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quency noise filtering and the interpolation of the pulse function at low
frequencies are then applied. Second, an invariant embedding technique
is used to calculate the dielectric permittivity profile based on the sample
pulse function. Samples with known permittivity profiles have been studied
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algorithm is stable to additive Gaussian white noise as shown using math-
ematical modeling based on the finite-difference time-domain technique.
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1 Introduction
Terahertz (THz) radiation is located between the infrared and
microwave regions of the electromagnetic spectrum, from
about 0.1 to 10.0 THz. THz waves have some specific prop-
erties, such as high penetration depth into dielectric materials
and the ability to interact with both vibrational and rotational
molecular levels. THz radiation is nonionizing in nature.
Because of these properties, there are many potential appli-
cations of THz technology.1 For instance, THz imaging and
spectroscopy systems are used in the detection of concealed
weapons, drugs, and explosives,2,3 medical diagnostics,4–6

and nondestructive evaluation of construction materials.7,8

THz time-domain spectroscopy (TDS) utilizes short
pulses of THz radiation with a wideband spectrum (from
0.1 to 3.0 THz) to measure the THz optical properties of vari-
ous media. The electric field of a THz pulse is detected with a
very high time resolution (about 50.0 fs) after the transmis-
sion of the pulse through the sample or the reflection of the
pulse from the surface. By applying a fast Fourier transfor-
mation to the detected time-domain signals, it is possible to
analyze the complex transmission or reflection coefficients
of the sample in a wide frequency range. Time-domain
data can also be used to reconstruct the permittivity profile
in a sample (i.e., the dependence of the sample dielectric
permittivity on depth). This reconstruction method aids in
the study of the internal structure of a sample, known as
THz tomography or T-ray tomography.9 THz tomography
is expected to be useful in medical diagnosis, nondestruc-
tive evaluation of construction materials, inspection of art
objects, and other applications. This paper describes a new
way to solve this inverse problem.

Many ways have been presented to solve the inverse scat-
tering problem.9,10 However, several aspects of the inverse
problem have not previously been considered, such as sam-
ple pulse function low-frequency interpolation, and sample
pulse function filtering during the deconvolution process.
The reconstruction results significantly depend on the par-
ticular method of solution for these problems. In addition,
the stability of different algorithms with respect to noise
has not been previously studied. The present work does
not critically analyze previous solutions to the inverse prob-
lem. Instead, in this paper, an alternative way to solve the
inverse scattering problem is presented. The results of imple-
menting this new algorithm and its stability with respect to
noise are shown in detail.

Several assumptions concerning media properties are
made in the present work. The medium of interest is assumed
to be nondispersive and nonabsorbing. Sample optical prop-
erties are assumed to be constant in the lateral direction and
vary only with depth. The media of interest must possess no
optical nonlinearity. When the THz penetration depth is
much larger than the full optical width, a medium is consid-
ered to be low-absorbing. The dispersion of optical proper-
ties can be neglected when the variation of the medium
refractive index has small fluctuations with frequency. The
medium is assumed to be thick such that multiple reflections
in sample layers do not impact the reflected signal data (i.e.,
the number of pulses in the sample response). All media
considered in this paper are assumed to satisfy these
assumptions.

Restricting our analysis to nondispersive, nonabsorbing
media, we apply the present algorithm for nondestructive
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evaluation of polymer construction materials. Future modi-
fications of this method would help generalize this technique
to absorbing media and media with dispersion. For example,
dispersion can be described with a spectral dielectric permit-
tivity model, such as the Debye, Lawrence, or Drude models.
This improvement would aid in the development of new
methods of medical diagnosis with THz TDS systems (diag-
nosis of skin burns,11 study of skin structure,12 study of tooth
demineralization,13 and cornea tissue14) and methods of art
inspection.15

Most inverse scattering algorithms used in different
electromagnetic spectral ranges, such as in the radio fre-
quency range, consist of two steps for sample permittivity
profile reconstruction. First, a sample pulse function RðtÞ
is reconstructed based on time-domain signals. Second,
the sample permittivity profile εðzÞ is reconstructed utilizing
the pulse function RðtÞ. In this paper, an invariant embedding
technique is suggested as the basis for the permittivity profile
reconstruction procedure. This technique was previously
used outside of the THz range.16,17

