 (5) 9 {4} 2.0 {3}

SM (e) 0.5965 (3) 0.5928 (1) 4 {1} 1.7 {2}

HM (f) 0.5639 (5) 0.5607 (3) 8 {3} 2.8 {5}

JHM (g) 0.5536 (6) 0.4825 (6) 12 {5} 2.2 {4}

SM-JHM (h) 0.6078 (2) 0.5912 (2) 4 {1} 1.3 {1}

LUT (i) 0.6417 (1) 0.5575 (4) 5 {2} 2.0 {3}

Fig. 8 Night-vision coloring comparison: (a) and (b) and (e) and (f) are two samples of II and LWIR images in NV-set 2; (c) and (g) are the seg-
mentation-based colorizations using histogram-matching, then statistic-matching; (d) and (h) are the channel-based color fusions of (II� LWIR).
Notice that there were no daylight RGB images available in NV-set 2.
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the OEI are consistent with the results of qualitative eva-
luations.

In summary, the segmentation-based colorization gener-
ates more colorful and more realistic night-vision images,
but it requires heavy computations and thus is time-
consuming. The channel-based color fusion gives reasonable
coloring results and can be implemented for real-time appli-
cations. The LUT method also runs fast and yields a good
result when the LUT table is properly established with direc-
tion independence. Statistic matching always works reliably
and produces a stable colorization. Histogram matching
often causes oversaturation and thus is more suitable for seg-
mentation-based coloring. Joint histogram matching usually
preserves the existing colors in a source image, which is not
ideal when the source image (e.g., a false-colored image) is
very different in color from the target image.

Overall, we recommend the “stat-match then joint-HM”
(SM-JHM) method that effectively and efficiently provides
impressive colorization. SM-JHM also demonstrates the
best trade-off between image quality and speed over the
methods explored. Keep in mind that the target image (a
RGB image taken at daytime) used in all color-mapping
methods (except for LUT) can be freely chosen with similar
scenery, which may have a different resolution and requires
no alignment.

Experimental results with multispectral imagery showed
that the colorized images contain comprehensive information
and vivid colors. The colorized NV imagery can significantly
enhance the NV targeting by human users and will even-
tually lead to improved performance of remote sensing,
night-time perception, and situational awareness.
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