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Abstract. We investigate the time-invariant linear filter (TILF) approach to optimally parameterize the surface
metrology of high-quality x-ray optics considered as a result of a stationary uniform random process. The
approach is a generalization of autoregressive moving average (ARMA) modeling of one-dimensional slope
measurements with x-ray mirrors considered. We show that the suggested TILF approximation has all the
advantages of one-sided autoregressive and ARMA modeling, allowing a high degree of confidence when fitting
the metrology data with a limited number of parameters. Compared to ARMA modeling, the TILF approximation
gains in terms of better fitting accuracy and the absence of the causality limitation. Moreover, the TILF approach
can be directly generalized to two-dimensional random fields. With the determined model parameters, the
surface topography of prospective beamline optics can be reliably forecast before they are fabricated. These
forecast metrology data, containing essential and reliable statistical information about the existing optics which
are fabricated by the same vendor and technology, but generally, have different sizes, and slope and height root-
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1 Introduction
Development of new beamlines for third-generation syn-
chrotron radiation sources and free electron lasers is reliant
upon the availability of x-ray optics of unprecedented
quality, with a surface slope accuracy in the range of 0.1 to
0.2 μrad and a surface height error of less than 1 nm.1–5 The
uniqueness of the optics and the limited number of proficient
vendors makes the fabrication of such optics extremely time
consuming and expensive. Therefore, it is essential to exactly
provide the specifications for optic fabrication as is numeri-
cally evaluated for the required beamline performance,
avoiding over- as well as under-specifications. Adequate
numerical simulations of the performance of new beamlines
and those under upgrade require refined and reliable infor-
mation about the expected surface slope and height distribu-
tions of the planned x-ray optics before they are fabricated.
Such information should be based on the metrology data
from existing mirrors made by the same vendor, using the
same technology, though the sizes, slope, and height root-
mean-square (RMS) variations may be different.

In a classical work6 by Church and Berry, a comprehen-
sive analysis of the problems and the limitations of reliable
spectral estimations of the measured surface profile data
were provided. The work also discussed a possibility for
treating the random rough surface as the result of a stochastic

random process described by an autoregressive (AR) model.
The surface description based on the AR model or the
extended autoregressive moving average (ARMA) model7,8

provided a way to replace the spectral estimation problem
with that of parameter estimation.

In recent works,9,10 ARMAmodeling is applied to the sur-
face slope metrology data obtained with the existing optics,
allowing highly reliable forecasting of expected surface
slope distributions of prospective x-ray optics, fabricated by
the same vendor with the same technology.

A best-fit ARMA model has a limited number of param-
eters. The numerical values of the parameters and their
confidence intervals can be determined with the use of
standard statistical software. With the determined parame-
ters of the ARMA model, the surface slope profile of an
optic with a newly desired specification has been reliably
forecast. The high accuracy of this type of forecasting has
been demonstrated by comparing the power spectral density
(PSD) distributions of the measured and forecast slope
profiles.9,10

In the present work, we investigate the time-invariant
linear filter (TILF) approach to optimally parameterize the
surface metrology of high-quality x-ray optics, which is
thought of as a result of a stationary uniform random process.
We show that the TILF approximation gains a better fitting
accuracy and is free from the causality problem, compared to
ARMA modeling of the surface metrology data. Therefore,
the suggested TILF approach can be directly generalized to
two-dimensional (2-D) random fields.
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This paper is organized as follows: In Sec. 2, we briefly
review the mathematical fundamentals of one-dimensional
(1-D) ARMA modeling of topography of random rough sur-
faces. In Sec. 3, we reproduce the results of ARMA fitting of
the 1-D surface slope distribution of a high-quality reference
mirror measured with a slope profiler. Here, we pay special
attention to investigating the reverse symmetry of 1-D
ARMA fitting of the slope data, and provide arguments for
symmetrization of the modeling. Section 4 gives the math-
ematical fundamentals of modeling with TILFs. We also
explain the relationships between 1-D ARMA and TILF
models. Section 5 presents the results of the TILF modeling
of a 1-D surface slope distribution of the reference mirror.
We apply here a 1-D TILF transformation based on a sym-
metrization of the ARMA fit. Section 6 concludes the paper
by summarizing the main concepts discussed throughout
the paper and stating a plan for extending the suggested
approach to parameterize the results of the 2-D surface met-
rology data.

