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Abstract. A binary shape-coded structured light method for single-shot three-dimensional reconstruction is
presented. The projected structured pattern is composed with eight geometrical shapes with a coding window
size of 2 × 2. The pattern element is designed as rhombic with embedded geometrical shapes. The pattern
feature point is defined as the intersection of two adjacent rhombic shapes, and a multitemplate-based feature
detector is presented for its robust detection and precise localization. Based on the extracted grid-points, a topo-
logical structure is constructed to separate the pattern elements from the obtained image. In the decoding stage,
a training dataset is first established from training samples that are collected from a variety of target surfaces.
Then, the deep neural network technique is applied for the classification of pattern elements. Finally, an error
correction algorithm is introduced based on the epipolar and neighboring constraints to refine the decoding
results. The experimental results show that the proposed method not only owns high measurement precision
but also has strong robustness to surface color and texture. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.56.1.014102]
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1 Introduction
Three-dimensional (3-D) object reconstruction is becoming
an increasingly important research topic in computer vision
domains and demanded by more and more real applications.
Structured light-based 3-D sensing technology is consid-
ered one of the most reliable means for surface shape
reconstruction.1,2 The underlying principle of the structured
light method is to project single or multiple patterns on
the target surface, and the projected patterns can be used
to establish the correspondences between the camera and
projector. With the system calibration parameters, 3-D
reconstruction can be realized via triangulation principle.3

Time and spatial multiplexing techniques are the two
major codification strategies for existing structured light
methods.4 Temporal-based coding methods are based on
the codeword created by a sequential projection of patterns
onto the object surface, so the codeword associated to a posi-
tion in the image is not completely formed until all patterns
have been projected. Such methods can usually provide a 3-
D point-cloud with high accuracy and density with a sacrifice
of scanning efficiency. In comparison, spatially encoded
structured light means only demand a single projection
and image shot and thus are more suitable for dynamic
3-D reconstruction applications. For spatial structured light
methods, the codeword of a specific position can be deter-
mined by its neighboring pattern elements, and a De Bruijn
sequence,5 pseudorandom array, or M-array6 is usually used
to construct the projected pattern. There have been a lot

of studies contributed to the spatial structured light pattern
codification strategies. The proposed pattern images can
be classified into two types: color pattern and binary geomet-
rical pattern. The primitive in color pattern can be coded by
color multislits,7–9 color stripes,10–12 color grids,13 color
spots,14,15 color diamonds,16,17 or color squares.18 For the
binary geometrical patterns, the primitive can be represented
by different geometrical shapes19–24 or hybrid coding.25

Compared with color coding methods, shape coding meth-
ods are more robust because they are less sensitive to surface
color. In the spatial structured light patterns, a small coding
window is usually expected to relieve the difficulties in the
decoding procedure. However, a small coding window often
causes a greater number of colors or geometrical shapes in
the pattern with a given coding volume. For the color coding
methods, the usage of more colors makes the shape recon-
struction more sensitive to surface color or textures. In con-
trast, the shape coding methods usually adopt binary shapes
and thus are more robust to surface color. However, the pro-
jected binary shapes are usually distorted and blended with
surface textures and that brings huge difficulty for the pattern
decoding algorithms.

In this paper, a robust binary shape-coded structured light
method is investigated. Based on the coding scheme of pseu-
dorandom array, eight geometrical shapes are designed to
generate a binary structured light pattern with the coding
window size of only 2 × 2. The use of binary pattern feature
makes it robust to surface color, and the small coding win-
dow size makes it robust to surface discontinuities. To extract
the feature points, a multitemplate-based feature detector is
presented. In the decoding stage, a training dataset is first
constructed by collecting a lot of pattern elements with*Address all correspondence to: Zhan Song, E-mail: zhan.song@siat.ac.cn
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various blurring and distortion. Then, a deep neural network
is trained for the pattern decoding purpose. Finally, the epi-
polar constraint and unique window constraint are applied to
refine the primary decoding results.

The rest of this paper is organized as follows. Related
works are briefly reviewed in Sec. 2. In Sec. 3, the pattern
design scheme is presented. The proposed feature point detec-
tion algorithm is introduced in Sec. 4. Section 5 shows
how the proposed pattern can be decoded and how the decod-
ing results are optimized. The experimental results are given
and discussed in Sec. 6. Conclusions are offered in Sec. 7.

