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Abstract. This paper develops wave-optics simulations which explore the estimation accuracy of digital-holo-
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along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the diffraction-
limited sampling quotient and signal-to-noise ratio. Such results will allow the reader to assess the number of
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1 Introduction
Digital-holographic detection shows distinct potential for
applications that involve wavefront sensing in the presence
of deep turbulence. As shown in Fig. 1, the use of digital-holo-
graphic detection in the off-axis image plane recording geom-
etry (IPRG) provides access to an estimate of the amplitude
and wrapped phase (i.e., the complex field) that exist in the
exit-pupil plane of the imaging system. From the complex-
field estimate, we can then pursue a multitude of applications
such as atmospheric characterization,1 free-space laser com-
munications,2 and adaptive-optics phase compensation.3

The published literature often makes use of digital-
holographic detection in the off-axis pupil plane or on-
axis phase shifting recording geometries;4 however, in
terms of simplicity, the off-axis IPRG shown in Fig. 1 offers
a nice combination of functionality.5 For instance, when con-
sidering digital-holographic detection for applications that
involve deep-turbulence wavefront sensing, the off-axis
IPRG allows for the following multifunction capabilities.

• Incoherent imaging through passive illumination of an
object.

• Coherent imaging through active illumination of an
object.

• Digital-holographic detection through the interference
of a signal with a reference.

• Estimation of the amplitude and wrapped phase via a
two-dimensional (2-D) inverse fast Fourier transform

(IFFT) of the hologram irradiance recorded on the
focal-plane array (FPA).

From a beam-control stand point,6 the multifunction capa-
bilities listed above allow for a robust user interface which is
not limited to wavefront sensing in the presence of an unre-
solved cooperative object (cf. Fig. 1). In practice, digital-
holographic detection allows for the estimation of the com-
plex field in the presence of an extended noncooperative
object via speckle averaging and image sharpening algo-
rithms or the angular diversity created by using multiple
transmitters and receivers.7–18 This versatility allows for
long-range imaging,19 three-dimensional imaging,20 laser
radar,21 and synthetic-aperture imaging.22 In general, the
applications are abundant.23,24

With wavefront-sensing applications in mind, the pres-
ence of deep turbulence tends to be the “Achilles’ heel”
to modern-day solutions [e.g., the Shack–Hartmann wave-
front sensor (WFS),25 which provides access to localized
wavefront slope estimates]. This is said because coherent-
light propagation through deep turbulence causes scintilla-
tion, which manifests as time-varying constructive and
destructive interference between the object and receiver
planes. The log-amplitude variance, which is also referred to
as the Rytov number, gives a measure for the strength of the
scintillation experienced by the coherent light. As the log-
amplitude variance grows above ∼0.25 (for a spherical
wave), total-destructive interference gives rise to branch
points in both the coherent light transmitted to the object
and the coherent light received from the object. These branch
points add a rotational component to the phase function that
traditional-least-squares phase reconstruction algorithms can-
not account for within the analysis. As such, the rotational*Address all correspondence to: Mark F. Spencer, E-mail: mark.spencer.6@us.

af.mil
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component is often referred to as the “hidden phase” due to
the foundational work of Fried.26

In converting local wavefront slope estimates into
unwrapped phase, the hidden phase gets mapped to the null
space of traditional-least-squares phase reconstruction calcu-
lations. In turn, the unwrapped phase (i.e., the irrotational
component) does not contain the branch points and associ-
ated branch cuts, which are unavoidable 2π phase disconti-
nuities within the phase function.27 Note that branch-point-
tolerant phase reconstruction algorithms do exist within the
published literature;28–31 however, the performance of these
algorithms needs to be quantified in hardware.32

In addition to causing scintillation, the horizontal, low-
altitude, and long-range propagation paths that are reminis-
cent of deep-turbulence conditions can also lead to increased
extinction. This outcome results in reduced transmittance due
to molecular and aerosol absorption and scattering all along
the propagation path.33,34 In turn, we can concisely say that
scintillation and extinction simply lead to low signal-to-
noise ratios (SNRs) when performing deep-turbulence wave-
front sensing. This is said because scintillation and extinction
result in total-destructive interference and light-efficiency
losses, respectively, over the field of view (FOV) of the WFS.

Provided enough signal, there are interferometric wave-
front-sensing techniques that perform well in the presence
of deep turbulence (e.g., the point-diffraction and self-refer-
encing interferometers,35,36 which create a reference by
amplitude splitting and spatially filtering the received sig-
nal); however, in using these techniques, we cannot realisti-
cally approach a shot-noise-limited detection regime. In turn,
digital-holographic detection offers a distinct way forward
to combat the low SNRs caused by scintillation and extinc-
tion. In using digital-holographic detection, we can set the
strength of the reference so that it boosts the signal above
the read-noise floor of the FPA.