2 One-Dimensional Autoregressive Moving
Average Modeling of Random Rough Surfaces

We analyze the surface slope metrology with high-quality
x-ray optics. For a 1-D case, the result of the metrology
is a distribution (trace) of residual (after subtraction of
the best fit figure and trends) slopes α½n� measured over
discrete points xn ¼ n · Δx with uniform increment Δx;
n ¼ 1; : : : ; N, where N is the total number of observations,
and ðN − 1ÞΔx is the total length of the trace.

ARMA modeling describes the distribution α½n� as a
result of a uniform stochastic process:7,8

α½n� ¼
Xp
l¼1

alα½n − l� þ
Xq
l¼0

blν½n − l�; (1)

where ν½n� is the zero-mean unit-variance white Gaussian
noise (white Gaussian noise) that is the driving noise of
the model. The parameters p and q are the orders of the
ARMA processes, respectively. At q ¼ 0 and b0 ¼ 1, the
ARMA process (1) reduces to an AR stochastic process.
In addition to the linearity, an ARMA transformation is
time invariant since its coefficients depend on the relative
lags, l, rather than on n. The goal of the modeling is to deter-
mine the ARMA orders and to estimate the corresponding
AR and MA coefficients al and bl.

11–13 For ARMA analysis
of the experimental data (Secs. 3 and 5), we use a standard
statistical software, EViews 8.14 The software allows the
determination of the ARMA model parameters, verifies the
statistical reliability of the model, and simulates (forecasts)
the new surface slope data corresponding to the determined
ARMA model.

As Church and Berry discussed,6 ARMA fitting allows
for the replacement of the spectral estimation problem by
a problem of parameter estimation. In principle, the param-
eters of a successful ARMA model of a rough surface should
relate to the polishing process. The analytical derivation of
such a relation is a separate difficult task; there are only a few
works that try to solve the problem.15,16 Instead, most of the
existing work provides an empirical ARMA description of
the results of the polishing processes.11,17 When an ARMA
model is identified, the corresponding PSD distribution can
be analytically derived:7

PhðfÞ ¼ σ2
B½ei2πf�B½e−i2πf�
A½ei2πf�A½e−i2πf� ¼ σ2

X∞
l¼−∞

rh½l�e−i2πlf; (2)

where the frequency f ∈ ½−0.5; 0.5�,

A½ei2πf� ¼ 1þ a1ei2πf þ : : : þ apei2πpf; (3)

B½ei2πf� ¼ b0 þ b1ei2πf þ : : : þ bqei2πqf; (4)

and the autocorrelation function (ACF) of the surface profile
is determined by Eq. (1). Eq. (2) can be expressed as

PxðfÞ¼σ2
ðb0þb1z−1þ :::þbqz−qÞðb0þb1z1þ :::þbqzqÞ
ð1−a1z−1− :::−apz−pÞð1−a1z1− :: :−apzpÞ

¼σ2
X∞
l¼−∞

rh½l�z−l; (5)

where z ¼ ei2πf and σ2 is the variance of the driving noise
ν½n�. According to Eq. (5), rh½l� is a nonlinear function of
the ARMA coefficients, al for l ¼ 1; : : : ; p, and bl for
l ¼ 1; : : : ; q.