2 Related Works
Image color cues are usually used for most spatial structured
light methods. Fechteler and Eisert7 chose seven colors to
generate a multislit pattern based on the De Bruijn sequence.
There was a constraint that two consecutive stripes had to
differ in at least two color channels. The centers of the stripes
were defined as the feature points, which can provide sub-
pixel accuracy for 3-D reconstruction. Zhang et al.11,12 used
six colors to construct a pseudorandom pattern with 128
stripes, and the window size was 1 × 3. Each two adjacent
color stripes also conformed to the condition of being differ-
ent in at least one color channel. The edge between two
adjacent stripes was defined as the pattern feature point.
Salvi et al.13 introduced a color grid pattern. The pattern
was composed of the projection of a grid made by color
slits in such a way that each slit with its two neighbors
appeared only once in the pattern. Morano et al.14 used per-
fect submap to generate a color spot pattern; the centroids of
the circular elements were determined as the feature points,
but no quantitative experimental results were provided. Adan
et al.15 presented a color spot pattern with seven colors for
3-D tracking of dynamic targets. The proposed pattern was
generated by inserting colors with an iterative algorithm,
which started with a random assignment. The codeword
of pattern feature was dependent on the feature color itself
and its six surrounding color elements. Song and Chung16,17

proposed a color diamond pattern with four colors. The grid-
points between adjacent rhombic shapes were defined as the
feature points. The pattern size was 65 × 63 with a window
size of 2 × 3. The intersection points of two adjacent rhom-
bic shapes are defined as the feature points. Chen et al.18

designed a color square pattern with seven colors. The pat-
tern feature was encoded by its four-adjacent colors of pat-
tern elements. The pattern size was 38 × 212, and the unique
window size was 2 × 2. This method provided a relative
small coding window size, but using seven colors made it
lack robustness in dealing with the surface color fusions.

To improve the robustness of color coding methods, the
binary shapes can be used to replace the color cues in the
pattern generation. The binary shapes can be circle, disc,
stripe,19 thickened cuneiform,21 thinned cuneiform,22,23

polygon,24 or specially designed shapes.20,25 Albitar et al.19

adopted binary shapes instead of colors as the coding
elements to generate a binary pattern based on M-array.
The proposed pattern consisted of three geometrical shapes.
The pattern size was 27 × 29, and the coding window size
was 3 × 3. Reiss and Tommaselli21 improved the coding
volume with five different shapes; each shape owned four or
six points for surface reconstruction. Maurice et al.22,23 pre-
sented a perfect submap generation with large Hamming

distance. However, the coding window size of 3 × 3
decreased the code-correction ability for the scenes with
depth discontinuities. Xu et al.24 utilized the corner of the
chessboard as the primitive to produce the pattern.
Moreover, the orientation of the corner was used to encode
the primitive. Since the primitive owned perfect symmetry,
the position of the feature point could be accurately located.
Jia et al.20 used five special shapes in an M-array pattern with
dimensions of 79 × 59 with a coding window sized 2 × 2.
This method gained a dense mass of key points because
each shape had six points. Fang et al.25 presented a symbol
density spectrum (SDS) to choose geometrical shapes for
improving resolution and decreasing decoding error. The
proposed SDS method provided a distribution of feature
points for reconstruction after 10 geometrical shapes were
extracted. Then, a comparative analysis of the shape features
and scene testing of shapes damage rate were conducted to
choose nine geometrical shapes from one group to form a
density pattern. The 3-D reconstruction experiment showed
that this method owned high resolution and robustness.

Most of research has focused on how to encode the posi-
tion information with color code or shape code. However,
less attention is paid to another essential problem, decoding
the correspondence from the captured image. As Boyer and
Kak26 pointed out, the structured light system is similar to
a digital communication system; the information can be
successfully transmitted to the receiver only after correctly
decoding. A large amount of error in decoding can destroy
the 3-D reconstruction. So decoding is more important for
successful shape acquisition. For the color coding schemes,
the hue, saturation, value model is usually adopted16,17 and
the simple thresholding method10,26 is applied to identify the
color of each coding element. In addition, some machine
learning-based approaches are also attempted for pattern
decoding. For example, Zhang et al.8 identified the color of
color multisilt using the K-means clustering algorithm on a
proposed color feature named regularized RGB. Comparative
experiments showed that regularized RGB has higher
discriminating power in color identification than other color
features, such as RGB, HSI, Nrgb, c1c2c3, H*S*, CIElab,
and so on.9 Tang et al.3 employed the fuzzy c-means clustering
algorithm on color feature c1c2c3 to identify the color of color
stripe and further demonstrated that a color feature only
related to the spectral sensitivity of red, green, and blue
sensors and the albedo of the surface owns more excellent per-
formance in color identification than that related to the spectral
sensitivity of red, green, and blue sensors, the albedo of the
surface, the direction of the illumination source, the normal of
the surface, and the spectral power distribution of the incident
light no matter what the color of the test object is. For the
shape coding schemes, although the usage of binary shapes
makes the system more robust to surface color or textures,
the projective distortion of pattern elements also brings
difficulties to the decoding task. Image segmentation is usu-
ally applied to segment each pattern element, and the template
matching is usually used to identify the pattern elements.19–25

But the performance of pattern decoding is inferior when the
pattern elements are greatly affected by complex factors, such
as surface color, textures, distortion, reflections, and so on.

With the above review, we can see that increasing the
number of colors or pattern elements can decrease the coding
window size with a given coding volume. A small coding
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window size indicates that fewer elements should be decoded
to determine one codeword and thus brings benefits to the
decoding stage. On the other hand, some machine learning-
based approaches are also attempted for pattern decoding,
but the results are still quite dependent on the surface colors
and lack of robustness. To realize a robust spatial structured
light method, not only the feature detection algorithm but
also the decoding algorithm should be well studied.

