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Abstract. Guidelines for the design and fabrication of polymer photonic
crystal channel drop filters for coarse wavelength division multiplexing
are provided. A Fabry-Perot cavity consisting of a membrane-type slab
photonic crystal, where a hole row perpendicular to the propagation direc-
tion is removed, is considered. We selected nanoimprinting as the manu-
facturing technique. The influence on the cavity performance of several
key parameters, i.e., polymer core material, lattice geometry, defect
length, and holes’ radius, has been investigated in a device compliant
with the requirement of the ITU-T G.694.2 standard. A detailed analysis
of the fabrication tolerances has been carried out at 1551 nm. The maxi-
mum acceptable drift of the geometrical parameters has been accurately
evaluated by using the finite element method to prove that the fabrication
tolerances do not significantly affect the performance of polymer filters for
coarse wavelength division multiplexing, when manufactured by thermal
nanoimprinting lithography. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI:
10.1117/1.OE.52.9.097104]
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1 Introduction
For more than one decade, photonic-crystal slabs have been
identified as one of the most promising photonic crystals
(PhCs) configurations due to their high design flexibility
and the possibility of fabricating them through the well-
established planar technology, and several high-performance
devices have been demonstrated.1,2 The wavelength of the
defect modes in PhC slabs can be identified by tailoring
both size and shape of defects. This allows one to design
and fabricate microcavities covering a wide range of appli-
cations in the field of low-threshold lasers,3 channel drop
filters,4–6 and chemical sensing.7,8 Fabry-Perot cavities, made
by a couple of two-dimensional (2-D) photonic bandgap mir-
rors separated by an unperturbed region, have been widely
investigated.9–11

Although silicon and III-V semiconductors are the mostly
used materials for planar PhCs,12–14 polymer PhC slabs15–19

are emerging as a valid alternative because of some interest-
ing advantages such as low cost, readiness of functionaliza-
tion with biochemical receptors, and low optical loss.

One of the most promising applications of 2-D PhC
cavities is in the field of coarse wavelength division multi-
plexing (CWDM), which is a well-established technology
for short-haul, enterprise, and metro optical networks
demanding next-generation chip-scale photonic components
having high reliability and low cost.20

In this paper, we study the fabrication tolerances of a
channel drop filter for CWDM, which is compliant with
the requirement of the ITU-T G.694.2 standard (pass-band

width of each channel ¼ 13� 3 nm, channel spacing ¼
20 nm). The device (see Fig. 1) is based on a polymer
PhC structure incorporating a linear defect in the lattice
along the propagation direction. The defect allows photonic
states to be highly confined in the band gap, thus leading
to a narrow-band filtering operation. The PhC is obtained
through a 2-D periodic pattern of holes in a polymer
air-suspended membrane and the two separate PhC reflectors
in the structure are the mirrors of the Fabry-Perot cavity.
Each reflector includes p columns and q rows. The
values of both p and q have been selected aiming at a com-
promise between two opposite crucial requirements, i.e.,
the filter footprint minimization and maximization of the
performance.

We denote the defect length, the lattice constant, and the
hole radius with d, a, and r, respectively. Nanoimprinting
lithography, which allows a cost-effective and high through-
put manufacturing of nanoscale devices, has been envisaged
for the filter fabrication. In literature, the devices that are
quite similar to the investigated one have been fabricated
by e-beam lithography and reactive ion etching,15 focused
ion beam etching,18 and nanoimprinting lithography.16,17

We believe that the latter fabrication technique is the most
suitable, especially because of its low cost.

Since our device is based on an air-suspended membrane
and its performance is not significantly affected by the thick-
ness of the polystyrene slab, which is not taken into account
by the 2-D calculation methods, the device has been modeled
by using the 2-D finite element method (FEM), which
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assures a good trade-off between results accuracy and com-
putation time. We have also verified that the results obtained
by 2-D FEM are close (difference <5%) to those of the 3-D
FEM, especially for the resonance wavelength and transmis-
sion. A conservative evaluation of the quality factor has been
demonstrated by the 2-D simulations when compared to the
more accurate three-dimensional ones.