A low-order ARMA fit, if successful, allows the paramet-
rization of both the PSD and the ACF of a random rough
surface. The PSD distributions appear as highly smoothed
versions of the corresponding estimates via a direct digital
Fourier transform (DFT).9,10 The description of a rough sur-
face, as the result of an ARMA stochastic process, provides
a model-based mechanism for extrapolating the spectra out-
side the measured bandwidth.9,10

Trustworthy ARMA modeling and forecasting, based on
a limited number of observations, assume the statistical
stability of the data used. The data are statistically stable if
they are the result of a so-called wide sense stationary (WSS)
random process (see, Ref. 7). The process α½n�, where
n ¼ 1; : : : ; N, and N is the number of observations, is a
WSS process if its ACF,

rh½l� ¼ Eðα½n�α½n − l�Þ; (6)

only depends on the lag l, and does not depend on the value
of n. In Eq. (1) E is the expectation operator. Note that the
PSD of the WSS random process α½n� can be found from
the ACF [compare with Eqs. (2) and (5)]:

PhðfÞ ¼
X∞
l¼−∞

rh½l�e−i2lf: (7)

Recent publications9,10 describe a successful application
of the ARMA modeling to the experimental surface slope
data for a 1280 m spherical reference mirror.18,19 The data
were obtained with the Advanced Light Source develop-
mental long trace profiler (DLTP).20 The major reason for
the data selection is their very high accuracy with a low con-
tribution from random and systematic errors. The accuracy of
the data has been verified in cross comparison with mea-
surements performed with the HZB/BESSY-II nanometer
(HZB/BESSY-II, Adlershof, Germany) optical component
measuring machine (NOM),21–23 one of the world’s best
slope measuring instruments. The difference of the NOM
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and DLTP measurements does not exceed �0.15 μrad; the
RMS variation of the difference is 86 nrad.

3 Reverse Symmetry of One-Dimensional
Autoregressive Moving Average Fitting of
Surfaces Slope Measurements

Traces (a) and (b) in Fig. 1 reproduce the results of the
ARMA modeling performed in Refs. 9 and 10. The mea-
sured residual slope trace, after subtracting the best-fit
spherical surface shape with a radius of curvature of
1287.5 m, is shown with the short-dashed red line. The trace
consists of N ¼ 547 points measured with an increment of
Δx ¼ 0.2 mm. The fitted slope trace, shown in Fig. 1(a) with
the green long-dashed line, corresponds to the best-fitted
ARMA model with the parameters given in Table 1.

The EViews’ regression output in Table 1 contains the
results of the application of several methods helpful for
the evaluation of the reliability of the regression output.
A value of R2 ≈ 0.97 indicates that the both regressions
describe 97% of the data’s variance. The Durbin–Watson sta-
tistic, a test for first-order serial correlation of the residuals, is
∼2, suggesting that there is no serial correlation. The low
probabilities and the high t-statistics in the regression output
indicate that AR(1), AR(4), MA(2), MA(6), and MA(3)

coefficients are highly significant at <1% significance level.
EViews also report various criteria to be helpful as a model
selection guide, for example, when examining the number of
regression lags.7

Standard ARMA modeling is inherently causal, assuming
that the current value of the process only depends on the past,
as expressed with Eq. (1). While in the case of the time
series, the property of causality is natural, in the case of
the modeling surface metrology data, the causality can be
thought of as a limitation of the modeling. Below, we suggest
a simple way for fixing the causality problem.

First, let us apply the same ARMA model to the reversed
residual slope trace, traces (c) and (d) in Fig. 1. The reversed
data correspond to the DLTP measurements with the optic
rotated (flipped) by 180 deg with respect to the scanning
direction of the profiler. In order to reverse the residual slope
trace, we transform the coordinate system related to the
mirror surface and change the measured slope values to the
opposite sign (see Ref. 24). The parameters of the corre-
sponding best-fitted ARMA model are presented in Table 2.

The residual noise traces shown in Fig. 1, plots (b) and
(d), are the driving noise of the model v½n� in Eq. (1) and
should be distinguished from any observation noise.
According to the ARMA definition, the driving noise must
be uncorrelated and normally distributed. The correlation
analysis performed indicates uniform ACFs for both fits.
The driving noise of the ARMA modeling of the normally
oriented slope trace [plots (a) and (b) in Fig. 1] passes a num-
ber of criteria, including the Jarque–Bera statistic test, for
normally distributed variables.9,10 This is not the case for
the ARMA modeling of the reversed slope trace. A rather
high Jarque–Bera statistic parameter (8.69) and a low prob-
ability value (0.013) indicate that, most probably, the resid-
uals are not normally distributed. However, for the purpose
of the present work this does not produce a problem, because
the variance of the noise is much smaller than the overall
slope data variance described with the model.