3 Pattern Generation
The proposed pattern is pseudorandom array based. A pseu-
dorandom array can be generated from a pseudorandom
sequence with folding rule, and a pseudorandom sequence
can be created by a primitive polynomial.27 To make the
pattern more robust to surface color and reflectance, shape
codes are selected instead of color codes. Since small
window size can alleviate the complexity of the decoding
algorithm, a binary geometrical pattern with the window
size of 2 × 2 is proposed in this paper, as shown in Fig. 1.
It is obtained in the following way. A primitive polynomial
hðxÞ defined over Galois field with eight elements [GF(8)] is
first used to generate a pseudorandom sequence

EQ-TARGET;temp:intralink-;e001;326;752hðxÞ ¼ x4 þ xþ α3: (1)

The sequence is computed using the following equation:

EQ-TARGET;temp:intralink-;e002;326;719α3 þ αþ 1 ¼ 0; α7 ¼ 1: (2)

Every nonzero element of GF(8) is a power of α, which is
a primitive element, and each element in GF(8) is a binary
linear combination of {1; α; α2}. Based on the above primi-
tive polynomial, a pseudorandom array of size 65 × 63 can
be acquired with the window size of 2 × 2. Since there are
eight primitives in the pseudorandom array, eight different
geometric primitives are demanded to design the projected
pattern. To make the pattern elements more distinguishable,
the geometric primitives with great difference are designed
as shown in Fig. 2 and are embed into the white rhombic
shape with the color black used as the background.
Moreover, the intersection points formed by two neighboring
pattern elements are defined as the feature points and named
as the grid-points. The grid-points include two types. The
first type of grid-point is P1, as shown in Fig. 1(b), and
is constructed by two adjacent pattern elements at the hori-
zontal direction. The other type of grid-point is P2, which
is formed by two adjacent pattern elements at the vertical
direction. The two types of grid-point P1 or P2, as shown
in Fig. 1(b), have the same code value of c1-c2-c3-c4.

4 Detection of the Grid-Points
To localize the grid-points accurately and robustly, it is
essential to develop an effective grid-point detector. Inspired
by the cross template feature detector,16,17 an X-shape filter is
investigated for the grid-point detection in the proposed
structured light system. By filtering the image with the pro-
posed feature template, a responding map can be generated.
The centers of the shape to be detected can be found by
finding the local maxima in the map. In addition, adaptive
nonmaximum suppression method28 and twofold rotation
symmetry are also used to exclude the false points.

4.1 Design of the Grid-Point Detector

The position of the grid-point can be approximately
expressed by a binary matrix. Suppose the radius of the local
square centering at a grid-point is r, then the size of the
matrix is ð2rþ 1Þ × ð2rþ 1Þ. Accordingly, the (i; j) element
in the local matrix for P1 grid-point can be expressed as

EQ-TARGET;temp:intralink-;e003;326;257T1ði; jÞ ¼ ði− j≥ 0∧ iþ j≥ 0Þ∨ ði− j≤ 0∧ iþ j≤ 0Þ: (3)

Noted that the index of the central element in the matrix is
(0, 0). Similarly, the (i; j) element in the local matrix for P2

grid-point can be expressed as

EQ-TARGET;temp:intralink-;e004;326;193T2ði; jÞ ¼ ði− j≥ 0∧ iþ j≤ 0Þ∨ ði− j≤ 0∧ iþ j≥ 0Þ: (4)

An illustration of the proposed filters T1 and T2 is shown in
Fig. 3. If these two filters are applied directly to the captured
image, a normalized correlation29 will be required. However,
the process of normalization is time-consuming. To solve
the problem, a new template is designed by combining T1

and T2 as

EQ-TARGET;temp:intralink-;e005;326;96T0 ¼ T1 − T2: (5)

Fig. 1 The proposed binary geometrical pattern: (a) a part of the gen-
erated binary geometrical pattern and (b) indication of two types of
feature points, P1 and P2.
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With the new template, positive maximal points will be
the P1 grid-points, and the negative ones will be the P2

grid-points.
Considering that local areas centering at the grid-points

will suffer from deformation due to the projective distortion
and surface curvature, it is necessary to improve the robust-
ness of the template. In practice, if a point in the standard
local area centering at a grid-point is more distant to the
two diagonal lines, its corresponding point in the captured
image is less likely to change its property. Therefore, it is
reasonable to increase the weight of the template elements
that are distant from the two diagonal lines in the template.
Consequently, the weight can be set to be linearly propor-
tional to the distance, which can be formulated as
EQ-TARGET;temp:intralink-;e006;63;331

T3 ¼ ði ≥ 0 ∧ j ≥ 0Þ × ði − jÞ − ði ≤ 0 ∧ j ≥ 0Þ × ði − jÞ
þ ði > 0 ∧ j < 0Þ × ðiþ jÞ − ði < 0 ∧ j > 0Þ × ðiþ jÞ:

(6)

Figure 3 visually illustrates T3; the template T3 is normalized
by its radius. Suppose the captured image is I0, the first step
of grid-point detection is to adopt a Gaussian template to
filter I0 as a smoothing process

EQ-TARGET;temp:intralink-;e007;63;220I1 ¼ G ⊗ I0; (7)

where G is a Gaussian template. The next step is to use
the designed template to filter I1 as

EQ-TARGET;temp:intralink-;e008;63;167H ¼ T3 ⊗ I1; (8)

where H is the aforementioned responding map. Based on
the map, the positive maximum points and negative maxi-
mum points can be located. Then, the adaptive nonmaximum
suppression is applied to remove the false points separately.
The type of a grid-point can be decided by its sign in H.
Specifically, if its sign is positive it will be classified into

P1 type, otherwise P2 type. Although the grid-points can
be detected with the above operations, the false points
may still exist in the candidate points. Twofold rotation sym-
metry is displayed at the positions of true grid-points. This
can be used for confirmation of the grid-point features. For
each candidate point, a circular image region C was chosen,
and the coefficient of correlation between C and its 180 deg
rotation was applied to measure the strength of the twofold
symmetry at the candidate points as

EQ-TARGET;temp:intralink-;e009;326;386δ ¼
P

m

P
n ðCmn − C 0

mnÞ2P
m

P
n
ðCmn − C̄Þ2 ; (9)

where C is a circle region centered at a candidate point, C 0 is
created by rotating C with 180 deg, C̄ is the average image
intensity of C, and m and n indicate the local pixel index
inside C. The size of C is set to be a half of an element.
The above equation uses the mean of square difference
between corresponding pixels in C and C 0 to represent their
difference. The variance distribution inside C is used to
normalize the difference.

4.2 Multitemplate Filtering Strategy

Subject to the projective distortion and surface curvature, the
projected elements are usually enlarged or compressed.
Great distortions of the imaged pattern elements bring chal-
lenges to feature detection. To make the proposed feature
detector more flexible and robust, a multitemplate filtering
strategy is introduced, which can be performed with the
following steps.

1. Apply multiple templates with a sequence of sizes to
obtain the corresponding candidate point set.

2. Judge whether a candidate point is the true grid-point
or not according to the number of templates detecting
it. If the number is larger than a given threshold, the
point is considered the true grid-point.

Basic 0 1 α 1α + 2α 2 1α + 2α α+ 2 1α α+ +

Geometric 
Primitives 

Fig. 2 Geometric primitives of the projected pattern.

Fig. 3 Illustration of the filters T 1; T 2, and T 3: (a) local matrix of the filter T 1, (b) local matrix of the filter
T 2, and (c) local matrix of the filter T 3. The radius is set to 20.
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5 Deep Decoding of the Binary Structured Light
Image

The pattern elements in the captured image are often blurred
or distorted as shown in Fig. 4 because of some complex
factors, such as plentiful color, rich texture, surface dis-
continuity, specular reflection, and sharp change. It is very
challenging to detect and recognize the degraded pattern
elements for traditional feature detectors.19–25 Since the pat-
tern elements are designed as a rhombic shape in our pattern,
a graph can be generated by connecting four grid-points of
the pattern element. Then, by collecting abundant pattern
elements with blurring and distortions, an extensive training
dataset can be set up for convolutional neural networks.
Thus, the pattern elements can be recognized.

5.1 Extraction of Pattern Elements

Since the window size is only 2 × 2 and each grid-point is
formed by two pattern elements, two adjacent grid-points can
determine a unique window as well as the codeword, and
two such adjacent grid-points are named as a pair-point.
However, it is difficult to find a pair-point from the captured
image directly because of the distortion of the pattern ele-
ments. To address this problem, a topological network is
established. According to the sign of H that is computed
from Eq. (8), the grid-points can be classified into two types:
P1 (blue) and P2 (red), as shown in Fig. 5. A grid-point B is
surrounded by four different type grid-points C,D, E, and F.

For each P1 type grid-point, its nearest different type grid-
points can construct a quadrant. The same procedure is also
applicable to P2 type grid-points. With these quadrants,
a topological network of grid-points can be constructed.
From this network, the pair-point of each grid-point can be
deduced. For example, if the pair-point of A is to be found,
i.e., the grid-point B, the first step is to find out its different
type grid-point C in the upper right corner. Then, the lower
right different type grid-point of C is A’s pair-point B. In this
way, a topological network of all the grid-points can be
established.

Based on the established grid-point topological network,
each rhombic pattern element can be detected. Then, assume
that the target surface is relatively smooth, i.e., the surface
patch covered by one pattern element can be approximately
viewed as a planar patch. On this, the distorted and blurred
pattern element can be transformed into a normalized image
with four grid-points around it. This procedure can be
expressed as follows:
EQ-TARGET;temp:intralink-;e010;326;3052
64
upt
vpt
1

3
75 ¼

2
64
p11 p12 p13

p21 p22 p23

p31 p32 1

3
75
2
64
uim
vim
μ

3
75; (10)

where upt; vpt indicates the detected grid-points and
(uim; vim) denotes the four normalized image corner points
(0, 0), (a; 0), (a; b), and (0; b). Given four pairs of points
(upt; vpt), (uim; vim), the matrix of projective transformation
can be exactly solved. Then, the distorted pattern elements
can be projected to the normalized image via bilinear
interpolation.

