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1 Introduction
Chirped pulse amplification1 is the main approach for high-
power/high-energy ultrashort laser pulse’ generation. It is
achieved by stretching ultrashort laser pulses. Those stretched
pulses have a much lower value of instantaneous power and,
therefore may be amplified by broadband laser amplifiers
without damaging the medium. Amplified chirped pulses
may then be directed to the compressing element, which
allows collection of all spectral components back into ultra-
short pulse, but with higher energy. The conventional way
for doing this is the use of a pair of diffracting gratings for
both stretching and compression (Treacy stretchers and com-
pressors1). An especially elegant idea was suggested and
implemented by Galvanauskas et al.2,3 with the use of chirped
fiber Bragg gratings, which are gratings with a gradually var-
ied period along the fiber. It is possible to use the same grating
for compression, and stretching stage, but to illuminate it from
the opposite end. In this case, the influence of smooth hetero-
geneities of time-delay dispersion (TDD) at the stretching
stage, TstrðλÞ, is compensated for by those of the compression
stage, so that TstrðλÞ þ TcomprðλÞ ≈ const. A similar perfor-
mance was demonstrated with the use of chirped volume
Bragg gratings (chirped VBGs or CBGs), which are produced
by holographic recording in the bulk of photo-thermo-refrac-
tive (PTR) glass and have dramatically higher apertures when
compared with those of fiber gratings.4 Recent development of
VBGs based on PTR glass5 allowed for operation of stretch-
ing-compression schemes at much higher values of power, see
for example, Ref. 6.

The present paper is devoted to the development of
numerical and analytic tools for the study of stretching
and compression by volume CBGs. While this analysis is
applicable for any volume CBG, the examples shown in
this paper are based on CBGs recorded in PTR glass.

2 Basic Scheme and System of Equations,
Definition of Chirp, and Time-Delay Dispersion

The basic scheme of stretching, amplification of stretched
pulse, and subsequent recompression back into short pulse
by means of a volume CBG is presented in Fig. 1. Due to
gradual variation of CBG period in the z direction, different
spectral components of an incident pulse are reflected from
different parts of the CBG and, therefore, have different
delays. After amplification, the stretched pulse is launched
to the same CBG from the opposite side and compressed
back to its original width. In this work, we consider the
amplifier as a linear device that does not affect any param-
eters of a laser pulse but power. Therefore, we assume that a
CBG-reflected stretched pulse is transmitted from the
cross-section at the front surface of the CBG (z ¼ 0) to
the opposite end of the same CBG (z ¼ L), without any
additional distortions.

We assume that the dielectric permittivity and magnetic
permeability of CBG depend on coordinate z as

εðzÞ ¼ ðn20 þ 2n0δnðzÞ þOðδnÞ2Þ · εvac; μ ≡ μvac;

(1)

where δnðzÞ is the variation of refractive index. Then the
equation for the complex amplitudes AðzÞ and BðzÞ of mono-
chromatic component of electric field

Erealðz; tÞ ¼
1

2
fexpð−iωtÞ½AðtÞ expðikzÞ þ BðtÞ

× expð−ikzÞ� þ compl:conj:g (2)

with k ¼ ωn∕c; n0 ≡ nðωÞ is

d2

dz2
½AðzÞeikz þ BðzÞe−ikz� þ

�
ω

c

�
2

½n20 þ 2n0δnðzÞ�

· ½AðzÞeikz þ BðzÞe−ikz� ¼ 0; (3)
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where the terms of the order of OðδnÞ2 were ignored. We
also assume that the spatial variation of the refractive
index δnðzÞ has the form

δnðzÞ ¼ n2ðzÞ þ n1ðzÞ cos½Qzþ ψðzÞ�: (4)