This paper explores the estimation accuracy of digital-
holographic detection in the off-axis IPRG for wavefront
sensing in the presence of deep turbulence and detection

noise. As shown in Fig. 1, the analysis uses an ideal
point-source beacon in the object plane to represent the
active illumination of an unresolved cooperative object. The
resulting spherical wave propagates along a horizontal
propagation path through the deep-turbulence conditions
that are of interest in this paper. In what follows, Sec. 2
reviews the setup and exploration of the problem space
described above in Fig. 1. Section 3 then provides results
with discussion, and Sec. 4 concludes this paper. Before
moving on to the next section, it is important to note that a
lot of the simulation framework used in this paper originates
from an earlier conference paper by Spencer et al.37 It is our
belief that this paper greatly extends upon the work con-
tained in Ref. 37 by including the deleterious effects of
detection noise within the analysis.

2 Setup and Exploration
This section discusses the setup and exploration needed for a
series of computational wave-optics experiments which
identify the performance of digital-holographic detection
in the off-axis IPRG for wavefront sensing in the presence
of deep turbulence and detection noise. The analysis uses
many of the principles taught by Schmidt and Voelz in rel-
atively recent SPIE Press publications.38,39 In addition, the
analysis uses MATLAB® with the help of AOTools and
WaveProp.40,41 The Optical Sciences Company (tOSC) cre-
ated these robust MATLAB® toolboxes specifically for
wave-optics simulations of this nature.

As shown in Fig. 1, the goal for the following analysis is
to model digital-holographic detection in the off-axis IPRG
for the purposes of deep-turbulence wavefront sensing. With
Fig. 1 in mind, we need to further define the experimental
parameter space. To help orient the reader, Fig. 2 pictorially
shows the various planes of interest within the analysis. Note
that the entrance-pupil plane effectively collimates the propa-
gated light from the object plane, whereas the exit-pupil
plane effectively focuses the propagated light to form the
image plane at focus.

Fig. 1 A description of digital-holographic detection in the off-axis IPRG. Here, a highly coherent master-
oscillator (MO) laser is split into two optical trains. The first optical train actively illuminates an unresolved
cooperative object. Analogously, the second optical train creates an off-axis local oscillator (LO), so that
tilted-spherical-wave illumination is incident on an FPA. The spherical-wave reflections from an unre-
solved cooperative object then back propagate through deep-turbulence conditions, and upon being
imaged onto the FPA coherently interfere with the tilted-spherical-wave illumination from the off-axis
LO. In turn, the recorded interference pattern on the FPA is known as a digital hologram, and upon taking
a 2-D IFFT, we can obtain an estimate of the wrapped phase (and amplitude) that exists in the exit-pupil
plane of the imaging system.
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2.1 Model Setup and Exploration

Provided Fig. 2 and Appendix A, we can determine the
2-D Fourier transformation of the hologram photoelectron
density DHðx2; y2Þ as
EQ-TARGET;temp:intralink-;e001;63;541
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in units of photoelectrons (pe). This result is remarkably
physical, as the sampling theorem dictates that a sampled
function becomes periodic upon finding its spectrum.42,43

Through 2-D convolution with the separable comb functions
and the convolution-sifting property of the impulse function,
the terms contained within square brackets in Eq. (1) are
repeated at intervals of λf∕xs and λf∕ys along the x and
y axes, respectively. Thus, the final 2-D convolution with
the separable narrow sinc functions serves to smooth out
these repeated terms, whereas the amplitude modulation with
the separable broadened sinc functions serves to dampen out
these repeated terms.

To help simplify the analysis to a case that we can easily
simulate using N × N computational grids, let us assume that
the FPA has adjacent square pixels, so that xs ¼ ys ¼
wx ¼ wy ¼ wp. In so doing, we can rewrite Eq. (1) in
terms of the diffraction-limited sampling quotient QI , where

EQ-TARGET;temp:intralink-;e002;63;164QI ¼
λf

D1wp
: (2)

Physically, there are multiple ways to think about the rela-
tionship given in Eq. (2). One way is to say that the diffrac-
tion-limited sampling quotientQI is a measure of the number
of FPA pixels across the diffraction-limited half width of the
incoherent point-spread function (PSF). Remember that for

linear shift-invariant imaging systems, the incoherent PSF is
the irradiance associated with an imaged point source [i.e.,
the squared magnitude of Eq. (25) in Appendix A].38

Another way to think about the diffraction-limited sampling
quotient, QI , is to say that it is a measure of the number of
diffraction angles, λ∕D1, per pixel FOV, wp∕f, assuming
small angles. In turn, the relationship given in Eq. (2) allows
us to vary the sampling with the FPA pixels.