5.2 Pattern Element Identification via Deep Neural
Networks

As the pattern elements in the captured image are usually
affected by various surface factors, it is necessary to collect
enough labeled data for the training of deep neural networks.
As a result, eight geometrical pattern elements are projected
onto the experimental targets, respectively. The experimental
targets include low-contrast balloon, dummy model, brilliant

Fig. 4 Sample images of the pattern elements with blurring and distortion.

Fig. 5 A topological map of various types of grid-points.
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piggy, colorful cover, dark box, textured paper, real human
face, and so on. Yet, the database is still small because the
pattern numbers within an image are limited. It is necessary
to augment the database to achieve higher discriminating
power. Our operation is described as follows:

1. Sharpness of the training samples is calculated, and
Gaussian noise is added in high-contrast samples.

2. Random white/black lines are added to the samples to
simulate the occlusion problem.

3. Small affine transformation is applied to simulate
small localization error of grid-points.

The number of original training samples is about 80,000.
With the above operations, the number of training samples
can be augmented to more than 300,000. Since the illumi-
nation and contrast variations are varied for different regions
in the captured image, the typical principal component analy-
sis (PCA) whitening procedure in the deep neural network is
adopted to eliminate the pixel correlation and to normalize
the illumination deviation. First, the covariance matrix of
the training data is computed as

EQ-TARGET;temp:intralink-;e011;63;357

X
¼ 1

m

Xm
i¼1

ðxi −ϖÞðxi −ϖÞT; (11)

where is the i’th training data and ϖ denotes the average
value of training data. Then, the singular value decomposi-
tion of covariance matrix is conducted. The data are rotated
and normalized to unit variance in every dimension

EQ-TARGET;temp:intralink-;e012;63;264xrot;i ¼
UTðx −ϖÞffiffiffiffi

λi
p ; (12)

where U indicates the PCA rotation matrix and is the singu-
lar value of the training data matrix.

After collecting the training dataset, the classification of
pattern elements can be conducted. Since the pattern classi-
fication task in our work is similar to the handwritten digit
recognition problem, and the Lenet-530 has more excellent
performance in dealing with such a problem than traditional
shallow architectures, e.g., multilayer perceptron (MLP) and
support vector machine), in this work, the Lenet-5 is adopted
to classify the pattern elements. The architecture of Lenet-5
is shown in Fig. 6. The network architecture is composed of
two convolutional subsampling layers (C1-6 maps with 5 × 5
kernel and 2 × 2 max pooling, C2-16 maps with 5 × 5 and
2 × 2 max pooling) and two full-connected layers (128 and

84 neuron units), and the final class probability is generated
by radial basis function. With the convolutional neural net-
works, high recognition rate can be obtained in the decoding
algorithm.

5.3 Optimization of Decoding Result

Subject to the surface color or textures, it is inevitable that
some pattern elements are erroneously identified. Thus,
the false correspondences emerge after conducting window
matching.14 To prune the false correspondences, an optimi-
zation mechanism that includes two decoding reliability
terms is introduced as follows.

The first decoding reliability term is calculated based on
epipolar constraint.31 Suppose Oc andOp express the optical
centers of the camera and projector, respectively, and Xc and
Xp denote two corresponding points on the camera and pro-
jector image planes, respectively. According to the epipolar

constraint principle, the vectors OpXp
���!

, OcXc
���!

, and OpOc
���!

are
in the same plane, which can be expressed as follows:

EQ-TARGET;temp:intralink-;e013;326;381OpXp
���!

· ½OpOc
���!

×OcXc
���!� ¼ 0: (13)

The intrinsic parameters Oc and Op and rotation and trans-
lation parameters R and T can be acquired with the structured
light system calibration method. By expressing Xc, Xp with
the homogeneous form X̄c and X̄p, respectively, the follow-
ing equation can be obtained:

EQ-TARGET;temp:intralink-;e014;326;288X̄p · ðT × RX̄cÞ ¼ 0: (14)

The epipolar line l ¼ ða; b; cÞT can be expressed as

EQ-TARGET;temp:intralink-;e015;326;244l ¼ T × RX̄c ¼ ½T� · ðRX̄cÞ: (15)

For Xp, it can be precisely localized in the projector image
plane. For Xcðu; vÞ, its distance to the epipolar line can be
calculated as

EQ-TARGET;temp:intralink-;e016;326;178d ¼ jauþ bvþ cjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : (16)

If dc is larger than a given threshold value, the grid-point is
viewed as a wrong decoding point.