Some thermoplastic polymers with different refractive
index n, i.e., polytetrafluoroethylene, n ¼ 1.30, polyvinyli-
dene fluoride, n ¼ 1.42, polymethyl methacrylate (PMMA),
n ¼ 1.49, and polystyrene, n ¼ 1.59, have already been
evaluated by the authors for the membrane realization.
Those polymers, especially PMMA and polystyrene, are
the most used in nanoimprinting lithography because their
viscosity can be easily changed to a large extent by only
varying the temperature. The results reported in Refs. 21
and 22 allowed us to identify polystyrene as the most appro-
priate material because, among the four investigated poly-
meric materials, it is the only one allowing the formation
of a complete bandgap for in-plane propagation directions.
Moreover, polystyrene exhibits an excellent film quality.18

We assumed the polystyrene layer as deposited on an SiO2

film laying on a silicon substrate. The air-suspended mem-
brane can be realized by selectively removing the SiO2

underneath the polystyrene.
We have selected the square lattice of the planar PhC

because it provides the highest value of attenuation within
the bandgap in comparison with the hexagonal and the
honey-comb lattices.

Useful guidelines for the design and manufacturing of
CWDM channel drop filters based on the investigated struc-
tures are provided in this paper. In particular, we have first
designed a channel drop filter with central wavelength equal
to 1551 nm, a pass-band width compliant with the target
application, and low insertion loss. Then we evaluated the
effect of random variations in the hole radius/shape, the
lattice constant, and the defect length on the device perfor-
mance. By using that approach, the fabrication tolerances
have been estimated.

Only a few preliminary results of the filter design, i.e., the
dependence of the component performance on the defect
length, were reported and briefly discussed in Ref. 23.

2 Design
The target central wavelength of the designed filter is
1551 nm, which is one of the wavelengths defined by the
G.694.2 CWDM wavelength grid. According to that stan-
dard, the pass-band width of each channel is 13� 3 nm.
Therefore, the cavity Q-factor should be in the range
from 97 to 155. The aims of our design are both the fulfil-
ment of those requirements and the maximization of the res-
onance transmission, which strongly influences the device
insertion loss.

We initially assumed a ¼ 620 nm, p ¼ 7, and q ¼ 8.
The dependence of the cavity resonance wavelength on

the hole radius for several values of the defect length is
shown in Fig. 2. As in all Fabry-Perot cavities where the res-
onance wavelength is proportional to the resonator length,
the resonance wavelength of our PhC cavity increases as
d increases. As typical in all PhC cavities, in our device,
the electromagnetic field at resonance is confined in both
the defect region having length ¼ d and the holes of the
rows close to the defect region. Since the resonance wave-
length is proportional to the average refractive index of the
medium where the field is confined at resonance, the radius
of the air holes increases as the average index decreases, and
thus the resonance wavelength decreases, too.

In the considered range of r values, ranging from 0.38a to
0.44a, the fulfillment of the specification on the filter central
wavelength implies a d value ranging from 1.18a to 1.32a.

It is well known that high Q-factor and high resonance
transmission T are conflicting requirements. Both Q and
T versus the hole radius are shown in Fig. 3. The Q-factor
increases as the hole radius increases, while T decreases
when r increases. The Q-factor monotonically increases
as d increases, while T monotonically decreases as d
increases.

A good trade-off between the resonance transmission and
the Q-factor can be achieved for r ¼ 0.39a and d ¼ 1.2a.
For those geometrical parameters, the Q-factor is 115 (target
range ¼ 97 to 155) and the resonance transmission is>50%.
For r ¼ 0.39a and d ¼ 1.2a, the filter central wavelength is

Fig. 1 Configuration of the channel drop filter. d is the defect length, a
is the lattice constant, r is the hole radius, p and q are the number of
columns and rows, respectively.

Fig. 2 Cavity resonance wavelength versus hole radius for several
values of d . Lattice constant ¼ 620 nm, p ¼ 7, q ¼ 8. Dots are
data points, while lines are fitting curves.
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equal to the target one, i.e., 1551 nm, and the device footprint
is 113.6a2 (¼43.7 μm2).

We have verified that the assumed values of p and q
(p ¼ 7 and q ¼ 8) are a good compromise between the per-
formance enhancement and the footprint minimization.
In fact, the increase of the column/row numbers implies
an improvement of the Q-factor and a decrease of T.
Moreover, it obviously causes an increase of the device
area. As p and q decreases, T slightly increases and Q sig-
nificantly decreases. For example, for p ¼ 9 and q ¼ 10, the
Q-factor is 240 and T ¼ 46%, while for p ¼ 5 and q ¼ 6,
we have Q ¼ 50 and T ¼ 54%.