Using Eq. (2), we can rewrite Eq. (1) in terms of the dif-
fraction-limited sampling quotient QI , such that
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(3)

Here, QID1 ¼ λf∕wp is the side length of the N × N com-
putational grid in the Fourier plane. Note that as N → ∞ [cf.
Eq. (37) in Appendix A], we can make use of the convolu-
tion-sifting property of the impulse function and neglect the
final 2-D convolution in Eq. (3). Accordingly, for large N the
smoothing becomes minimized; however, for small N the
smoothing becomes more pronounced. Let us assume that
xR ¼ yR ¼ QID1∕4, so that the last two terms within the
square brackets in Eq. (3) shift diagonally. When QI ≥ 4,
the last two terms no longer overlap with the first two
terms which are centered on axis. Correspondingly, when
2 ≤ QI < 4, the last two terms are still resolvable within
the side length of the N × N computational grid but overlap
with the first term. Provided thatN is constant, this latter case
allows for us to obtain more samples across the exit-pupil
diameter D1, which in turn minimizes the smoothing caused
by the final 2-D convolution in Eq. (3). If the amplitude of
the reference is set to be well above the amplitude of the

Fig. 2 A description of the experimental parameter space used within the computational wave optics
experiments.
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signal (i.e., jARj ≫ jASj), then this functional overlap becomes
negligible—a fundamental result obtained in Ref. 37.

Provided Eq. (3), we must use a window function
wðx1; y1Þ to obtain an estimate ÛSðx1; y1Þ of the desired sig-
nal complex field USðx1; y1Þ [cf. Fig. 2 and Eq. (26) in
Appendix A]. Specifically,

EQ-TARGET;temp:intralink-;e004;63;686ÛSðx1; y1Þ ¼ wðx1; y1ÞD̃H

�
−x1
λf

;
−y1
λf

�
: (4)

In using Eq. (4), we must satisfy Nyquist sampling with the
FPA pixels,42 so that the repeated terms within Eq. (3) do not
overlap and cause significant aliasing. As such, the Nyquist
rate isQID1 ¼ λf∕wp and the Nyquist interval is 1∕QID1 ¼
wp∕λf when xR ¼ yR ¼ QID1∕4. Assuming that N → ∞,
QI ≥ 2, jARj ≫ jASj, and
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Eq. (4) simplifies, such that

EQ-TARGET;temp:intralink-;e006;63;499ÛSðx1; y1Þ ≈ USðx1; y1Þ: (6)

In turn, there is a distinct trade space found in using Eq. (3).
We will explore this trade space in the presence of deep tur-
bulence and detection noise in the analysis to come.

Before moving on to the simulation setup and exploration,
it is informative to develop a closed-form expression for the
analytical SNR. For this purpose, we can approximate the
estimated signal power P̂S as

EQ-TARGET;temp:intralink-;e007;63;389P̂S ≈ m̄Rm̄S; (7)

where

EQ-TARGET;temp:intralink-;e008;63;345m̄R ¼ ηT
hν

jARj2w2
p (8)

is the mean number of reference photoelectrons detected per
pixel and

EQ-TARGET;temp:intralink-;e009;63;287m̄S ¼
ηT
hν

jASj2w2
p (9)

is the mean number of signal photoelectrons detected per
pixel. Now we need to account for the estimated noise
power P̂N.

Pixel to pixel, the FPA creates photoelectrons via sta-
tistically independent (i.e., delta correlated) and zero-mean
random processes, so that the variance σ2 is equivalent to
the noise power. Here,

EQ-TARGET;temp:intralink-;e010;63;174σ2 ¼ m̄S þ m̄R þ m̄B þ σ2C; (10)

where m̄B is the mean number of photoelectrons associated
with the background illumination (e.g., from passive illumi-
nation from the sun) and σ2C is the variance associated with
pixel read noise (i.e., the FPA circuitry). In writing Eq. (10),
note that we assume the use of a Poisson-distributed random
process for the various sources of illumination that are
incident on the FPA. In so doing, the mean number of

photoelectrons is equal to the variance of the photo-
electrons.44,45 Also note that we assume the use of a
Gaussian-distributed random process for the various sources
of pixel read noise in the FPA.

Provided Eq. (10), the estimated noise power P̂N follows
from the noise variance σ2 as

EQ-TARGET;temp:intralink-;e011;326;686P̂N ¼ Rσ2; (11)

where

EQ-TARGET;temp:intralink-;e012;326;643R ¼ π

4Q2
I

(12)

is the ratio of the area associated with the window function
wðx1; y1Þ to the area associated with the side length QID1 ¼
λf∕wp of the N × N computational grid in the Fourier plane.
The analytical SNR then follows from Eqs. (7)–(12) as

EQ-TARGET;temp:intralink-;e013;326;562SNR ¼ P̂S

P̂N

¼ 4Q2
I

π

m̄Sm̄R

m̄S þ m̄R þ m̄B þ σ2C
: (13)

Wewill validate the use of this closed-form expression in the
simulation setup and exploration to follow.

2.2 Simulation Setup and Exploration

For all of the computational wave-optics experiments pre-
sented throughout this paper, we used N × N computational
grids. For example, to simulate the propagation of an ideal
point-source beacon though deep-turbulence conditions, we
used 4096 × 4096 grid points and the split-step beam propa-
gation method (BPM).38–41 WaveProp and AOTools made
use of a very narrow sinc function with a raised-cosine
envelope to simulate an ideal point-source beacon. The sam-
pling of this function and the object-plane side length was
automatically set, so that after propagation from the object
plane to the entrance-pupil plane, the illuminated region
of interest was half the user-defined, entrance-pupil plane
side length (cf. Fig. 2). Put another way, the simulations
satisfied Fresnel scaling [i.e., N ¼ S1S2∕ðλZÞ, where
S1 ¼ 16D1 and S2 are the object and entrance-pupil side
lengths, respectively]. Altogether, this provided an entrance-
pupil plane side length of D1 after cropping out the center
256 × 256 grid points. As mentioned previously, using ideal
thin lenses the entrance-pupil plane effectively collimated the
propagated light from the object plane, whereas the exit-
pupil plane effectively focused the propagated light to
form the image plane at focus (cf. Fig. 2).