Here, smooth heterogeneity n2ðzÞ and spatial modulation
n1ðzÞ are small in comparison with n0 and are relatively slow
varying functions of z; ψðzÞ is a differentiable function, and
Q (rad∕m) has the value close to 2k, see Eq. (13). (It should
be emphasized that our notation n2ðzÞ for the smooth correc-
tion to the background refractive index has nothing to do
with the nonlinearity of refractive index.) In the standard
approach of slow varying envelope approximation (SVEA),
one should ignore second derivatives of slowly varying
amplitudes AðzÞ and BðzÞ, keep the resonant terms
∝ expðikzÞ and ∝ expð−ikzÞ only, and equalize each of them
to zero. As a result, one gets the following system of coupled
equations:

dA
dz

¼ iðω∕cÞn2ðzÞ · AðzÞ þ iðω∕2cÞn1ðzÞ
× exp½iQz − 2ikzþ iψðzÞ� · BðzÞ;

dB
dz

¼ −iðω∕2cÞn1ðzÞ exp½−iQzþ 2ikz − iψðzÞ�
· AðzÞ − iðω∕cÞn2ðzÞ · BðzÞ: (5)

It is convenient now to introduce new amplitudes aðzÞ and
bðzÞ, defined by

aðzÞ ¼ AðzÞ exp
�
i
2
½ð2k −QÞz − ψðzÞ�

�
;

bðzÞ ¼ BðzÞ exp
�
−i
2
½ð2k −QÞz − ψðzÞ�

�
:

(6)

Then for these small amplitudes aðzÞ and bðzÞ, one gets
our system in the form

d

dz

�
aðzÞ
bðzÞ

�
¼ V̂ðzÞ

�
aðzÞ
bðzÞ

�
;

V̂ðzÞ ¼
�

iνðzÞ iκðzÞ
−iκðzÞ −iνðzÞ

�
; (7)

Here νðzÞ is the local value of detuning, measured in
(rad∕m), and κðzÞ is the local strength of coupling, of dimen-
sions (1∕m)

νðzÞ ¼
�
ω

c

�
n2ðzÞ þ

2k −Q − dψðzÞ∕dz
2

;

κðzÞ ¼
�
ω

c

�
n1ðzÞ
2

:

(8)

Possible background absorption in the medium with coef-
ficient αð1∕mÞ, for intensity IðzÞ ∼ expð−αzÞ, may be
described by purely imaginary n2ðzÞ, namely n2ðzÞ ¼
iλα∕4π.

Solution of the linear system of ordinary differential equa-
tions [Eq. (7)] may be represented as the solution of the
Cauchy problem, where both boundary values are known
at the same point, e.g., at z ¼ 0. Linearity of the system
allows writing.

�
aðzÞ
bðzÞ

�
¼

�
MaaðzÞ MabðzÞ
MbaðzÞ MbbðzÞ

�
·

�
að0Þ
bð0Þ

�
;

dM̂ðzÞ
dz

¼ V̂ðzÞM̂ðzÞ;

M̂ð0Þ ¼
�
1 0

0 1

�
. (9)

Actual boundary conditions for the reflection problem are
usually prescribed at the opposite ends of CBG; for example

aðz ¼ 0Þ ¼ 1; bðz ¼ LÞ ¼ 0; (10)

where we assumed unit amplitude of incident wave a at the
beginning z ¼ 0 of CBG and no incident wave b at the end
z ¼ L of CBG. Then the reflection and transmission ampli-
tudes are found by imposing the conditions in Eq. (10).

rðb←aÞ≡bð0Þ
að0Þ¼−

MbaðLÞ
MbbðLÞ

;

tða→aÞ≡aðLÞ
að0Þ ¼

MbbðLÞMaaðLÞ−MbaðLÞMabðLÞ
MbbðLÞ

:

(11)

The determinant of the matrix M̂ðzÞ from Eq. (9), which is
present in the numerator of Eq. (11), is unity as the conse-
quence of Eq. (7), even in the presence of absorption. This
allows additional checking of the accuracy of numeric inte-
gration of those equations.

The amplitude of reflection and transmission for the
opposite boundary conditions may be expressed through
the elements of the same matrix M̂ðLÞ.

rðb → aÞ ≡ aðLÞ
bðLÞ ¼

MabðLÞ
MbbðLÞ

;

tðb←bÞ ≡ bð0Þ
bðLÞ ¼

1

MbbðLÞ
;

(12)

which is especially convenient for the case when one uses the
same CBG both for stretching and for recompression.