Several problems should be solved in order to generalize
this technique to THz TDS. These problems include the low-
and high-frequency noise filtering of the sample pulse func-
tion, sample pulse function interpolation at low frequencies,
and the correction of the dielectric permittivity profile using
a priori information. Permittivity profile reconstruction
based on an invariant embedding technique was imple-
mented and tested experimentally and using mathematical
modeling. We consider all stages of permittivity profile
reconstruction using this algorithm. We discuss all methods
for solving the problems of invariant embedding technique
generalization to THz spectroscopy.

2 Materials and Methods

2.1 THz Time-Domain Spectrometer

First, a THz TDS system used to collect experimental data is
described. Figure 1 presents a THz time-domain spectrom-
eter working in reflection mode. Generation and detection
of THz pulses is made using optical femtosecond pulses
of a fiber laser with full width at half maximum of about
80.0 fs. The generation of THz pulses is produced in a

photoconductive (PC) antenna. The laser repetition rate
is 50.0 MHz and the THz pulses are modulated at
102.4 kHz using PC voltage modulation.18 The THz beam
is focused on the sample. Moreover, the aperture ratio of
lens is rather small: D∕f 0 ¼ 1∶2.5. Rays in THz beam trans-
mitted through the lens have different incident angles. The
maximum incident angle is equal to the aperture angle of
the lens. Since the aperture angle is rather small, then the
incident angle is also small. This condition is an important
one for correct implementation of the algorithm. THz radi-
ation reflects from the surface of the sample during sample
signal measurements or from the reference surface during
reference signal registration and is incident on the electroop-
tical THz field detector based on ZnTe crystal. Using a probe
femtosecond optical pulse transmitted through the delay
stage, the THz electrical field magnitude is detected with
very high time resolution. A lock-in amplifier is synchron-
ized with the PC antenna modulating voltage to provide a
high signal-to-noise ratio.

Two signals need to be obtained for sample permittivity
profile reconstruction: EsðtÞ is the signal reflected from the
sample of interest, and ErðtÞ is the reference signal reflected
from the reference surface with a very high and homo-
geneous reflectivity in a wide spectral range. A planar gold
mirror was used to obtain the reference signal. As the method
of signal detection is known, all stages of dielectric permit-
tivity profile reconstruction can be considered.

2.2 Dielectric Permittivity Profile Reconstruction
Algorithm

As previously noted, sample dielectric permittivity profile
reconstruction is accomplished in two steps: reconstruc-
tion of the sample pulse function RðtÞ based on TDS system
signals EsðtÞ and ErðtÞ and the reconstruction of the sample
permittivity profile εðzÞ based on a sample pulse func-
tion RðtÞ.

2.2.1 Sample pulse function reconstruction

The sample pulse function RðtÞ is the medium response
to the influence of an incident electromagnetic wave with
a delta function amplitude time dependence. The sample

Fig. 1 Schematic representation of the TDS system.
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pulse function is also the result of an inverse Fourier trans-
formation applied to the sample amplitude reflectivity R̃ðνtÞ.
Pulse function reconstruction is a signal deconvolution
process.

The first problem in signal deconvolution is that simply
dividing the sample signal Fourier spectrum ẼsðνtÞ by the
base signal Fourier spectrum ẼrðνtÞ to reconstruct the sample
complex amplitude reflectivity R̃ðνtÞ

R̃ðνtÞ ¼
ẼsðνtÞ
ẼrðνtÞ

(1)

does not work. Since both the sample and reference signals
contain no useful information at low frequencies (<0.05–
0.1 THz) and high frequencies (>2.0–3.0 THz), Eq. (1)
only results in noise in these spectral regions. Any sample
reflectivity reconstruction procedure must contain some
low- and high-frequency noise-filtering operation. The filter-
ing procedure should allow us to obtain as much data on the
sample reflectivity as possible, and should contain smoothed
filter edges to prohibit the emergence of Gibbs noise in the
sample pulse function. With a filter, Eq. (1) is modified as