As the second step of fixing the causality problem, let
us note that the ARMA modeling of the direct and the
reversed residual slope traces effectively establishes a rela-
tion between the current slope element α½n� and the “future”
ones rather than a negative lag value:

α½n� ¼
Xp
l¼1

a�l α½nþ l� þ
Xq
l¼0

b�l ν½nþ l�; (8)

where for the direct slope trace α½n�, a�l and b�l denote the
ARMA parameters determined by the modeling of the
reversed trace. Therefore, the causality limitation can be
solved by a straightforward averaging of the causal stochas-
tic processes (1) and (8) to a “two-sided symmetrical
ARMA” model of the 1-D slope trace:

α½n� ¼ 1

2

�Xp
l¼1

ȃlðα½nþ l� þ α½n − l�Þ

þ
Xq
l¼0

b̑lðν½nþ l� þ ν½n − l�Þ
�
; (9)

where the model parameters ȃl and b̑l, given in Table 3, are
the averages of the corresponding parameters in Tables 1 and
2. The values of standard errors in Table 3 are also averaged,

Fig. 1 (a) Measured slope trace after subtracting the best-fit spherical
surface shape with a radius of curvature of 1287.5 m (the red short-
dashed line); and best-fitted slope trace, corresponding to the ARMA
model specified in Table 1 (the green long-dashed line). The root mean
square (RMS) variation of the measured slope trace is 0.447 μrad.
(b) Residual noise trace equals to the difference between the mea-
sured and fitted traces in plots (a). The RMS variation of the residual
noise in plot (b) is 0.073 μrad. (c) Reversedmeasured slope trace (the
red short-dashed line); and best-fitted slope trace, corresponding to
the ARMA model specified in Table 2 (the green long-dashed line).
(d) Residual noise trace equals to the difference between the mea-
sured and the fitted traces in plots (c). The RMS variation of the
residual noise in plot (d) is 0.074 μrad. Note that in the both cases
the measured and the best-fit traces are almost exactly overlapped.
The measurement was performed with an increment of 0.2 mm.
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rather than being decreased by a factor of
ffiffiffi
2

p
, compared to

the standard errors of the ARMA parameters determined in
the corresponding regressions. This accounts for the fact that
the regressions are performed over the same (just mutually
reversed) data and, therefore, are not independent.

In Eq. (9), we accounted for the coincidence (within their
confidential intervals) of the best fitted values of the ARMA
parameters for the direct and the reversed slope traces given in
Tables 1 and 2, respectively. The coincidence is natural, and it
is a direct outcome of the equality of the corresponding ACFs.

Table 1 Parameters of the ARMA model [(the green long-dashed line in Fig. 1(a)], which best fit the surface slope trace for the 1280 m spherical
reference mirror measured with the ALS DLTP.20 In Eqs. (1)–(5), b0 ¼ 1 and σ2 is equal to the standard error (SE) of the regression of 0.073 μrad
root mean square (RMS). The data in the table are regression outputs generated by EViews 8 software. Note that the values of the ARMA param-
eters presented here are slightly different from that of the Refs. 9 and 10, where software version 7 was used. However, the difference is well within
the confidence interval for the parameters.

Variable Coefficient Standard error t -statistic Probability

AR(1): a1 1.089987 0.026840 40.61026 0.0000

AR(4): a4 −0.118806 0.026415 −4.497622 0.0000

MA(2): b2 0.353328 0.044434 7.951686 0.0000

MA(3): b3 0.159281 0.047287 3.368412 0.0008

MA(6): b6 –0.134884 0.042316 −3.187512 0.0015

R-squared 0.973392 Mean-dependent variation −0.016092

Adjusted R-squared 0.973195 Standard deviation-dependent variation 0.443422

Standard error of the regression 0.072599 Akaike info criterion −2.398578

Sum squared residuals 2.835555 Schwarz criterion −2.359010

Log likelihood 656.2140 Hannan–Quinn criterion −2.383107

Durbin–Watson statistics 2.007877

Note: Dependent variable: SLOPE; Method: least squares; Included observations: 543 after adjustments; Convergence achieved after 10
iterations.