Subsequently, we neglect the n2ðzÞ term. Then, equating
the local value of detuning νðzÞ to zero, one can find the posi-
tion zBðλÞ of the point of exact Bragg resonance for the given
vacuum wavelength λ.

Fig. 1 Basic scheme of stretching–amplification–compression via
Chirped Bragg grating (CBG).
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νðzBÞ ¼ 0 ⇒
2πnðλÞ

λ
¼ 2πnðλ0Þ

λ0
þ 1

2

dψ

dz
: (13)

Here λ0 is the central wavelength defined by basic param-
eter of CBG: Q ¼ 4πnðλ0Þ∕λ0, with Q defined by Eq. (4).
This condition allows connecting spectral chirp parameter
dλ∕dzB of CBG with the second derivative of the phase cor-
rection ψðzÞ. Indeed, one has to assume λ ¼ λðzÞ in Eq. (13)
and take z-derivative of the left- and right-hand sides of that
equation. As a result, one gets

dλ

dzB
¼ −

λ2

4πngrðλÞ
d2ψ

dz2
; ngrðλÞ ¼ nðλÞ − λ

dn
dλ

. (14)

Here the expression for ngr is an alternative form of denot-
ing group velocity, vgr ¼ dω∕dk ¼ c∕ngr and ngr ¼ nðωÞþ
ωðdn∕dωÞ ≡ nðλÞ − λðdn∕dλÞ. Constant chirp (dλ∕dzB ¼
const) corresponds to ψðzÞ ¼ β · ðz − 0.5LÞ2, where the
mid-point z ¼ 0.5L of CBG with length L has resonant
wavelength λ0. Indeed,

ψðzÞ ¼ β · ðz − 0.5LÞ2 ⇒ dλ

dzB
¼ −

λ2

2πngr
β: (15)

In the approximation of unchanged group velocity v0 ¼
c∕ngr, the value of time-delay in the stretching process as a
function of wavelength λ is

T1ðλÞ ≡ TDDðλÞ ≈ 2½zBðλÞ − z1�ngr∕c: (16)

We will see below (Fig. 7 in Sec. 5.3) that this formula
yields a reasonable result for CBG with low efficiency only.

3 Analytic Expression of Diffraction Efficiency of
CBG

Consider first a weak CBG for which the first order of per-
turbation theory is valid. In the zeroth approximation and at
n2 ≡ 0, one can take AðzÞ ≈ 1 for all z. Then for the reflection
amplitude coefficient, one gets from Eq. (5)

rðA → BÞ ¼ Bð−∞Þ ¼ iκ
Z∞

−∞

exp½−iψðzÞ�dz; (17)

which, for ψðzÞ ¼ β · ðz − 0.5LÞ2, yields explicit value of

jrj2 ≈ πjκj2∕jβj: (18)

An analytic expression has been derived in Ref. 8, which
is valid for any strenth of coupling. It may be simplified for
constant chirp profile of the grating, with the use of Eq. (15)
to:

jrj2 ¼ 1 − expð−πjκj2∕jβjÞ; jtj2 ¼ 1 − jrj2. (19)

Derivation of this expression, see Refs. 7 and 8, is similar
to the calculation of quantum-mechanical transmissivity of
parabolic potential barrier, see Ref. 9, and will not be dis-
cussed here. To go over the rather heavy derivation of
Eq. (19) from Refs. 8 and 7, we suggest using the known
structure of Eq. (19) and checking all the coefficients in it
via the first-order perturbation result [Eq. (18)]. Actual

numerical modeling (see below) confirmed the validity of
Eq. (19) with great accuracy, especially for apodized
CBG, where spatial refractive index modulation comes
smoothly to zero at the ends of CBG in this particular mod-
eling, see Eq. (40).