As listed in Table 1, we used five different horizontal-path
scenarios to create the deep-turbulence trade space of interest
in this paper. Provided the index of refraction structure
parameter C2

n, we determined the log-amplitude variances
for a plane wave, σ2χ−pw, and a spherical wave, σ2χ−sw,
using the following equations:34

EQ-TARGET;temp:intralink-;e014;326;157σ2χ−pw ¼ 0.307k7∕6Z11∕6C2
n (14)

and

EQ-TARGET;temp:intralink-;e015;326;113σ2χ−sw ¼ 0.124k7∕6Z11∕6C2
n; (15)

where k ¼ 2π∕λ is again the angular wavenumber, λ ¼ 1 μm
is the wavelength, and Z ¼ 7.5 km is the propagation
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distance (cf. Fig. 2). In addition, we determined the coher-
ence diameters for a plane wave, r0−pw, and a spherical wave,
r0−sw, using the following equations:34

EQ-TARGET;temp:intralink-;e016;63;529r0−pw ¼ 0.185

�
λ2

ZC2
n

�
3∕5

(16)

and

EQ-TARGET;temp:intralink-;e017;63;473r0−sw ¼ 0.33

�
λ2

ZC2
n

�
3∕5

: (17)

Based on Eqs. (14)–(17), the computational wave-optics
experiments used 10 phase screens with equal spacing to
simulate the propagation of an ideal point-source beacon
through deep-turbulence conditions using the BPM. This
choice provided low percentage errors (less than 0.5%)
between the continuous and discrete calculations using
Eqs. (14)–(17).38

Propagation to the image plane from the exit-pupil plane
occurred via a three-step process using WaveProp and
AOTools: (1) by doubling the number of N × N grid points
in the exit-pupil plane with a side length of D1 from 256 ×
256 grid points to 512 × 512 grid points via zero padding;
(2) numerically solving the convolution form of the Fresnel
diffraction integral via 2-D FFTs; and (3) cropping out the
center 256 × 256 grid points, so that f ¼ QID2

1∕ð256λÞ (i.e.,
the image plane side length was equal to the exit-pupil plane
side length). As shown in Fig. 3, by varying the diffraction-
limited sampling quotient, QI , the number of FPA pixels
across the diffraction-limited imaging bucket, D2, also var-
ied. Here, D2 ¼ 2.44λf∕D1 with D1 ¼ 30 cm.

For all of the computational wave-optics experiments pre-
sented in this paper (including those contained in Fig. 3), we
set the pixel read-noise standard deviation to 100 pe and the
pixel well depth to 100 × 103 pe. To simulate different SNRs
[cf. Eq. (13)], we neglected to include background-illumina-
tion effects, and we set the amplitude of the reference jARj to
produce a mean number of reference photoelectrons detected
per pixel equal to 25% of the pixel well depth (i.e., m̄B ¼ 0
and m̄R ¼ 25 × 103 pe) [cf. Eq. (8)]. We then scaled the
amplitude of the signal jASj to have the appropriate mean
number of signal photoelectrons m̄S detected per pixel [cf.
Eq. (9)]. As such, the standard deviation of the shot noise

varied within the simulations and was the dominate source
of detection noise.

Remember that in the IPRG (cf. Figs. 1 and 2), digital-
holographic detection provides access to an estimate of
the amplitude and wrapped phase (i.e., the complex field)
that exist in the exit-pupil plane of the imaging system.
We obtained access to this complex-field estimate using
the following steps: (1) within the image plane, interfering
the signal with the reference [cf. Eq. (29) in Appendix
A]; (2) recording the hologram irradiance on the FPA to cre-
ate a digital hologram with Poisson-distributed shot noise
and Gaussian-distributed pixel read noise; (3) taking the
2-D IFFT of the digital hologram to go to the Fourier
plane; and (4) within the Fourier plane, windowing the
off-axis complex-field estimate. To perform an apples-to-
apples comparison, we kept the total FOV constant and var-
ied the number of pixels N across the FPA, such that

EQ-TARGET;temp:intralink-;e018;326;375N ¼ FOV
f
wp

¼ FOV
QID1

λ
; (18)

where FOV ¼ 64λ∕D1. This choice ensured that we had the
same number of pixels and effective detection noise across
our complex-field estimates despite the fact that we varied
the diffraction-limited sampling quotient QI within the
computational wave-optics experiments. Here again, f ¼
QID2

1∕ð256λÞ was the focal length and Q1D1 ¼ λf∕wp
was the side length.