Table 2 Parameters of the ARMAmodel [(the green long-dashed line in Fig. 1(c)], which best fits the reversed surface slope trace depicted with the
red short-dashed line in Fig. 1(c). b0 ¼ 1 and σ2 is equal to the standard error (SE) of the regression of 0.074 μrad root mean square (RMS). The
data in the table are the regression outputs generated by EViews 8 software.

Variable Coefficient Standard error t -statistic Probability

AR(1): a1 1.106807 0.027966 39.57745 0.0000

AR(4): a4 −0.143406 0.026871 −5.336806 0.0000

MA(2): b2 0.353856 0.045268 7.816931 0.0000

MA(3): b3 0.140080 0.047720 2.935475 0.0035

MA(6): b6 −0.137039 0.042567 −3.219367 0.0014

R-squared 0.971694 Mean-dependent variation 0.002690

Adjusted R-squared 0.971484 Standard deviation-dependent variation 0.436396

Standard error of the regression 0.073693 Akaike info criterion −2.368653

Sum squared residuals 2.921692 Schwarz criterion −2.329085

Log likelihood 648.0893 Hannan–Quinn criterion −2.353182

Durbin–Watson statistics 1.984440

Note: Dependent variable: SLOPE; Method: least squares; Included observations: 543 after adjustments; Convergence achieved after 10
iterations.
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Unlike causal, one-sided ARMA modeling, the “two-
sided symmetrical ARMA” model, depicted by Eq. (9), is
free of the limitations of the fixed direction (time flow)
and causation. This implies that the current value of the sur-
face slope depends on the past and the future, in our case the
neighboring points with the positive and negative lag values.
Such an extension of AR modeling is closely related to the
TILF approach.

4 Mathematical Foundations of Time-Invariant
Linear Filters in Application to Modeling of
Surface Metrology

For a 1-D case, the TILF C with weights fci; i ¼ 0;�1; : : : g
is a linear operator that transforms one stochastic process
fX½t�; t ¼ 0;�1; : : : g into another (filtered) process
fY½t�; t ¼ 0;�1; : : : g (see Ref. 25):

Y½t� ¼
X∞
l¼−∞

clX½t − l�: (10)

Similarly to the ARMA transformation, the TILF C is lin-
ear and time invariant. The filter C possesses the property of
causality if

ci ¼ 0 for i < 0: (11)

The requirement of stability of the transformation implies
that the filter is absolutely summable:

X∞
l¼−∞

jclj < ∞: (12)

Similar to the ARMA modeling, when an optimal TILF is
identified, the corresponding PSD distribution can be ana-
lytically derived [see Ref. 25 and compared with Eq. (5)]:

PYðfÞ ¼
����
X∞
l¼−∞

clei2πlf
����
2

PXðfÞ: (13)

Any ARMA process α½t� with the parameters p and q can
be obtained from the white Gaussian noise ν½n� by applica-
tion of the corresponding casual TILF (see Ref. 25) so that:

α½t� ¼
X∞
l¼0

clν½t − l�: (14)

The weights cl in Eq. (14) are determined by the relation:

X∞
l¼0

clzl ¼ bðzÞ∕aðzÞ; jzj ≤ 1; (15)

where the AR and MA polynomials in the right-hand side of
Eq. (15) are, respectively,

aðzÞ ¼ 1 − a1z1 − : : : − apzp and

bðzÞ ¼ 1þ b1z1 þ : : : þ bqzq: (16)

Consequently, the “two-sided ARMA” process given by
Eq. (9) can be expressed via TILF in the form of Eq. (9),
which is free from the causality limitation:

α½t� ¼ 1

2

�X∞
l¼0

clν½t − l� þ
X∞
l¼0

c−lν½tþ l�
�

¼
X∞
l¼−∞

c�l ν½t − l�: (17)

Therefore, in the case of 1-D metrology data, if ARMA
modeling is successful, there is a corresponding TILF oper-
ator that describes the metrology result as a filtered white
Gaussian noise. The identified TILF can be used for forecast-
ing a new slope distribution possessing the same statistical
properties as the measured one, but with different parame-
ters, such as the distribution length and the RMS variation.
A straightforward generalization of the 1-D Eqs (10)–(17) to
the 2-D case opens the way for parametrization and forecast-
ing of 2-D metrology data by applying the 2-D TILF
modeling.