4 Approximate Expression for Time-Delay
Dispersion

Approximate evaluation of TDD may be done on the basis of
assumption of slowly varying behavior of the coefficients
κ ¼ kðzÞ and ν ¼ νðzÞ in Eq. (7). We take the SVEA equa-
tions in the symmetric form.

d
dz

�
a
b

�
¼ V̂

�
a
b

�
; V̂ ¼

�
iν iκ�

−iκ −iν

�
: (20)

In the assumption of ν ¼ const; κ ¼ const, the solution of
the form ða; bÞ ¼ expðpzÞða0; b0Þ exists. From that we get
the result for two eigenvalues of matrix V̂.

p1;2 ¼ �iμ; μ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − jκj2

q
: (21)

We define the positive root as the one for which, in the
region jκj < jνj, the real square root μ ¼ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − jκj2

p
satis-

fies the condition μ∕jμj ¼ ν∕jνj; in other words, the sign of μ
is the same as the sign of ν in that region where propagation
is not forbidden. Eigenvectors for p1 ¼ þiμ and for
p2 ¼ −iμ are, respectively,

�
a1
b1

�
¼ const1

�
1

−κ∕ðμþ νÞ

�
;

�
a2
b2

�
¼ const2

�−κ�∕ðμþ νÞ
1

�
: (22)

Group velocity of the wave a in the absence of coupling,
jκj ¼ 0, is taken as va ¼ v0, while group velocity of the wave
b is taken as vb ¼ −v0. The general expression for the group
velocity in the presence of both constant values ν and κ for a
given mode may be intuitively written as

vgr ¼ P½Watt∕m2�∕U½Joule∕m3�; (23)

where P is the Poynting vector and U is the energy density.
Assuming P ¼ jaj2 − jbj2, U ¼ const · ðjaj2 þ jbj2Þ and
checking the case of jκj ¼ 0, we get const ¼ 1∕v0. Thus,
in general case, group velocity in the presence of grating
becomes

vgroup ¼ v0
jaj2 − jbj2
jaj2 þ jbj2 : (24)

In the approximation of constant (or reasonably slow
varying) ν and κ, one gets for mode #1 (a predominantly
a-wave) and for mode #2 (a predominantly b-wave)

v1 ¼ ðvaÞ ¼ v0

���� μν
����; v2 ¼ ðvbÞ ¼ −v0

���� μν
����. (25)

We take those expressions as approximations for group
velocities of incident and reflected waves in the use of

Optical Engineering 051509-3 May 2014 • Vol. 53(5)

Kaim et al.: Stretching and compressing of short laser pulses by chirped volume Bragg gratings: analytic. . .



CBG for the stretcher-compressor scheme and verify the
degree of their validity by comparison with results of direct
wave modeling of CBG, Sec. 5.

In this approximate approach (Fig. 2), the incident wave a
(the one to be stretched by CBG) propagates from the point
z ¼ z1 of the left boundary of CBG to the left point z ¼ z2
inside CBG, where decisive reflective transformation of a
into b takes place. The points z ¼ z2 and z ¼ z3 are defined
by the condition νðz2;3; λÞ ¼ �jκj. In CBG approximated by
constant chirp, νðz; λÞ ¼ β · ½z − zBðλÞ�, those points are
symmetrically positioned around zBðλÞ, i.e., around perfect
Bragg-resonant point.

z2 ¼ zBðλÞ − z0; z3 ¼ zBðλÞ þ z0; z0 ¼ jκj∕jβj: (26)

After the decisive reflection from the point z ¼ z2, inci-
dent wave of type a gets transformed into reflected wave of
type b. Total time-delay due to propagation from the entrance
z ¼ z1 to reflection point z ¼ z2 and back is

T1ðλÞ ≡ Tðz1 → z2 → z1Þ½second� ¼ 2

Zz2
z1

½vðzÞ�−1dz; (27)

where vðzÞ ¼ v0 · jμðzÞ∕νðzÞj as a consequence of Eqs. (22)
and (24). At the compression stage, the wave enters CBG
through the cross-section z ¼ z4 and propagates in the b-
form down to z ¼ z3, and after the reflection, it propagates
back to z ¼ z4. The corresponding round-trip delay time of
this stage is given by

T2ðλÞ ≡ Tðz4 → z3 → z4Þ½second� ¼ 2

Zz4
z3

½vðzÞ�−1dz; (28)

where again vðzÞ ¼ v0 · jμðzÞ∕νðzÞj. For a general z-depend-
ence of νðzÞ and κðzÞ, one should numerically find
zBðλÞ; z2ðλÞ; z3ðλÞ and numerically calculate the correspond-
ing integrals. Calculation can be done analytically for con-
stant chirp and constant κ.