To generate results for the entire deep-turbulence trade
space (cf. Table 1), we used the field-estimated Strehl ratio
SF, such that

EQ-TARGET;temp:intralink-;e019;326;225SF ¼ jhUSðx1; y1ÞÛ�
Sðx1; y1Þij2

hjUSðx1; y1Þj2ihjÛSðx1; y1Þj2i
; (19)

where USðx1; y1Þ and ÛSðx1; y1Þ are the “truth” and “esti-
mated” signal complex fields, respectively, and h∘i denotes
mean. This performance metric bears some resemblance to a
Strehl ratio, which in practice provides a normalized measure
for performance. In Eq. (19), if USðx1; y1Þ ¼ ÛSðx1; y1Þ,
then SF ¼ 1. Else if USðx1; y1Þ ≠ ÛSðx1; y1Þ, then SF < 1.
Thus, Eq. (19) is copasetic with the general understanding
of a Strehl ratio and provides a normalized measure for
field-estimated performance. Note that Eq. (19) ultimately
stems from the following definition of the on-axis Strehl
ratio:40,41

Table 1 The deep-turbulence trade space of interest in this paper. Remember that the log-amplitude variance σ2χ , which is also referred to as the
Rytov number, gives a measure for the strength of the scintillation. As the σ2χ grows above ∼0.25 (for a spherical wave), scintillation gives rise to
branch points in the phase function. Also remember that the coherence diameter r 0, which is also referred to as the Fried parameter, gives a
measure for the achievable imaging resolution. As the ratio of exit-pupil diameter D1 to r 0 grows above ∼4 (for a spherical wave), higher-
order aberrations beyond tilt start to limit the achievable imaging resolution. Here, D1 ¼ 30 cm.

Scenario 1 2 3 4 5

C2
n ðm−2∕3Þ 1.00 × 10−15 1.50 × 10−15 2.00 × 10−15 2.50 × 10−15 3.00 × 10−15

σ2χ−sw 0.135 0.202 0.270 0.337 0.404

σ2χ−pw 0.333 0.500 0.667 0.833 1.00

r 0−sw ðcmÞ 9.92 7.78 6.55 5.73 5.14

r 0−pw ðcmÞ 5.51 4.32 3.63 3.18 2.85
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EQ-TARGET;temp:intralink-;e020;63;331S ¼ jhUSðx1; y1Þij2
hjUSðx1; y1Þj2i

: (20)

Here, we have made use of the fact that the mean of
a pupil-plane quantity is equivalent to the on-axis DC
term of the 2-D Fourier transformation of that pupil-plane
quantity.

Shown in Figs. 4(a) and 4(b) is the wrapped phase and
in Figs. 4(c) and 4(d) the normalized amplitude in the
Fourier plane for one independent realization of scenario
5 in Table 1 and detection noise. In Fig. 4, one can identify
the complex-field estimate within the white circles of
diameter D1. Specifically, as the diffraction limited sampling
quotient QI increases, so does the side length of the
Fourier plane; however, the exit-pupil diameter D1 remains
constant. By windowing the data found within the white
circles in Fig. 4, we obtained the results shown in
Fig. 5. Here, we see that as the diffraction limited sampling
quotient, QI , increases, the field-estimated Strehl ratio, SF,
decreases.

To determine the numerical SNR presented in Figs. 4 and
5, we performed the following steps using the numerical data
found in Figs. 4(b) and 4(d) corresponding to a diffraction
limited sampling quotient of QI ¼ 4.

• Using the numerical data contained in the bottom-right
circle, we computed the mean of the squared magni-
tude of the complex-field estimate to numerically
determine the estimated signal power plus the noise
power P̂ 0

SþN [cf. Eqs. (7) and (11)].
• Next, using the numerical data contained in the bot-

tom-left circle, we computed the mean of the squared
magnitude of the detection noise to numerically deter-
mine the estimated noise power P̂ 0

N.
• Subtracting the first calculation from the second, we

numerically determined the estimated signal power,
so that P̂ 0

S ¼ P̂ 0
SþN − P̂ 0

N .
• The numerically determined SNR then followed as

SNR 0 ¼ P̂ 0
S∕P̂

0
N .

We also used these steps to validate the use of the closed-
form expression contained in Eq. (13). For this purpose,
Fig. 6 presents percentage error results as a function of
the analytical SNR. In Fig. 6, we averaged the results
obtained from 20 independent realizations of scenarios 1
and 5 in Table 1 and 20 independent realizations of detection
noise. Note that the error bars depict the width of the stan-
dard deviation. Also note that we only used numerical data
corresponding to a diffraction limited sampling quotient of

Fig. 3 (a, b) The normalized signal (c, d) and normalized digital hologram, in the image plane for a con-
stant SNR, where the analytical SNR is 20. As the diffraction-limited sampling quotient,QI , increases, the
number of FPA pixels contained within the diffraction-limited imaging diameter, D2 (white circles),
increases proportionally. Note that the results presented here contain no aberrations.
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QI ¼ 4, so that there was no functional overlap contained
within the results [cf. Eq. (3)].