R̃ðνtÞ ¼
ẼsðνtÞ
ẼrðνtÞ

F̃ðνtÞ: (2)

A technique utilizing a Wiener filter F̃ðνtÞ (see Ref. 19)
was applied in previous research20,21 to process TDS system
data. The formulation of a derived Wiener filter F̃ðνtÞ with
several modifications can be described as follows:

F̃ðνtÞ ¼

�
ẼrðνtÞ

max
νt

fẼrðνtÞg

�
2

�
ẼrðνtÞ

max
νt

fẼrðνtÞg

�
2

þ NðνtÞ
SðνtÞ

; (3)

where NðνtÞ is a noise power spectrum model and SðνtÞ is a
signal power spectrum model. Equation (3) is negligible in a
frequency range where the noise power spectrum model
NðνtÞ exceeds the signal power spectrum model SðνtÞ.
Conversely, if SðνtÞ exceeds NðνtÞ, the function F̃ðνtÞ is
close to unity. Smooth filter edges are also provided. For sim-
plicity, we assume a Gaussian white noise model for the
noise power spectrum NðνtÞ:

NðνtÞ ¼ K̃; (4)

where K̃ is a constant such that 0.0 < K̃ < 1.0. The signal
power spectrum SðνtÞ is based on a Gaussian monopulse
function fGMpðtÞ:

fGMpðtÞ ¼ −2 · e−
1
2 · ðπ · νtC · tÞ · exp½−2ðπ · νtC · tÞ2�;

(5)

where νtC is the most powerful harmonic in the monopulse
spectrum f̃GMpðνtÞ. The value νtC depends on the methods
that are used for generation and detection of THz pulses. The
signal power spectrum model can be obtained using the
following equation:

SðνtÞ ¼
½ϜtffGMpðtÞg�2

max
νt

f½ϜtffGMpðtÞg�2g
; (6)

where Ϝt is the direct Fourier transform operator.
Choosing a central monopulse frequency νtC and noise

spectral power K̃ in Eqs. (3)–(6), it is possible to provide
a qualitative reconstruction of the sample reflectivity for dif-
ferent conditions of waveform ErðtÞ and EsðtÞ registration,
such as the type of THz emitter and detector, the number of
signal averages, and other factors. Figure 2 demonstrates an
example of a Wiener filter function F̃ðνtÞ generated for a typ-
ical reference signal ErðtÞ with filter parameters: νtC ¼
0.8 THz, K̃ ¼ 0.002. Luckily for our TDS system, the center
frequency νtC matches a window in the atmospheric water
vapor absorption spectrum. Outside this window the filtering
procedure obviously leads to noise suppression in frequency
ranges corresponding to high atmospheric absorption.

The second problem in the deconvolution procedure
is pulse function interpolation at low frequencies. To recon-
struct a sample permittivity profile with the invariant
embedding technique, it is essential to know the sample
pulse function spectral components at low frequencies,
excluding the zero point of the discrete Fourier-domain. It
is possible to interpolate the sample reflectivity R̃ðνtÞ based
on known frequency domain information within the ranges
½−νt max;−νt min� and ½νt min; νt max�, and to obtain low-
frequency data from the interpolation results. Since the pulse
function spectrum R̃ðνtÞ character is determined both by the
internal structure of the sample and by the dispersion of
media optical properties, interpolation can be easily accom-
plished if the investigated medium has a negligible
dispersion of optical characteristics.

The modulus jR̃ðνtÞj and phase φfR̃ðνtÞg of the sample
complex reflectivity can be interpolated separately. It is
convenient to use a trigonometric interpolation series to
reconstruct the amplitude reflectivity modulus jR̃ðνtÞj. Since
the sample pulse function RðtÞ is a real function, the series
has the form:
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Fig. 2 An example of reference spectrum Ẽ r ðνt Þ and Wiener filter
F̃ ðνt Þ
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jR̃ðνtÞjinterp ¼ ajR̃j0 þ 2
XN
n¼1

ajR̃jn : cos

�
2π

n
Δνt

νt

�
; (7)

where Δνt ¼ νt max − νt min, the size of the determined sam-
ple reflectivity spectrum, with boundaries νt min ¼ 0.1 THz
and νt max ¼ 2.0 THz. ajR̃j0 and ajR̃jn are the interpolation coef-
ficients:

ajR̃j0 ¼ 1

Δνt

Z
νt max

νt min

jR̃ðνtÞjdνt;

ajR̃jn ¼ 1

Δνt

Z
νt max

νt min

jR̃ðνtÞj · cos
�
2π

n
Δνt

νt

�
dνt: (8)