νðzÞ ¼ β · ½z − zBðλÞ�; z1 ¼ 0; z4 ¼ L;

zBðλÞ ¼
L
2
þ
�
dλ
dz

�
−1

· ðλ − λ0Þ.
(29)

Equation (15) yields the expression for dλ∕dz. Here λ0 is
the central wavelength of CBG. In that case, z2 ¼
zBðλÞ − z0; z3 ¼ zBðλÞ þ z0; z0 ¼ jκj∕β, and integrals
may be found analytically.

Tðz1 → z2 → z1Þ ¼
2

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zBðλÞ�2 − z20

q
;

Tðz4 → z3 → z4Þ ¼
2

v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L − zBðλÞ�2 − z20

q
; (30)

Tcycle ≡ Tðz1 → z2 → z1Þ þ Tðz4 → z3 → z4Þ

¼ 2

v0
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½zBðλÞ�2 − z20

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L − zBðλÞ�2 − z20

q
g. (31)

In the case when both z0 ≪ zBðλÞ and z0 ≪ L − zBðλÞ,
one can expand TcycleðλÞ in terms of small ratio z0∕L.

TcycleðλÞ ≈
1

v0

�
2L −

4z20
L

L2

L2 − 4½zBðλÞ − L∕2�2
�
: (32)

One should take the value of Tcycle from Eqs. (31) or (32)
above and then average the expression over the spectral con-
tent of the pulse in question. As an even more crude estimate,
one may try to take the value of Tcycle at jzB − L∕2j ≪ z, and
then the formula for time-delay of the peak of recompressed
pulse becomes

Tcycle ≈
1

v0

�
2L −

4z20
L

�
: (33)

It is worth discussing separately two effects that influence
the delay time of the cycle stretching–recompression.

The first one is that the round-trip length of the stretching
process is shorter than 2½zBðλÞ − z1� by the thickness of for-
bidden zone: 2z0 ¼ 2jκ∕βj, see Fig. 2. This leads to a shorter
delay time of the stretching–recompression cycle: shorter by
approximately ð4z0∕v0Þ, i.e., of the first order in z0.

The second effect is due to considerable (∼50% and
more) decrease of group velocities in the vicinity of reflec-
tion points z ¼ z2 and z ¼ z3. The thickness of this vicinity
is of the order of z0. Thus, this second effect results in a
longer delay time, also of the first order in z0.

What is truly remarkable is that these two effects compen-
sate each other in the first order in z0. The resulting delay
time does decrease (in comparison with 2L∕v0), but in
the second order in the coupling constant, i.e., proportionally
to z20.

A monochromatic wave stretches in time from t ¼ −∞ to
t ¼ þ∞. One can define time delay dispersion TDDðλÞ for
the quasi-monochromatic packet with the wavelength λ.
Many sources advise to one calculate the phase of reflection
coefficient φðλÞ ¼ argðrðλÞÞ and postulate that

Fig. 2 Transmitting and reflecting wave propagation in CBG. Here L is the total thickness of CBG; z ¼ z2
is the point where the input wave a of the given frequency ω ¼ 2πc∕λ. hits the region forbidden for propa-
gation (marked by curved dashed line).
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dω
dλ

¼ −
2πc
λ2

; TDDðλÞ ¼ dφ
dω

≡
dφ
dλ

dλ
dω

≡ −
λ2

2πc
dφðλÞ
dλ

:

(34)

Our numeric modeling shows that this is valid for large
modulation of φðλÞ only, jφj ≫ 1.