Note that there is a simple relation between the coeffi-
cients of the AR terms of Eq. (9) and the weights of a
TILF that transforms the “two-sided AR” process into the
noise process ν½n�. In some sense, such a TILF is the inverse
operator to the one in Eq. (14). In this case, the AR part of
Eq. (9) can be written as:

α½n� ¼ 1

2

Xp
l¼−p

alα½n − l� − 1

2
a0α½n� þ ν½n�; (18)

with the coefficients al, l ¼ �1; : : : ;�p determined by the
AR modeling of the direct and the reversed traces of the same
slope measurement α½n�. Assigning a0 ¼ −2, Eq. (18) is
rewritten in the form of a TILF transformation:

ν½n� ¼
Xp
l¼−p

clα½n − l�; (19)

with the weights

cl ¼ −al∕2; for l ¼ �1; : : : ;�p; and

c0 ¼ −1; for l ¼ 0: (20)

Generally, the values of the TILF weights with the same
positive and negative lags are not necessarily equal, that is

cl ≠ c−l: (21)

Table 3 Parameters of the suggested “two-sided symmetrical
ARMA” model, given by Eq. (9). The values in the table are the aver-
age of the corresponding values in Tables 1 and 2. For all the values,
we keep the same number of digits as in the regression outputs gen-
erated by EViews 8 software (Tables 1 and 2).

Model parameter Coefficient Standard error

AR(1): â1 1.098397 0.027403

AR(4): â4 −0.131106 0.026643

MA(2): b̂2 0.353592 0.044851

MA(6): b̂6 −0.135962 0.042442

MA(3): b̂3 0.149681 0.047504
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However, among all TILFs of the same order (including
AR and ARMA models), the symmetrical filter with

cl ¼ c−l (22)

provides the smallest variance of the residual noise, which is
equal to the difference between the measured trace and the
best-fitted TILF model. A narration of a strong mathematical
proof of this statement that we have derived is out of the
scope of the present article and will be presented elsewhere.
In the case of causal TILFs (like AR and ARMA models),
this can be intuitively understood as a result of averaging of
the residual noises of the fits with the corresponding causal
filters of the direct and reversed processes. Assuming that the
residual noises are not mutually correlated, one should
expect a suppression of the variance of the averaged residual
noise by a factor of 2 with respect to the corresponding
causal filter [compared with the variance of the second
sum in Eq. (9)].

5 Modeling of Surface Slope Measurements with
Time-Invariant Linear Filter

Figures 2(a) and 2(b) reproduce the results of the modeling
of the measured slope trace in Fig. 1(a) with a symmetrical
TILF given by Eqs. (19) and (20), with the weights equal to
the corresponding AR coefficients of the “two-sided sym-
metrical ARMA” model given in Table 3:

c1 ¼ c−1 ¼ −â1∕2 ¼ −0.545199;

c4 ¼ c−4 ¼ −â4∕2 ¼ 0.065553; and c0 ¼ −1: (23)

The redundant precision of the weight values in Eq. (23)
is used only for consistency with the output style of the
EViews 8 software used for the ARMA fitting of the mea-
sured slope data (Sec. 3). The TILF simulations in Fig. 2

were performed with an original code written in the
MATLAB®.

A remarkable result of the modeling with the symmetrical
TILF is the predicted improvement of the variance of the
residual noise of the model by a factor of ∼1.8, compared
to that of the ARMA model. Accordingly, the RMS variation
of the residual noise, corresponding to the TILF model, is
0.054 μrad, rather than the 0.073 μrad in the ARMA
model (Sec. 3). The improvement is slightly smaller than the
factor of

ffiffiffi
2

p
expected for the case of the white Gaussian

residual noise (see discussion in Sec. 4). This can be thought
of as a signature of a small correlation within the TILF
residual noise.