A trigonometric series is also used to interpolate the phase
of the complex amplitude reflectivity φfR̃ðνtÞg. φfR̃ðνtÞg is
an odd function, and hence, the interpolating series has the
following form:

φfR̃ðνtÞginterp ¼ aφfR̃g0 νt þ 2
XN
n¼1

aφfR̃gn · sin

�
2π

n
Δνt

νt

�
:

(9)

The interpolation coefficients aφfR̃g0 and aφfR̃gn can be written
as

aφfR̃g0 ¼ 1

Δνt

Z
νt max

νt min

νtφfR̃ðνtÞgdνt;

aφfR̃gn ¼ 1

Δνt

Z
νt max

νt min

φfR̃ðνtÞg · sin

�
2π

n
Δνt

νt

�
dνt: (10)

The first order moment aφfR̃g0 should be used in Eq. (9)
instead of the zero order moment, because the sample reflec-
tivity phase φfR̃ðνtÞg always has a linearly decreasing
character.

After reflectivity interpolation, the sample pulse function
RðtÞ can be obtained using the following expressions:

R̃ðνtÞinterp

¼
8<
:

jR̃ðνtÞj interp exp
�
jφfR̃ðνtÞginterp

�
; νt ∈ ½−νt min;νt min�

R̃ðνtÞ; νt ∈= ½−νt min;νt min�
;

RðtÞ¼ F−1νt

n
R̃ðνtÞinterp

o
: (11)

The interpolation type applied in this work provides good
results if one deals with sharp sample permittivity profile
variations or with a layered structure. Since the pulse
function is known, RðtÞ, sample permittivity profile, εðzÞ,
reconstruction is possible.

2.2.2 Sample permittivity profile reconstruction

Now consider a plane wave incident normally on the sample
surface (Fig. 3). Awave reflected from εðzÞ can be described
by the following integral equation:16

Erðz0; tÞ ¼
Zt

0

Rþðz0; t − t 0Þ · Eiðz0; t 0Þdt 0; (12)

where Eiðz0; t 0Þ is the incident plane wave amplitude regis-
tered at the point z ¼ z0, Erðz0; tÞ is the reflected plane wave
amplitude registered at the point z ¼ z0, Rþðz0; tÞ is the scat-
tering kernel of the integral transformation for signals regis-
tered at the point z ¼ z0, and z is the depth coordinate. This
linear representation of the reflection process is valid when
the reflected signal has no components, arising from the
multiple reflections in the object layers. The kernel of the
integral transformation Rþðz0; tÞ describes the region of
the investigated medium in the depth range ½z0; L�, and
depends only on the dielectric permittivity εðzÞ and effective
conductivity σðzÞ of the sample.

The first surface of the object is assumed to be the origin
of the spatial coordinate OZ. Signals Eiðz0; t 0Þ, Erðz0; tÞ,
and the integral kernel Rþðz0; tÞ can be determined if
z0 < 0, because the field amplitude can be detected only
outside the object of interest. The dielectric permittivity
is considered to remain constant ε1 before the medium
z < 0 and take a different constant value εL from a certain
medium depth z > L (Fig. 3). The following kernel of the
integral transformation corresponds to the sample pulse
function RðtÞ, obtained at the signal deconvolution step
[Eq. (2)]:

Rþðz0 ¼ 0; tÞ ¼ RðtÞ: (13)

This kernel characterizes the entire sample. For conven-
ience, it is better to use nondimensional spatial and tempo-
ral coordinates and to normalize the integral kernels:16

l ¼
Z

L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εðzÞε0μ0

p
dz;

x ¼ xðzÞ ¼
Z

Z

0

dz 0

lcðz 0Þ ;

s ¼ t
l
;

Rðx; sÞ ¼ lRþðz; tÞ; (14)

where l is the time needed for the wavefront to travel
through the investigated medium (from 0 to L), x is the nor-
malized optical depth (0 < x < 1), s is the normalized tem-
poral coordinate (0 < s < 2), and cðzÞ is the dependence of
the speed of light on depth.