The second term is computed based on neighboring
constraint. Suppose (Xc0; Yc0) is a grid-point in the camera
image, its adjacent grid-point (Xci; Yci), i ¼ 1: : : n can be
found in a predefined local image region. Since the

Fig. 6 The adopted network architecture for the classification of binary geometrical pattern elements.
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codeword of several adjacent grid-points is associated, their
corresponding points (Xp0; Yp0) and (Xpi; Ypi), i ¼ 1: : : n
can also be found in the projector pattern. Sequentially,
the correlation degree of between one grid-point and its
neighboring grid-points can be calculated as

EQ-TARGET;temp:intralink-;e017;63;530σi ¼ e−
½ðXPi−XP0Þ2þðYPi−YP0Þ2 �

9 ; i ¼ 1: : : n: (17)

If σi is a relative small value, (Xp0; Yp0) has a long distance
to its neighboring grid-point (Xpi; Ypi), i ¼ 1: : : n in the
projector pattern. That means decoding errors occur at the
point (Xp0; Yp0) or (Xpi; Ypi), i ¼ 1: : : n. Assume all neigh-
boring grid-points (Xpi; Ypi), i ¼ 1: : : n have the same influ-
ence on the point (Xp0; Yp0), the primary decoding reliability
of (Xc0; Yc0) can be expressed as

EQ-TARGET;temp:intralink-;e018;63;417ϕ ¼
Xn
i¼1

σi∕n: (18)

Each decoded grid-point can be associated with a primary
decoding reliability . To improve the overall decoding reli-
ability, for the adjacent points (Xpi; Ypi), i ¼ 1: : : n of
(Xp0; Yp0), the decoding reliability of can be calculated as

EQ-TARGET;temp:intralink-;e019;63;325Φ ¼
Xn
i¼1

ϕiσi∕
Xn
i¼1

ϕi: (19)

According to above decoding reliability terms, most of the
false correspondences can be identified and removed.

6 Experiments and Results
The experimental platform consisted of a projector with a
resolution of 1920 × 1080 pixels (Benq W1060) and a cam-
era with a resolution of 5184 × 3456 pixels (Canon EOS
700D with EFS 18- to 135-mm lens), as shown in Fig. 7.
The working distance of the system is about 730 mm. In
the projected pattern, the size of each pattern elements is
16 × 16 pixels. The collected image data are processed on
a computer with Quad-Core processors (Intel Xeon E5-
1620 3.60 GHz) and 8-GB RAM (DDR3 1600 MHz).
The structured light system is calibrated with the method
in Ref. 32. The calibration procedure mainly includes five
steps. A pattern with known dimensions on the liquid crystal
display (LCD) panel is first shown to the camera and imaged.
Zhang’s method33 is then adopted for camera calibration.
By introducing the homography constraint between camera
image plane and calibration plane, the position of the
calibration plane with respect to the camera is determined.
With the spatial position and orientation of the LCD
panel kept still, a known pattern is projected onto the
LCD panel by the projector. The reflection from the panel
is then imaged by the camera, and the image data are
used to calibrate the projector;thus, the system calibration
is accurately completed.

After system calibration, the following three experiments
are conducted on the system to test the feasibility, precision,
and robustness of the proposed method. The first experiment
is to illustrate the proposed feature detection algorithm with
a spherical surface. Then, the classification accuracy and
measurement precision of our method are evaluated. Finally,
some complex objects with plentiful color, rich texture, or
surface discontinuity are selected to test the robustness of
our method.

6.1 Test of Feature Detection

A spherical surface is chosen as the target to evaluate the
proposed feature detection algorithm. With the X-shape
template method, the grid-points can be detected as shown
in Fig. 8(a). It is evident that there are some false points

Fig. 7 The experimental structured light system setup.

Fig. 8 Evaluation of the proposed grid-point detection method: (a) detection result with the X-shape tem-
plate method, (b) detection result with twofold rotation symmetry, (c) detection result in the saturated
image area, and (d) decoding performance of small window size of 2 × 2.
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among the detected points. It is because the feature detector
is based on a nonmaximum suppression method. Figure 8(b)
shows the result after using the rotation symmetry-based
feature detector. It is obvious that most of the false points
are removed. However, when the object surface owns high
reflectance, the false points are hardly removed, as shown in

Fig. 8(c). This is reasonable because the rotation symmetry
with 180 deg is perfect in the C region. In addition, the
pattern information is not absolutely clear in this saturated
area. For this case, the small window size can demonstrate
its advantage. Compared with a larger window size of 2 × 3
or 3 × 3, the small window size of 2 × 2 used in this paper

Fig. 9 Images of grid-point detection with three different detection methods: (a) detection result with the
proposed single-template detection method, (b) detection result with the detection method in Refs. 16
and 17, and (c) detection result with the proposed multitemplate detection method.

Fig. 10 Images of feature detection on different zero-mean Gaussian noises. The standard deviations of
Gaussian noise from (a) to (h) are set to 0, 0.05, 0.10, 0.16, 0.20, 0.26, 0.33, and 0.41, respectively.
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can be less sensitive to the surface condition. In other words,
the decoding result can be less affected by this saturated
image area, as shown in Fig. 8(d).