5 Numerical Modeling

5.1 Parameters of Numerical Modeling

We have developed the program for numerical modeling of
the scheme presented in Fig. 1 with the use of Mathematica
software package. In our approach, the fields of all pulses
were decomposed into time Fourier series via discrete
Fourier transform (DFT) subroutine. The discrete index j
in DFT programs takes only non-negative values in the
range 0 < j < N − 1, where N is the total number of points
(either in time domain or in frequency domain). For that rea-
son the frequency of an individual component was related to
that index j by

ωj ¼ ωcentral þ ð2π∕T totalÞ × physðjÞ;

physðjÞ ¼
�

j; if 0 < j < N∕2;
j − N; otherwise

: (35)

In that manner, we account for both positive and negative
values of frequency detuning. Meanwhile discrete time
points were numbered just as

tj ¼ tinitial þ j · Δ; Δ ¼ T total∕N: (36)

Here T total is the total time interval under consideration.
Average refractive index of PTR glass was taken for
each wavelength λj ¼ 2πc∕ωj as either constant value n ¼
1.4891 (for central wavelength λcentral ¼ 1.06 μm) or from
Sellmeier formula for that glass.10 The system of ordinary
differential equations was integrated numerically for each
frequency ωj. Sometimes it was advantageous to divide
all the integration length L (thickness of CBG) into four sep-
arate regions, with accuracy goal achieved for each region
independently. Examples below are demonstrated mostly
for L ¼ 0.1 m (≡10 cm) and constant chirp parameter
β ¼ 8.104 rad∕m2 from Eq. (15). Value of coupling constant
jκj was chosen via dimensionless parameter S ¼ jκjL, with S
varying from 15 to 150.

5.2 Modeling of Stretching–Compressing by CBG
with Imperfections

It should be noted that CBGs with large apertures and long
stretching times4,6,11 show some spatial variations of phase
resulting from optical aberrations in a holographic recording
system and optical homogeneity of a recording material
(PTR glass). This is why, among other results of our numeri-
cal modeling of stretching–compression process, we would
like to discuss here the influence of small and very inhomo-
geneous variations of phase of the grating. Equation (13)
allows finding the position zBðλÞ, where formal Bragg con-
dition is satisfied for a given wavelength λ. We took a small
oscillatory addition to the phase, δψ ¼ a cos γz, where
γ½1∕meter� ¼ 2π∕Λ1 and Λ1 is the period of perturbations.
Since the term dψ∕dz is present in the right-hand side of

Eq. (13), the equation for detuning zBðλÞ becomes

2πnðλÞ
λ

¼ 2πnðλ0Þ
λ0

− βðzB − bÞ þ aγ sin γzB: (37)

If aγ2 is larger than 2jβj, then there is a possibility that
Eq. (37) has several solutions ðzBÞ1,ðzBÞ2, . . . for the
given wavelength λ. Then application of the simplest formula

TDDðλÞ ≈ 2ðzBðλÞ − z1Þ∕v0; (38)

yields multivalued TDDðλÞ and gives a suspicion of low-
quality recompression, to say nothing about peculiar oscil-
lations, which are even more severe in the stretched pulse.
However, the results of our numerical modeling show for
phase modulation

δψ ¼ a cosðγzÞ · expð−ðz − 0.5 LÞ2∕d2Þ; d ¼ L∕4
(39)