All normalized medium kernels Rðx; sÞ should satisfy the
following nonlinear integro-differential equation:16

Fig. 3 Dielectric permittivity profile function.
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∂Rðx;sÞ
∂x

¼ 2
∂Rðx;sÞ

∂s
−BðxÞRðx;sÞ

−
1

2
½AðxÞþBðxÞ�

Z
s

0

Rðx;s 0ÞRðx;s− s 0Þds 0; s > 0;

Rð1;sÞ¼ 0; s > 0

Rðx;0Þ¼−
1

4
½AðxÞ−BðxÞ�; (15)

where AðxÞ and BðxÞ are coefficients that depend on medium
properties εðzÞ and σðzÞ:

AðxÞ ¼ −
d

dx

�
ln

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðzðxÞÞε0μ0
p

��
;

BðxÞ ¼ −
lσðzðxÞÞ
εðzðxÞÞε0

: (16)

Equations (15) and (16) follow from dissipative wave
equation.

As mentioned above, absorption of the studied sample is
negligible; that is, σðzÞ ¼ 0 ½BðxÞ ¼ 0�, and therefore,
Eq. (15) takes the form:

∂Rðx; sÞ
∂x

− 2
∂Rðx; sÞ

∂s
¼ −

1

2
AðxÞ

Z
s

0

Rðx; s 0Þ

× Rðx; s − s 0Þds 0; s > 0;

Rð1; sÞ ¼ 0; s > 0;

Rðx; 0Þ ¼ −
1

4
AðxÞ. (17)

To determine sample dielectric permittivity εðzÞ, the speci-
fied initial boundary problem in Eqs. (14), (16), and (17)
needs to be solved. The integro-differential Eq. (17) is
first solved numerically with the initial condition in
Eq. (13) to find the AðxÞ function. For numerical computa-
tion, it is convenient to use the following notation of
Eq. (17):

∂Rðx;s−2xÞ
∂x

¼−
1

2
AðxÞ

Z
s−2x

0

Rðx;s 0Þ

×Rðx;s−2x−s 0Þds 0; s> 0;

Rð1;sÞ¼ 0; s> 0;

Rðx;0Þ¼−
1

4
AðxÞ: (18)

As AðxÞwas determined, the dielectric permittivity profile
can be found using an inverse transformation of Eq. (16):

zðxÞ ¼ cð0Þl
Z

x

0

exp

�
−
Zx0

0

Aðx 0 0Þdx 0 0
	
dx 0; 0 < x < 1;

ε½zðxÞ� ¼ ε1 exp

�
2

Zx

0

Aðx 0Þdx 0
	
; 0 < x < 1;

(19)

where cð0Þ is the speed of light at the point z ¼ 0. The values
cð0Þ and ε1 should be known a priori and are often simply
the values for air.

Prior to permittivity profile calculation, the function AðxÞ
can be corrected using some a priori information regard-
ing the sample permittivity. For example, the sample dielec-
tric permittivity has to be constant from a certain depth
z ¼ L. To fulfill this condition, a constant should be
added to AðxÞ so that the integral fðxÞ ¼ ∫ x

0Aðx 0Þdx 0
becomes equal to a constant at x ≥ L

AkorrðxÞ ¼ AðxÞ þ C; C ¼
�
d
dx

fðxÞ
�





x≥L
: (20)

This correction helps to significantly reduce any error in per-
mittivity profile reconstruction. The permittivity profile
reconstruction algorithm is resumed in Fig. 4.