As already mentioned, we have initially assumed
a ¼ 620 nm for studying the influence of the hole radius
and the defect length on the filter features. We have also
demonstrated that this value of a provides the best device
performance, fulfilling the requirement of the ITU-T
G.694.2 standard.

In Figs. 4(a) and 4(b), both Q and T versus the lattice
constant have been reported for several d values, suitably
selecting the hole radius to obtain a resonance wavelength
at 1551 nm. We have considered a range of a from 580
to 640 nm to provide a Q-factor in the target range

(97 < Q < 155). Higher values of a have not been considered
because the device fabrication is impossible for holes that are
too large.

For each couple of a and d values, the radius allowing
a resonance wavelength ¼ 1551 nm is shown in Fig. 4(c).
The holes’ radius value allowing the fulfillment of the

Fig. 3 (a) Quality factor dependence on the hole radius for several
values of the defect length. (b) Resonance transmission versus
hole radius for d ¼ 1.1a, 1.2a, 1.3a, and 1.4a. Lattice constant ¼
620 nm, p ¼ 7, q ¼ 8. Dots are data points, while lines are fitting
curves.

Fig. 4 (a) Quality factor and (b) resonance transmission depend-
ence on the lattice constant for several values of the defect length
with a suitable size of the hole radius to obtain the resonance con-
dition at 1551 nm. The green areas represent the case studies com-
pliant with the target range of the Q-factor. (c) Holes radius allowing
the fulfilment of the requirement on the resonance wavelength for
each couple of a and d values. Dots are data points, while lines are
fitting curves.
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requirement on the resonance wavelength increases as the
lattice constant a and/or the defect length d increase.

Results in Figs. 4(a) and 4(b) confirm that high Q-factor
and high resonance transmission T are conflicting require-
ments. If we consider only the combinations of the geomet-
rical parameters allowing the fulfillment of the constraint
97 < Q < 155 (green area), the condition a ¼ 620 nm, d ¼
1.2a, and r ¼ 0.39a provides the highest value of T, thus
minimizing the insertion loss of the filter.

3 Fabrication Tolerances
The fabrication tolerances have been evaluated by investi-
gating the effect of random variation in the filter geometry
due to the potential fabrication imperfections on the cavity
performance such as the resonance wavelength, the Q-fac-
tor, and the resonance transmission. In particular, we have
randomly perturbed the hole radius, the lattice constant,
the defect length, and the circular shape of the holes and
have observed the impact of that perturbation on the perfor-
mance parameters. The perturbations have been chosen so
that their average value is zero, using a Gaussian random
generator.

We have simulated a lot of cavities to investigate the
impact on the filter performance of random variation in

the hole radius. The holes of each resonator have a radius
r�, which is equal to

r� ¼ rþ ρ; (1)

where r ¼ 0.39a (¼242 nm) is the nominal value of the
radius and ρ is the random perturbation term, which is
obtained by a Gaussian random generator whose parameters
are mean value ¼ 0 and standard deviation ¼ σr. For each
filter, we have calculated the resonance wavelength, the
Q-factor, and the resonance transmission. As an example,
the dependence of the average value of both Q and T on
the standard deviation σr is shown in Fig. 5. The average
value of both the Q-factor and the resonance transmission
decreases as the standard deviation σr increases, as expected.
This means that a reduction of the uniformity of the holes
radius implies a filter performance degradation. TheQ-factor
decrease is quadratic, while the T decrease is linear.

The histograms of the values of the Q-factor and the res-
onance wavelength for three values of σr, i.e., 2.5, 10.0, and
17.5 nm, are shown in Fig. 6. For σr ¼ 2.5 nm, almost all
the simulated filters (∼95%) have a resonance wavelength
in the range 1548 to 1554 nm and a Q-factor >97. When
σr increases, the percentage of filters with a resonance wave-
length in the range 1548 to 1554 nm and a Q-factor >97
decreases. For σr ¼ 17.5 nm, only 23% of the filters have
a resonance wavelength in that range. On the basis of
the specification assumed for the central wavelength and

Fig. 5 Dependence of the average Q-factor (a) and resonance trans-
mission (b) on σr . Dots are data points, while lines are fitting curves.

Fig. 6 Histograms of the values of the resonance wavelength (a) and
the quality factor (b) for three values of σr .