that if the amplitude 2a (top to bottom) is moderately small,
e.g., 2a ≤ 0.4 rad, the influence of formally multivalued fea-
ture of TDDðλÞ from Eq. (38) is not important. In particular,
Fig. 3 shows z-dependence of Bragg resonant wavelength
detuning (in nanometers) for particular perturbation of the
phase given by Eq. (39). Actual wave modeling of stretching
by perturbed CBG was done for L ¼ 0.1m and β ¼
8 · 104 rad∕m2, coupling coefficient jκj ¼ S∕L, and S ¼ 30.
Additional modulation δψ from Eq. (39) was taken with
the parameters 2a ¼ 0.4 rad, γ ¼ 1405 rad∕m. so that aγ2∕
2β ¼ 2.47, and the condition of multivalued function
TDDðλÞ from Eq. (38) was satisfied. Stretching and com-
pression of incident Gaussian pulse with τ0ðHWe−2IMÞ ¼
3.0 ps was modeled and depicted in Fig. 4. It shows spectra
of the incident pulse (upper curve) and of the recompressed
pulse (lower curve). One can see that for a CBG with spectral
width ΔλðFWÞ ≈ 0.1 nm equal to that of a laser pulse at the
level of 1∕e2, the spectral width of a recompressed pulse is
practically the same. However, there is some modulation of
the spectrum in the vicinity of the maximum, which is caused
by ripples in the dispersion curve depicted in Fig. 3; cutting
off short- and long-wavelength wings of the spectrum and
the spectral width of the CBG is due to finite spectral
width of CBG.

Figure 5 shows the intensity profiles of the input pulse,
stretched pulse (multiplied by factor 80 for illustrative

Fig. 3 Dependence of Bragg resonant wavelength detuning on posi-
tion inside CBG. Particular perturbation of the phase is given by
Eq. (39) with top-to-bottom modulation 2a ¼ 0.4 rad. Given wave-
length corresponds to one or three resonant points.
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purposes), and recompressed pulse for CBG with the above
oscillatory perturbations of the phase δψðzÞ of the grating.
Input pulse was a transform-limited Gaussian pulse with
ΔtðHWe−2IMÞ ¼ 3 ps. The properties of CBG are the
same as for Figs. 3 and 4. There is a small precursor in
the recompressed pulse (arrow in Fig. 5) containing ~6%
of recompressed energy. Nevertheless one observes rather
good quality of recompression: diffraction efficiency of
full cycle of stretching–compression for energy was 0.92
and ratio of peak intensities was 0.61. It means that steep
perturbation of phase δψ with amplitude 2a≲0.4 rad is
not harmful for recompression. Meanwhile, our modeling
for perturbations with amplitude 2a≳0.4 rad had shown con-
siderable hindering recompression.

5.3 Study of Time-Delay Dispersion

For the evaluation of our analytic (but approximate) results
for time-delay dispersion, TDD(λ), we had to choose a spe-
cial approach in numerical modeling. Namely, illumination
of CBG by a very short incident pulse (< 1 ps and therefore
with a very broad spectrum) resulted in a stretched pulse with
very flat top, for which it was difficult to find TDD at the
stretching stage. If any distortions in the temporal profile
of stretched pulse were present, the arrival time of the
peak of reflected pulse was difficult to determine. On the
other hand, if the incident pulse was relatively long (and
hence was relatively narrow-band), the reflected pulse was
not stretched to full possible duration 2L∕vgr. Here vgr is
the group velocity at λ0 in unexposed glass. Still, determin-
ing the delay time for stretching stage was difficult due to
large duration of the input pulse.

For that reason we calculated from numerical wave mod-
eling the delay time of a recompressed pulse in comparison
with the arrival time of an incident pulse. The delivery of the
stretched pulse to the back of CBG for recompression was
considered to be instantaneous in the modeling. Two types of
CBG were considered. One type was with jκj ¼ S∕L taken
as a constant through the whole thickness L of CBG; here-
after, we call this type of CBG as uniform or nonapodized.
The other type had the profile

jκðzÞj ¼ S
L
· apodðzÞ; apodðzÞ ¼ 1 −

�
2z
L

− 1

�
10

: (40)

This apodization function suppressed not-quite Bragg
contributions of the ends of CBG; the latter contribution
leads to Fresnel function-like oscillations in the reflection
spectrum of nonapodized CBG. For both cases we calculated
TDD (at λ0 ¼ 1.06 μm) for different values of dimensionless
parameter S (and for constant chirp β ¼ 8 · 104 rad∕m2).
The results for TDD slightly varied as a function of duration
of input Gaussian pulse τ0 (HWe−2IM). The shortest pulse
duration τ0, for which this CBG still reflected almost all the
spectrum, was τ0 ¼ 3.0 ps. The stretched pulse in both cases
had a duration of ∼1 ns, i.e., 300 times longer than the
input one.