The algorithm can be modified to take media absorbance
into account. At first sight, it is impossible to reconstruct
both an arbitrary dielectric permittivity εðzÞ and arbitrary
conductivity σðzÞ [or absorption αðzÞ] profile simultane-
ously, since there is only one algorithm input function RðtÞ.
However, one can use some a priori information about the
sample conductivity profile σðzÞ or some approximation of
the conductivity distribution during reconstruction. In addi-
tion, it is possible to connect the sample conductivity σðzÞ
with sample permittivity εðzÞ utilizing a mathematical
model of the complex dielectric permittivity ε̃. In this
case, reconstruction of some ε̃ parameter profile will take
place instead of a direct permittivity εðzÞ and conductivity
σðzÞ reconstruction. Note that the function AðxÞ in
Eq. (16) depends on εðzÞ and the function BðxÞ depends
on both εðzÞ and σðzÞ. We also need to include a complex
dielectric permittivity model ε̃ in the description of these
functions to deal with absorbing media. After parameter pro-
file reconstruction, one can obtain both profiles of interest
from ε̃ðzÞ.

Fig. 4 Scheme of the algorithm.
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3 Experimental Results
In order to validate this algorithm, several media with known
permittivity profiles were studied. These test media were
built from a set of flats with known thickness and THz opti-
cal properties. A list of THz materials used in this work and
their optical properties are given in Table 1. The optical
thicknesses of the test samples were about 5 mm. The THz
wave penetration depth in each of the materials listed in
Table 1 is much higher than the sample thickness. As a con-
sequence, material absorption can be neglected. The materi-
als selected for the study have small dispersion for the most
part of spectral range. Some of them have dispersion at
frequencies above 2.0 THz. To neglect it we should recon-
struct sample reflectivity R̃ðνtÞ only in frequency range
under 2.0 THz. Notice, while studying materials with rather
high dispersion of optical properties we are reconstructing
sample permittivity profile, which corresponds to the average
of the sample permittivity in the entire bandwidth of the THz
pulse spectrum.

The steps for algorithm implementation for the quartz flat
in air are as follows. An example of sample EsðtÞ and refer-
ence ErðtÞwaveforms is given in Fig. 5. The reference signal
was reflected by a planar gold mirror and the sample ampli-
tude was reflected by a 1.0-mm thick crystalline quartz
window. Therefore, two pulses reflected from air/quartz
and quartz/air interfaces are present in EsðtÞ. There are no
satellite pulses, which could exist due to etalon effects
that arise from multiple reflections within the sample, in

signal EsðtÞ. Appearance of such pulses would lead to
distortion of reconstruction results. The noise standard
deviation was less than 0.5% relative to the reference peak
pulse amplitude. The dynamic range and signal-to-noise
ratio (SNR)22 of reference time-domain data were 2000
and 25, respectively.

Figure 6(a) illustrates the absolute value of the sample
reflectivity jR̃ðνtÞj, obtained after signal deconvolution
and interpolation. Function jR̃ðνtÞj has a strongly modu-
lated character due to the presence of two waves in the sam-
ple waveform EsðtÞ. The complexity of reflectivity
modulation increases with an increasing number of sample
pulses. Such an oscillating function can be represented as a
trigonometric series during the low-frequency interpolation
procedure in Eqs. (7)–(11). The sample reflectivity is dis-
torted with noise as caused by both detector noise and
changes in air composition along the THz beam path during
the measurement process. Particularly strong noise lines are
due to the fluctuation of water vapor content along the THz
beam path.

The quartz window sample pulse function RðtÞ is pre-
sented in Fig. 6(b). The pulse function contains information
about the sample interfaces as also for the sample waveform
EsðtÞ. Obviously, the pulse function RðtÞ contains two types
of powerful distortions. First, there is the RðtÞ distortion
caused by a sample reflectivity low-frequency interpolation
error. Second, there is a Gibbs noise, which is caused by the
rather sharp edges of the Wiener filter. With increasing
smoothness of the filter, Gibbs noise decreases but the depth
resolution of the permittivity profile reconstruction also cor-
respondingly decreases.