The high authenticity of the performed TILF modeling
can be illustrated by comparing the PSD distributions of
the measured and the fitted slope profiles. Figure 3 shows
the analytical PSD, calculated with the symmetrical TILF
model with the weights given by Eq. (23), and the PSD spec-
trum of the measured slope trace calculated via the discrete
Fourier transform. For comparison, the analytical PSD cal-
culated from Eq. (5) with the ARMA parameters given in
Table 1 is also shown in Fig. 3.

As expected, for a single limited realization of the sto-
chastic polishing process, the measured PSD distribution
in Fig. 3 has rather poor statistical stability. This is seen
as an intense frequency-to-frequency fluctuation of the spec-
trum. The results of the direct analytical calculations of the
PSD from the coefficients of the symmetrical TILF and
the best-fitted ARMA model are much smoother. They both
precisely fit the noisy PSD spectrum obtained by the DFT
of the measured slope data.

The analytical PSDs coincide very well over almost the
entire spatial frequency range of the measurements, deter-
mined by the resolution of the slope profiler. However,
there is a noticeable difference near the Nyquist frequency
of about 0.7 mm−1. This difference is due to the additional
MA terms in the ARMA modeling. These terms effectively

Fig. 2 (a) Measured slope trace after subtracting the best-fit spheri-
cal surface shape with a radius of curvature of 1287.5 m (the red
short-dashed line); and the slope trace corresponding to the symmet-
rical TILF model with the weights based on the AR coefficients in
Table 3 (the green long-dashed line). The RMS variation of the mea-
sured slope trace is 0.447 μrad. (b) Residual noise trace equals to
the difference between the measured and the fitted traces in plots (a).
The RMS variation of the residual noise in plot (b) is 0.054 μrad. Note
that the measured trace and the trace simulated with the symmetrical
TILF model are almost exactly overlapped. The measurement was
performed with an increment of 0.2 mm.

Fig. 3 TILF PSD analytically calculated with the parameters given by
Eq. (23), the dash-dot red line, and the DFT PSD spectrum of the
measured slope trace, the solid black curved line. For comparison,
the PSD analytically calculated from Eq. (5) with the ARMA param-
eters given in Table 1 is also shown with the dashed blue line.
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account for the noise correlation that probably appeared due
to the limited resolution (oversampling) of the instrument.

The results of the statistical analysis of the TILF residual
noise are presented in Figs. 4 and 5. Figure 4 reproduces the
results of the EViews’ normality test for the residual noise of
the symmetrical TILF modeling, shown in Fig. 2. Together
with other criteria, the low Jarque–Bera statistic14 and the
high probability indicate that the residual noise is normally
distributed.

The results of EViews’ correlation analysis of the TILF
residual noise are shown in Fig. 5. For comparison, similar
data for the ARMA modeling in Figs. 1(a) and 1(b) are pre-
sented in Fig. 6.

From the data in Fig. 5, one can see a significant corre-
lation in the TILF residual noise. This is a direct outcome of
the applied symmetrical TILF with the weights solely based
on the AR coefficients determined by the ARMA modeling.
The correlation indicates that the MA-like terms of the
ARMA modeling should also be incorporated in the TILF.

A direct optimization of the TILF model (without
involving the results of the ARMA modeling) requires the
development of dedicated software that will account for the
requirement of the white Gaussian residual noise. Discussion
of an algorithm of such software is out of the scope of this
publication and is a topic for future investigations.

6 Conclusion
In this work, we continue the investigation started in Refs. 9
and 10, that will potentially allow the analytic characteriza-
tion/parameterization of the polishing capabilities of differ-
ent vendors for xray optics. Based on the parametrization,
the expected surface profile of the prospective x-ray optics
will be reliably simulated (forecast) prior to purchasing. The
simulated surface slope and height distributions of the pro-
spective beamline optics (before they are fabricated) can also
be used for estimations of the expected performance of new
x-ray beamlines as well as those under upgrade.