The analysis used multiple image-processing tricks to
obtain the results presented in Figs. 3–6. With that said,
the first image-processing trick was to subtract the mean
from the recorded digital hologram. This removed the on-
axis DC term from the numerical data contained in the
Fourier plane. Next, the analysis applied a raised cosine win-
dow to the zero-mean digital hologram with eight-pixel-wide
tapers at the edges of the FPA. This combined with zero-pad-
ding helped to mitigate the effects of aliasing from using N ×
N computational grids and 2-D IFFTs.38–41 In practice, the
analysis zero-padded the windowed zero-mean digital holo-
gram to ensure that the complex-field estimate in the Fourier
plane contained 256 × 256 grid points within the exit-pupil
diameter D1. This outcome provided the same number of
grid points as the exit-pupil plane for the sake of computing
the field-estimated Strehl ratio SF with the “truth” complex
field [cf. Eq. (19)]. Note that these image-processing tricks
also apply to the results presented in the next section.

3 Results
Figure 7 shows field-estimated Strehl ratio SF results as a
function of the diffraction-limited sampling quotient QI .
Here, we averaged the results obtained from 20 independent
realizations of scenarios 1 to 5 in Table 1 and 20 independent
realizations of detection noise. In Fig. 7, the error bars depict
the width of the standard deviation. With this in mind,
the analytical SNR increases from 1 in Fig. 7(a) to 10,
20, and 100 in Fig. 7(b), 7(c), and 7(d), respectively [cf.
Eq. (13)]. Note that as the analytical SNR increases, the per-
formance trends flip flop. This outcome is due to functional
overlap introducing additional shot noise into the complex-
field estimate when 2 ≤ QI < 4. As QI increases, this func-
tional overlap decreases and the additional shot noise
plays less of a role depending on the amount of smoothing
[cf. Eq. (3)].

The results shown in Fig. 7 do not agree with the results
presented in Ref. 37. This is said because the performance
trends are opposite of those found in Ref. 37, particularly for
high SNRs. Regardless of the strength of the aberrations,

Fig. 4 (a, b) The wrapped phase and (c, d) normalized amplitudes associated with the Fourier plane for a
constant SNR, where the analytical SNR is 20 and the numerical SNR is 21.5. In general, the Fourier
plane contains the complex-field estimate (i.e., an estimate of the amplitude and wrapped phase that
exists in the exit-pupil plane of the imaging system). The results show that as the diffraction-limited sam-
pling quotient, QI , increases, the complex-field estimates contained within an exit-pupil diameter, D1
(white circles), take up less and less space within the Fourier plane because the side length of the
Fourier plane, QID1, increases proportionally.
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Ref. 37 showed that for a constant number of pixels N across
the FPA, the average SF values are always greatest given
QI ¼ 2. In general, lower QI’s provide more samples across
the complex-field estimate, which in turn minimizes the
smoothing caused by the final 2-D convolution in Eq. (3).
The results presented in Ref. 37, however, did not include
the deleterious effects of detection noise.

In the presence of detection noise, lower QI’s also
increase the detection-noise sampling, which in turn
degrades the complex-field estimate. To combat this effect,
we chose to vary the number of pixels N across the FPA to
keep the total FOV constant [cf. Eq. (18)]. With respect to
Fig. 7, this choice decreases the amount of detection-noise
sampling for lowerQI’s but increases the amount of smooth-
ing caused by the final 2-D convolution in Eq. (3).

Remember that if the amplitude of the reference is set to
be well above the amplitude of the signal (i.e., jARj ≫ jASj),
then the functional overlap in Eq. (3) becomes negligible
when 2 ≤ QI < 4. With that said, Ref. 37 set the amplitude
of the reference to be 10 times that of the signal (i.e., jARj2 ¼
100 W∕m2 and jASj2 ¼ 1 W∕m2) [cf. Eqs. (8) and (9)].
Radiometrically speaking, both of these values are impractical

Fig. 6 The average percentage error as a function of the analytical
SNR for the deep-turbulence trade space presented in Table 1.
Here, the results show that as the analytical SNR increases, the aver-
age percentage error decreases between the numerical and analytical
SNRs. Note that the error bars depict the width of the standard
deviation for 400 realizations.

Fig. 5 (a) The wrapped-phase truth and (b–d) wrapped-phase estimates for a constant SNR, where the
analytical SNR is 20 and the numerical SNR is 21.5. In general, by windowing out the appropriate data in
the Fourier plane (white circles in Fig. 4), we obtain the complex-field estimate (i.e., an estimate of the
amplitude and wrapped phase that exists in the exit-pupil plane of the imaging system). The results con-
tained in (a–d) show that as the diffraction-limited sampling quotient, QI , increases, the field-estimated
Strehl ratio, SF , decreases ever so slightly.
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given the capabilities of modern-day, high-framerate, and
short-wave-infrared (SWIR) FPAs. As such, the results pre-
sented in Fig. 7 tell the true story and the results presented in
Ref. 37 tell the story given infinite SNR. Note that we would
extend our results out to those obtained in Ref. 37; however,
given the parameters of our FPA, we empirically determined
that pixel saturation nominally occurs for analytical SNRs
greater than 250 [cf. Eq. (13)]. This outcome occurs because
of deep-turbulence scintillation (i.e., hotspots due to con-
structive interference).