The quartz plate permittivity profile reconstruction is
shown in Fig. 7(a). Figure 7 also contains the results for
the other test samples: Fig. 7(b) corresponds to the 1.0-mm
thick quartz plate and a thick, high-resistivity floating zone
silicon plate; Fig. 7(c) corresponds to the sample made of a
1.0-mm thick layer of quartz and a high-density polyethylene
layer; and Fig. 7(d) corresponds to the sample made of the
same quartz window and a thick polymethylpentene plate. In
addition to the algorithm implementation results, any a priori
information concerning sample permittivity (ideal profiles) is
presented for all four figures.

The results for algorithm implementation [Fig. 7(a)–7(d)]
and the a priori data for sample permittivity allow us to
conclude that profile reconstruction was produced accurately
enough for all samples of interest. All reconstructed profiles
contain both low- and high-frequency noise, but low-
frequency noise caused by interpolation errors leads to a
larger distortion of the permittivity profile. Any small Gibbs
noise present in the reconstruction results in a much smaller
distortion.

Table 1 Optical properties of THz materials.

HRFZ-SI Quartz HDPE TPX

Permittivity (arb. units) 11.679� 0.010 4.536� 0.050 2.372� 0.020 2.135� 0.050

Absorption (cm−1) 0.025� 0.005 1.000� 0.500 0.400� 0200 0.300� 0.100

Average penetration depth (mm) 400.000 10.000 25.000 33.333
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Fig. 5 Reference Er ðtÞ and sample (1.0-mm thick quartz window)
EsðtÞ waveforms.
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Fig. 6 Absolute value of reflectivity jR̃ðνt Þj (a) and pulse function RðtÞ (b) of 1.0-mm thick quartz window.

Fig. 7 Permittivity profiles of test samples: (a) corresponds to 1.0-mm thick crystalline quartz window located in air; (b) corresponds to 1.0-mm thick
crystalline quartz window and thick HRFZ-SI plate; (c) corresponds to 1.0-mm thick crystalline quartz window and a thick HDPE plate; and
(d) corresponds to 1.0-mm thick crystalline quartz window and a thick TPX plate.
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4 Algorithm Stability in the Presence of Noise
The stability of the permittivity profile reconstruction
algorithm was considered by mathematical modeling of
algorithm implementation in the presence of additive white
Gaussian noise in TDS system signals (Fig. 8). Models of
layer medium permittivity profiles as well as models of
permittivity profiles with slightly smoothed edges were

considered. The interaction of THz light with matter was
examined and reflected waveforms were obtained. White
Gaussian noise with various standard deviations was added
to the waveforms and the permittivity reconstruction pro-
cedure was applied. Results of algorithm implementation
were compared with the initial εðzÞ model.

First, a model for the sample permittivity profile was gen-
erated and the interaction of THz pulses with the model was
considered using a finite-difference time-domain technique
for solving Maxwell’s equations (FDTD).23 The assumptions
made during numerical modeling were:

• All media of interest were completely nondispersive
and nonabsorptive.

• No nonlinearities of media optical properties were
present.

• The structure and properties of the media did not
change in the lateral directions OX and OY, and vary
only with depth direction OZ. Therefore, the light
interaction with εðzÞ (incident and reflected waves)

Fig. 8 Flow chart for the study of algorithm stability against noise.

Fig. 9 Reference (a) and sample (b) waveforms with additive white Gaussian noise, and results of test media permittivity profile reconstruction
(c) for various waveform noise.
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can be described with plane waves running along the
OZ axis.

• The time dependence of the electric field of the inci-
dent wave EincðtÞ was described with a Gaussian
monopulse function [Eq. (5)].

• There are no satellite pulses caused by multiple reflec-
tions in the layers of the object present in the reflected
signals.