Fig. 4 Histogram normality test14 for the residual noise of the symmetrical TILF modeling shown in Fig. 2.
(a) Histogram of the residuals. (b) Descriptive statistics of the residuals, including the Jarque–Bera
statistic used for testing whether the residuals are normally distributed. All the descriptive statistics
indicate that the residual slope is normally distributed.

Fig. 5 EViews’ output of the correlation analysis of the residual noise
of modeling of the measured slope distribution, shown in Fig. 2 with
the symmetrical TILF with the weights given by Eq. (23). The first 36
elements (with lag values from 1 to 36) of the autocorrelation (AC) and
partial correlation (PAC) functions of the residual noise are shown.
The dashed horizontal lines indicate the level of uncertainty of the
correlation coefficients. A significant correlation at smaller lags is
clearly seen.

Fig. 6 EViews’ output of the correlation analysis of the residual noise
of the ARMA modeling of the measured slope distribution, shown in
Figs. 1(a) and 1(b) with the ARMA parameters given in Table 1. The
first 36 elements (with lag values from 1 to 36) of the autocorrelation
(AC) and partial correlation (PAC) functions of the residual noise are
shown. The dashed horizontal lines indicate the level of uncertainty of
the correlation coefficients. There is no correlation on the level of sig-
nificance of the modeling.
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In Refs. 9 and 10, it has been demonstrated that the
required reliable information about the expected surface
slope topography of the prospective x-ray optics can be
obtained via ARMA modeling of the 1-D slope measure-
ments. ARMA modeling allows a high degree of confidence
when fitting metrology data with a limited number of param-
eters. Assuming that the parameters uniquely correspond to
the fabrication (polishing) technology available with a par-
ticular vendor, the determined ARMA model can be used to
simulate the surface slope profile of an optic with a newly
desired specification.

At the same time, with the obvious success and perspec-
tive of the application of 1-D ARMA modeling to 1-D sur-
face slope metrology, the inherent causality of the modeling
is thought of as a limitation factor that also complicates
extending the method to modeling 2-D surface metrology
available, for example, with high precision interferometers
and microscopes.

To the best of our knowledge, we have originally sug-
gested and performed in this work an initial consideration of
the application of the TILF approach to parameterize the sur-
face metrology of high-quality x-ray optics. We have shown
that the TILF approximation has all the advantages of one-
sided AR and ARMA modelings. The TILF approach, which
is basically free of the causality limitation, naturally includes
a “two-sided symmetrical ARMA” model that overcomes
the causality problem in the frame of ARMA modeling.

Among TILFs of the same order, we have suggested
applying symmetrical filters (with cl ¼ c−l) that provide
the smallest variance of the residual noise of the fitting. The
performed numerical simulation has confirmed the high con-
fidence of the TILF parametrization of surface slope data
obtained with the high-quality reference mirror.

The major motivation of the performed investigation of
the TILF-based modeling of the surface metrology data is
the possibility of a direct, straightforward generalization
of TILF modeling to 2-D random fields. Mathematical foun-
dations of the generalization are well established.25 However,
its practical realization requires the development of calcula-
tional algorithms and dedicated software for determining the
optimal TILF best-fitted to the measured 2-D surface slope
and height distributions. The optimization can be done in a
standard way, consisting of searching for the optimal filter’s
weights by using the method of least squares to minimize the
variance of the residual noise. For reliable TILF forecasting
of the new surface topography based on the measured and
fitted ones, the residual noise of the fit has to have a
zero-mean unit variance white Gaussian distribution. This
is similar to the ARMA modeling, therefore, the correspond-
ing methods and criteria can be applied to the statistical
analysis of TILF modeling.

Forthcoming investigations must solve the question about
the uniqueness of the ARMA and TILF parametrizations for
a certain polishing process. This can be performed by cross
comparing the ARMA and TILF models for different optics,
which are identically fabricated. The archived metrology
data for high-quality x-ray optics, collected at synchrotron
facilities around the world, can be used for this purpose.
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