Optical Engineering 097104-4 September 2013/Vol. 52(9)

Dell’Olio et al.: Effect of fabrication tolerances on the performance of two-dimensional polymer photonic crystal. . .



assuming a target production yield >70%, we have derived
that the fabrication tolerance allowed on the hole radius is
equal to �5 nm. This means that if the fabrication process
is able to guarantee holes with a radius of 242� 5 nm, at
least 70% of the produced device will be compliant with
the requirements of the ITU-T G.694.2 standard.

By using the same simulation technique described for the
hole radius, we have evaluated the fabrication tolerance on
the lattice constant. The uniformity of the lattice constant
values is taken into account by the standard deviation σa.
The simulation results have shown that the uniformity in
the values of lattice constant decreases when σa increases.
Figure 7 shows the histograms of the values of both the
Q-factor and the resonance wavelength for three values of
σa, i.e., 10, 20, and 30 nm. For σa ¼ 10 nm, the predicted
production yield is close to 80%. Assuming a target produc-
tion yield >70%, the fabrication tolerance on the lattice con-
stant has to be �12 nm.

From both Figs. 6 and 7, we can conclude that the most
critical performance parameter is the resonance wavelength.
For example, for σr ¼ 10 nm, all the simulated filters have a
Q-factor>97, while only 30% of the devices has a resonance
wavelength ranging from 1548 to 1554 nm.

By investigating with the same approach the fabrication
tolerance on the defect length, we have concluded that it is
equal to �4 nm. Finally, we have studied the effect of any
perturbation of the circular shape of the holes. We have assumed that the fabrication imperfections may cause ellip-

tical holes with a random eccentricity (when the eccentricity
is zero, the ellipse degenerates in a circle). Our simulations
allow us to conclude that the fabrication tolerance on the
eccentricity is 0.06.

Both the parameters of the designed filter and the fabri-
cation tolerances are summarized in Table 1. The perfor-
mance of designed filter, in terms of Q and T, is
comparable to the one exhibited by the fabricated cavities
based on the same technology, which are reported in the
literature.18,19

4 Conclusions
Guidelines for the design and the fabrication of optical filters
for CWDM applications based on a Fabry-Perot cavity in a
polymer planar PhC are reported in this paper. They are
derived by FEM simulations and are relevant to a number
of crucial aspects such as the materials to be used, the
holes’ radius/shape, the defect length, and the lattice configu-
ration. Assuming that the device is fabricated through the
nanoimprinting technique, a channel drop filter compliant
with the ITU-T G.694.2 standard has been studied with par-
ticular attention to the fabrication tolerances. For the hole
radius and the lattice constant, we have estimated a fabrica-
tion tolerance of ∼2%, while the fabrication tolerance on the
defect length, which is the most critical geometrical param-
eter, is close to 0.5%. Assuming that fabrication imperfec-
tions can lead to elliptical holes, the fabrication tolerance
on the ellipse eccentricity has been evaluated as equal
to 0.06. Since those tolerances are compliant with the reso-
lution of the thermal nanoimprinting lithography,24 the
achieved results point out the attractiveness of polymer
PhC filters in the context of CWDM.

CWDM drop filters that are available in the market are
manufactured by either the silica planar lightwave circuit
technology or the fiber technology. Those devices have a
good reliability and a satisfactory thermal stability in the

Fig. 7 Histograms of the values of the resonance wavelength (a) and
the quality factor (b) for three values of σa.

Table 1 Geometrical and performance parameters of the designed
filter. Fabrication tolerances are summarized.

Parameter Symbol
Nominal
value

Fabrication
tolerance

Lattice constant (nm) a 620 �12

Defect length (nm) d 744 �4

Hole radius (nm) r 242 �5

Holes eccentricity — 0 0.06

Columns number p 7 —

Rows number q 8 —

Quality factor Q 115 —

Resonance transmission (%) T 53 —

Central wavelength (nm) — 1551 —

Device footprint (μm2) — 43.7 —
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range 0 to 70°C. The insertion loss of those filters ranges
from 1 to 3 dB and the adjacent channel isolation is of
the order of 30 dB. The device that we have studied is surely
more compact than the ones available in the market because
its footprint is only 44 μm2, while the insertion loss/adjacent
channel isolation of our filter are comparable to the ones
exhibited by the components in the market. Experimental
investigations, which will be our future work, are necessary
to confirm that evaluation.
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