After FDTD modeling, the incident EincðtÞ and reflected
EreflðtÞ waveforms were obtained for each studied profile
εðzÞ. White Gaussian additive noise with a standard
deviation ση was added to both incident EincðtÞ and reflected
EreflðtÞ waveforms. Moreover, different noise standard devi-
ations were implemented for each type of permittivity profile
model εðzÞ. A permittivity profile reconstruction procedure
was applied to the waveforms with noise added for esti-
mating the permittivity profile ε 0ðz; σηÞ. Note, that there was
no noise filtering procedure applied before permittivity
reconstruction. The estimating permittivity profile ε 0ðz; σηÞ
was compared with the initial function εðzÞ using the stan-
dard deviation of the profiles σε:

σεðσηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

½ε 0ðzi; σηÞ − εðziÞ�2
vuut ; (21)

where N is the number of permittivity profile grid points.
Figure 9 contains examples of (a) the reference EincðtÞ,

and (b) the sample EreflðtÞ waveforms with different addi-
tive noise, as well as (c) results of permittivity profile
reconstruction for various waveform noise ση. Figure 9(c)
contains both reconstruction results ε 0ðz; σηÞ for different
noise levels and the initial permittivity profile function εðzÞ.
Profiles obtained after implementation of the inverse scatter-
ing algorithm to the numerical modeling results are close to
the initial profile when the additive noise standard deviation
ση is less than 1.9%. Dependence of the standard deviation σε
for the profiles on waveform noise standard deviation ση for
the same function εðzÞ is shown in Fig. 10. This figure also

contains the border between stable (1) and unstable (2)
regions.

The dependence of the standard deviation of permittivity
profile reconstruction on the noise standard deviation is
less than 15.0% for rather high SNR of time-domain data.
The quality of εðzÞ reconstruction decreases with increasing
depth. Therefore, the thinner the investigated medium is,
the higher the average accuracy of permittivity profile
reconstruction. Some noise-filtering procedure (such as
Fourier-domain or wavelet-domain noise filtering) could
be implemented to the waveforms to increase the stability
border to a higher standard deviation ση (Fig. 10). Recon-
struction results for all examined functions εðzÞ were stable
at the same waveform noise power for noise standard
deviation less than 1.9%. Certainly, the stability and unique-
ness of the algorithm should be proven in analytical form, but
the results shown in this chapter let us conclude that the algo-
rithm is stable to additive Gaussian white noise.

5 Discussion
Experimental algorithm implementation and mathematical
modeling shows high reconstruction accuracy when layered
samples and samples with slightly smoothed borders
between layers were studied. The average reconstruction
error was smaller than 15.0% for all tested media if the wave-
form noise standard deviation was in the region of stability
(Fig. 10). The border of stability is equal to the additive noise
standard deviation ση ¼ 1.9% and can be raised by applying
a noise-filtering procedure. The theoretical limit of depth res-
olution is considered to be half of the TDS signal minimum
wavelength, which exhibits an impulse response RðtÞ.
Resolution in the range of 40 to 50 μm can be achieved
for the TDS system used in this work.

The accuracy of reconstruction also depends on other
factors: interpolation technique, waveform noise filtering
method, media dispersion, and media absorption. The accu-
racy might be increased by implementing modifications to
this algorithm, which may include increasing the quality
of complex amplitude reflectivity interpolation, developing
new methods of reconstructed permittivity profile correction,
or applying a noise-filtering procedure. As mentioned above,
future algorithm modifications would help to study absorb-
ing samples and samples with dispersion of optical pro-
perties described by some complex dielectric permittivity
profile model. One of the possible ways to take media
absorption into account was discussed above.

6 Conclusions
In the present work, the ability of THz TDS applied to media
dielectric permittivity profile reconstruction was shown. An
algorithm for solving the inverse scattering problem based on
an invariant embedding technique was developed and imple-
mented. Problems appearing during sample pulse function
reconstruction were solved. A pulse function low- and
high-frequency filtering procedure based on a Wiener filter
was used and trigonometric interpolation of the sample pulse
function was applied. The present algorithm can be used in
various fields of THz technology, where media with negli-
gible absorption are of interest, such as for nondestructive
evaluation of polymer construction materials. The results
of algorithm implementation show high reconstruction
accuracy for all test samples. Result of algorithm stability
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Fig. 10 Profile standard deviation σε versus waveform noise standard
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modeling aids in the determination of the region of TDS
system noise in which reconstruction can be applied
successfully. Different methods for modifying the algorithm
were discussed. Future work will involve providing the abil-
ity to study absorbing media with a dispersion in optical
properties.
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