The results presented in Fig. 7 ultimately show less than
5% variation in the SF values for the different QI values
within each plot. In terms of efficiently using the FPA pixels,
the reader might conclude that there are distinct benefits to
operating at lower QI’s despite the minor (∼5%) perfor-
mance penalty at high SNRs. Before moving on to the
next section, it is important to note that provided different

FPA parameters, such as a larger pixel well depth, the results
presented in Fig. 7 might change; however, the parameters
chosen for our FPA are indicative of modern-day, high-fram-
erate, and SWIR FPAs.

4 Conclusion
The results presented in this paper serve two purposes. The
first purpose is to validate the setup and exploration pre-
sented in Sec. 2. In turn, the second purpose is to allow
the reader to assess the number of pixels, pixel FOV, pixel-
well depth, and read-noise standard deviation needed from
an FPA when using digital-holographic detection in the
off-axis IPRG for deep-turbulence wavefront sensing.

Digital-holographic detection, in general, offers a distinct
way forward to combat the low SNRs caused by scintillation
and extinction, and it is our belief that the analysis presented
throughout this paper shows that this statement is true. In

Fig. 7 The average field-estimated Strehl ratio, SF , as a function of the diffraction-limited sampling quo-
tient, QI , for the deep-turbulence trade space presented in Table 1. Here, the analytical SNR increases
from 1 in (a) to 10, 20, and 100 in (b–d), respectively. The results contained in (a) and (b) show that as the
diffraction-limited sampling quotient, QI , increases, the average field-estimated Strehl ratio, SF ,
decreases (i.e., for low SNRs, lower QI ’s perform better). In contrast, the results contained in (c) and
(d) show that as the diffraction-limited sampling quotient, QI , increases, the average field-estimated
Strehl ratio, SF , increases (i.e., for high SNRs, higherQI ’s perform better). Note that the error bars depict
the width of the standard deviation for 400 realizations.
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using digital-holographic detection, we can set the strength
of the reference so that it boosts the signal above the read-
noise floor of the FPA. As such, we can approach a shot-
noise-limited detection regime. This last statement is of
course dependent on the parameters of the FPA, such as
the pixel well depth. Nevertheless, given that scintillation
and extinction lead to low SNRs, it is important that we
reach the shot-noise limit in order to better perform deep-tur-
bulence wavefront sensing. This outcome will allow future
research efforts to better explore the associated branch-
point problem.

Appendix A
Using the convolution form of the Fresnel diffraction integral
(cf. Fig. 2), we can represent the signal complex field
USðx2; y2Þ incident on the FPA as
EQ-TARGET;temp:intralink-;e021;63;551

USðx2; y2Þ ¼
ejkf

jλf

Z
∞

−∞

Z
∞

−∞
Uþ

S ðx1; y1Þ exp
	
j
k
2f

½ðx2 − x1Þ2

þ ðy2 − y1Þ2�


dx1 dy1; (21)

whereUþ
S ðx1; y1Þ is the signal complex field leaving the exit-

pupil plane. Specifically,

EQ-TARGET;temp:intralink-;e022;63;455Uþ
S ðx1; y1Þ ¼ U−

S ðx1; y1ÞTPðx1; y1Þ; (22)

where U−
S ðx1; y1Þ is the signal complex field incident on the

exit-pupil plane, and

EQ-TARGET;temp:intralink-;e023;63;401TPðx1; y1Þ ¼ cyl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

p
D1

�
exp

�
−j

k
2f

ðx21 þ y21Þ
�

(23)

is the complex transmittance function of the exit-pupil plane
(i.e., a circular aperture placed against a thin lens). In
Eq. (23),
EQ-TARGET;temp:intralink-;e024;63;321

cylðρ1Þ ¼

8><
>:

1

0.5

0

0 ≤ ρ1 < 0.5

ρ1 ¼ 0.5

ρ1 > 0.5

(24)

is a cylinder function where ρ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

p
, D1 is the exit-

pupil diameter, k ¼ 2π∕λ is the angular wavenumber, λ is the
wavelength, and f is the focal length. Substituting Eq. (22)
into Eq. (21) we arrive at the following result:
EQ-TARGET;temp:intralink-;e025;63;213

USðx2; y2Þ ¼
ejkf

jλf
exp

�
j
k
2f

ðx22 þ y22Þ
�

× FfUSðx1; y1Þgνx¼x2
λf;νy¼

y2
λf
; (25)

where

EQ-TARGET;temp:intralink-;e026;63;137USðx1; y1Þ ¼ U−
S ðx1; y1Þcyl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

p
D1

�
(26)

is the signal complex field that exists in the exit-pupil plane
of the imaging system (cf. Fig. 2), and Ff∘gvx;vy denotes
a 2-D Fourier transformation, such that