To prove the superiority of the proposed multitemplate
feature detection algorithm, the method in Refs. 16 and
17 and single-template feature detection algorithm are com-
pared. Figure 9 displays the grid-point detection results with
these detection methods. It is evident that the number of
detected grid-points with the multitemplate feature detection
method is larger than that with other two methods. This
indicates that the multitemplate feature detection method
has better performance than the others. It is reasonable

because the multitemplate feature detection method can pro-
vide a suitable template for grid-point detection in different
regions, while the other two methods only have one template
for grid-point detection in the region within a fixed surface
curvature. To evaluate the robustness of our feature detection
method, the extra Gaussian noise is added into the captured
image. As shown in Figs. 10(a)–10(j), the standard devia-
tions of Gaussian noise are set to 0, 0.05, 0.10, 0.16,
0.20, 0.26, 0.33, and 0.41, respectively. From these pictures,
it can be seen that most of the grid-points can be successfully
detected when the standard deviation of Gaussian noise is
less than 0.20, and the rhombic shape can also be recognized

Fig. 11 Robustness evaluation of the proposed multitemplate grid-point detector. (a) The number of
missing points with respect to the variance of Gaussian noise and (b) the number of false points
with respect to the variance of Gaussian noise.

Fig. 12 3-D reconstruction of a standard plane: (a) the target, (b) result of grid-detection, (c) 3-D points,
(d) result of depth reconstruction, and (e) map of depth error.
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roughly. For each detected point in the noise-free image, look
for its nearest detected point in a noise image. If the distance
between them is larger than 5 pixels, then the point is
regarded as a missing point. If the distance between them
is larger than 3 pixels, then the point is viewed as a false
point. Figure 11 shows the numbers of missing points and
false points in a noise image with respect to the variance
of Gaussian noise. It is obvious that, with the increase of
Gaussian noise, the number of missing points and false
points in the given area increase, the missing rate is about
3.22%, and the false rate is about 3.74% when the standard
deviation of Gaussian noise is 0.20. The experimental results
show that the proposed multitemplate grid-point detection
method has excellent robustness to image noises.

6.2 Evaluation of Classification Accuracy and
Measurement Precision

As the objective of classifying the pattern elements is to iden-
tify their corresponding codeword, one way of evaluating
the performance of our classification method is to calculate
the classification accuracy. In the implementation, the leave-
one-out method is adopted to compute the average accuracy
by splitting the training dataset into 10 folds. Stochastic gra-
dient descent is employed for the training with mini-batch
100. Weight decaying and dropout probability of 0.5 in the
last full-connected layers are also utilized in the recognition.
The MLP is tested with sigmoid actuation, the Lenet-5
network, and Lenet-5 on augmented training database.
The experimental result shows that Lenet-5 net can obtain

Fig. 13 3-D reconstruction of a standard sphere: (a) the target, (b) result of grid-detection, (c) 3-D points,
(d) result of depth reconstruction, and (e) map of depth error.

Fig. 14 Four measured objects: (a) colorful paper, (b) colorful bag, (c) colorful and textured hat, and
(d) textured paper.
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a classification accuracy of about 97.9%; in comparison,
the MLP method get an accuracy of about 95.5%. With
the augmented training database, the classification accuracy
of Lenet-5 net can be slightly improved to 98.7%.

To evaluate the 3-D reconstruction precision, the standard
plane and sphere with the radius of 81.5 mm are selected
as the target objects as shown in Figs. 12(a) and 13(a),
respectively. Using the proposed pattern decoding method,

the correspondences for these two objects can be obtained.
Then, the point-clouds can be transformed from the corre-
spondences through Delaunay triangulation, as shown in
Figs. 12(b) and 13(b). Because the obtained 3-D points,
as shown in Figs. 12(c) and 13(c), are not too dense, the
bilinear interpolation method is adopted to get dense point-
clouds for these two objects. With the 3-D information in
Figs. 12(d) and 13(d), a plane and a sphere can be fitted

Fig. 15 Results of grid-point detection for all the measured objects: (a) colorful paper, (b) colorful bag,
(c) colorful and textured hat, and (d) textured paper.

Fig. 16 3-D point-clouds for all the measured objects: (a) colorful paper, (b) colorful bag, (c) colorful and
textured hat, and (d) textured paper.
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with the least square fitting method, respectively. The mea-
sured radius of the sphere is about 81.3124 mm. Based on
the fitted plane and sphere, the depth errors for these two
regular objects can be obtained, as shown in Figs. 12(e)
and 13(e). Thus, the mean errors and standard deviations
can be easily computed. The results show that the mean
error and standard deviation of the plane are 0.1144 and
0.0917 mm, respectively, and those of the sphere are 0.2410
and 0.2008 mm, respectively.