Figure 6 shows the comparison of numerical modeling of
time-delay Tcycle with our analytic approximation, Eqs. (27),
(28), and (33). The square points in Fig. 6 show full duration
of stretching–recompression process versus dimensionless
coupling coefficient S ¼ jκjL for unapodized CBG.
Triangular points describe corresponding data for apodized
CBG. Dashed and dotted lines are calculated by the analytic
model [Eqs. (27) and (28)]. Parabolic curve describing the
simple formula [Eq. (33)] (not shown) is almost the same

Fig. 4 Spectra of Fourier transform–limited incident pulse (upper
curve) and of recompressed pulse (lower curve); time duration of
input pulse Δt ðHWe−2IMÞ ¼ 3 ps.

Fig. 5 Intensity profiles of input pulse (left), stretched pulse (multiplied
by factor 80 for illustrative purposes, center), and recompressed pulse
(right) for CBGwith oscillatory perturbations of phase δψðzÞ of the gra-
ting. Arrow points to a precursor in the recompressed pulse containing
∼6% of its energy.

Fig. 6 Dependence of total time-delay between incident short pulse
[Gaussian, with Δt [ðHWe−2IMÞ ¼ 12 ps] and recompressed pulse on
the dimensionless coupling coefficientS ¼ jκjL. Square and triangular
points correspond to numerical modeling of unapodized and apodized
CBG, respectively. Dashed and dotted lines for corresponding CBG
yield the results calculated by analytic model Eqs. (27) and (28).
Parabolic curve describing simple formula Eq. (33) (not shown) is
almost the same as dashed curve for unapodized CBG.We see quad-
ratic deviation of those curves from 2L∕v0 (from horizontal line) versus
coupling jκj ¼ S∕L.
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as the dashed curve for unapodized CBG. We see quadratic
deviation of those curves from 2L∕v0 (form horizontal line)
versus coupling jκj ¼ S∕L. All data are for the input pulses
with τ0 ¼ 12.0 ps at the central wavelength λ0 ¼ 1.06 μm of
our CBG. We see that the approach used in the derivation of
the integrals [Eqs. (27), (28), and (33)] yields very reason-
able correspondence with the results of numerical modeling.

Here is an important (and originally unexpected) obser-
vation. Too large a value of coupling (S ≥ 70) for that par-
ticular CBG and τ0 ¼ 3.0 ps, while yielding 99.4%
diffraction efficiency for energy of recompressed pulse,
resulted in relatively poor quality of recompression: peak
intensity of recompressed pulse constituted 52% of the inci-
dent one. Our interpretation of that decrease of recompres-
sion quality is the following. Different spectral components
of incident pulse exhibit somewhat different values of the
sum TcycleðλÞ ¼ T1ðλÞ þ T2ðλÞ, from integrals [Eqs. (27)
and (28)] with different values of zBðλÞ, see Fig. 7 for apo-
dized CBG with S ¼ 90. The presence of shorter values of
TcycleðλÞ points to the formation of precursor in the recom-
pressed pulse. This effect leads to deteriorated recompres-
sion. Meanwhile, the fact that two considerably distant
wavelengths have those shorter values of TcycleðλÞ explains
interference-type oscillations in the precursor.

6 Conclusions
We have developed a detailed Mathematica-based numerical
tool for modeling the process of stretching–recompression
by CBG with arbitrary profiles of the grating’s phase and
coupling coefficient. To better understand the results of
numerous variants of that modeling, we developed approxi-
mate analytical model of time-delay dispersion TDDðλÞ. An
unexpected result of that analytic model is that dependence
of TDD on the coupling constant jκj ¼ S∕L starts with terms
proportional to jκj2. We have shown that excessively large
coupling in CBG leads to deterioration of recompression

quality. We show that perturbations of grating phase with
small (< ∼0.4 rad top-to-bottom) amplitude do not hinder
the recompression quality much, enabling >90% of energy
in the recompressed pulse.
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