6.3 Three-Dimensional Reconstruction of Complex
Surfaces

Since the surface color and texture often affect the recon-
struction quality for spatial coded structured light method,
several complex objects are chosen to test the performance of

our method in this section. The first two objects in Figs. 14(a)
and 14(b) are a paper and a bag; they have plentiful color.
The third one in Fig. 14(c) is a hat with light color and weak
texture. The forth object in Fig. 14(d) has a rich texture.
Generally, it is difficult to obtain the 3-D information of
the objects with rich color or complex texture for conven-
tional color-based structured light method because the sur-
face color or texture always affects feature detection and
pattern decoding. However, the binary geometrical pattern
is not sensitive to the surface color and texture, so the feature
points can still be clearly distinguished. Figure 15 shows the
results of grid-point detection for all the measured objects.
These results demonstrate that the proposed multitemplate
feature detection algorithm has excellent robustness to the
surface color and texture. With the proposed decoding
method, the depth information can be acquired. Figure 16

Table 1 Measurement results of four complex objects.

Objects Working distance (mm) Measurement area (mm2) Number of 3-D points Measurement time (ms)

Colorful paper 750 28,000 5835 3281

Colorful bag 735 20,900 3873 2876

Colorful and textured hat 720 19,400 3789 2592

Textured paper 733 30,400 5828 3134

Note: Measurement area denotes the actual area of the target and measurement time denotes the computation time of grid-point detection and
pattern decoding without the help of GPU computing.

Fig. 17 Results of depth reconstruction for all the measured objects: (a) colorful paper, (b) colorful bag,
(c) colorful and textured hat, and (d) textured paper.
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shows the 3-D point-clouds for all the measured objects.
It is clear that the point-clouds in the colorful and textured
regions are very complete. It is because the pattern elements
in these regions can be correctly decoded. Table 1 displays
the measurement results for these four objects. According to
the experimental data in this table, it can be estimated that
there are about 19 3-D points in the measurement area of
100 mm2 when the working distance is about 730 mm, and
the computation time of grid-point detection and pattern
decoding is about 3 s in the Visual Studio 2013 platform
without the help of graphics processing unit (GPU) comput-
ing. The results of depth reconstruction after using the bilin-
ear interpolation method are shown in Fig. 17. These results
demonstrate that our method has great performance in deal-
ing with surface color and texture.

The last experiments are conducted on a real human chest
and face, as shown in Figs. 18(a) and 19(a), respectively.
Figures 18(b) and 19(b) show the results of grid-point detec-
tion for these two targets. It is evident that the result of grid-
point detection is great for the human chest, while it is
difficult to detect the grid-points in the eyebrows, nose, and
mouth areas for the human face. It is reasonable because the
reflectivity in the eyebrow areas is too low and the curvature
in the nose and mouth areas is too high. By applying the
proposed decoding method, most of the pattern elements
can be correctly recognized for these two targets when
four grid-points around them could be accurately extracted.
However, it is hard to correctly identify some pattern ele-
ments in the special regions. For example, in the eyebrows
areas, the pattern elements are totally fused with the dark
eyebrows. In the nose and mouth areas, there exist some spe-
cial phenomena, such as sharp changes and surface disconti-
nuities. These phenomena usually make the coding window

broken. After using the bilinear interpolation method, the
complete depth reconstruction can be achieved as shown in
Figs. 18(c) and 19(c); thus, the 3-D model of the chest and
face can be obtained as shown in Figs. 18(d) and 19(d),
respectively.

7 Conclusions
Encoding and decoding are two major concerns involved in
a spatial coding structured light system. This paper presents
a robust binary coding scheme and a deep decoding method
for single-shot shape acquisition. First, the binary rhombic
features are chosen as the pattern elements to make the pro-
jected pattern robust to surface color and texture, and eight
binary geometrical shapes are designed as the coding ele-
ments inserting into the white rhombic shapes to generate
the projected pattern with a coding window size of 2 × 2.
Second, a multitemplate-based feature detection method
is developed for the extraction of the grid-points in the
captured image. Based on the extracted grid-points, a topo-
logical network is established to separate the geometrical
pattern elements from the structured light image. In the
decoding stage, a training dataset that contains more than
300,000 samples is first constructed. Then, the deep neural
network is applied for the classification of pattern elements.
Finally, to refine the decoding results, an error correction
algorithm is introduced based on the epipolar and neighbor-
ing constraints.

The adoption of a binary pattern element makes the
method more robust to surface colors. The use of a deep
neural network makes the decoding stage more accurate to
surface distortion and image blurring. Extensive experiments
were conducted to evaluate the proposed method from the
aspects of classification accuracy, measurement precision,

Fig. 18 3-D reconstruction of human chest: (a) the target, (b) result of grid-point detection, (c) result of
depth reconstruction, and (d) 3-D model.

Fig. 19 3-D reconstruction of human face: (a) the target, (b) result of grid-point detection, (c) result of
depth reconstruction, and (d) 3-D model.
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and reconstruction quality. Future work will focus on how to
apply the proposed method to the industrial applications
with the help of GPU computing and high-speed cameras,
for example, the 3-D inspection of fast moving or changing
surfaces, such as the rotating blades, high-frequency vibrat-
ing films, and so on.
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