EQ-TARGET;temp:intralink-;e027;326;752Ṽðνx; νyÞ ¼ FfVðx; yÞgνx;νy
¼

Z
∞

−∞

Z
∞

−∞
Vðx; yÞe−j2πðxνxþyνyÞdx dy: (27)

A 2-D inverse Fourier transformation then follows as

EQ-TARGET;temp:intralink-;e028;326;685Vðx; yÞ ¼ F−1fṼðνx; νyÞgx;y
¼

Z
∞

−∞

Z
∞

−∞
Ṽðνx; νyÞej2πðxνxþyνyÞdνx dνy: (28)

With Fig. 2 in mind, we can also represent the reference
complex field URðx2; y2Þ incident on the FPA as resulting
from the Fresnel approximation to a tilted spherical wave.
Here,

EQ-TARGET;temp:intralink-;e029;326;578URðx2; y2Þ ¼ AR exp

�
j
k
2f

ðx22

þ y22Þ
�
exp

�
−j2πxR

x2
λf

�
exp

�
−j2πyR

y2
λf

�
;

(29)

where AR is a complex constant and ðxR; yRÞ are the coor-
dinates of the off-axis local oscillator, which is located in the
exit-pupil plane.

Provided Eqs. (25)–(29), we can determine the hologram
irradiance IHðx2; y2Þ incident on the FPA as

EQ-TARGET;temp:intralink-;e030;326;429IHðx2; y2Þ ¼ jUSðx2; y2Þ þ URðx2; y2Þj2 (30)

in units of Watts per square meter ðW∕m2Þ. For all intents
and purposes, the FPA will convert the hologram irradiance
IHðx2; y2Þ, which is in an analog form, into a form that is
suitable for digital image processing. Following the approach
taken by Gaskill,42 let us assume that “digitization” is to
take place at sampling intervals of xs and ys, which are
the x- and y-axes pixel pitches of the FPA (cf. Fig. 2). At
any particular pixel, we can then estimate the hologram irra-
diance IHðx2; y2Þ by computing its average value over the
active area of a pixel, which is centered at x2 ¼ nxs and
y2 ¼ mys, where n ¼ 1 to N and m ¼ 1 to M. Specifically,

EQ-TARGET;temp:intralink-;e031;326;271

ÎHðnxs; mysÞ ¼
Z

∞

−∞

Z
∞

−∞
IHðx 0

2; y
0
2Þ

1

wx
rect

�
x 0
2 − nxs
wx

�

×
1

wy
rect

�
y 0
2 −mys
wy

�
dx 0

2 dy
0
2; (31)

where wx and wy are, respectively, the x- and y-axes pixel
widths of the FPA, and

EQ-TARGET;temp:intralink-;e032;326;168

rectðxÞ ¼

8><
>:

0; jxj > 0.5

0.5; x ¼ 0.5

1; jxj < 0.5

(32)

is a rectangle function.
Neglecting the effects of pixel edge diffusion in the FPA,4

remember that the number of hologram photoelectrons
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mHðnxs; mysÞ, at any particular pixel and time interval, is a
random process with mean,44

EQ-TARGET;temp:intralink-;e033;63;730m̄Hðnxs; mysÞ ¼
ηT
hν

ÎHðnxs; mysÞwxwy: (33)

Here, η is the quantum efficiency of the FPA, T is the inte-
gration time of the FPA, hν is the quantized photon energy,
and the quantity, wxwy, is the active area of a pixel. Over the
entire FPA, it then follows that the hologram photoelectron
density DHðx2; y2Þ, in units of photoelectrons per square
meter ðpe∕m2Þ, is simply a sampled version of the analog
form of Eq. (33). This declaration leads to the following
expressions:

EQ-TARGET;temp:intralink-;e034;63;595

DHðx2; y2Þ ¼ m̄Hðx2; y2Þ
1

xs
comb

�
x2
xs

�
1

ys
comb

�
y2
ys

�

× rect

�
x2
Nxs

�
rect

�
y2
Mys

�
; (34)

where
EQ-TARGET;temp:intralink-;e035;63;505

m̄Hðx2; y2Þ ¼
ηT
hν

Z
∞

−∞

Z
∞

−∞
IHðx 0

2; y
0
2Þrect

�
x 0
2 − x2
wx

�

× rect

�
y 0
2 − y2
wy

�
dx 0

2 dy
0
2

¼ ηT
hν

Z
∞

−∞

Z
∞

−∞
IHðx 0

2; y
0
2Þrect

�
x2 − x 0

2

wx

�

× rect

�
y2 − y 0

2

wy

�
dx 0

2 dy
0
2

¼ ηT
hν

IHðx2; y2Þ � rect
�
x2
wx

�
rect

�
y2
wy

�
(35)

is the analog form of Eq. (33),

EQ-TARGET;temp:intralink-;e036;63;330

1

jwj comb
�x
w

�
¼

X∞
n¼−∞

δðx − nwÞ (36)

is a scaled comb function,

EQ-TARGET;temp:intralink-;e037;63;265δðx − x 0Þ ¼ lim
w→0

1

jwjp
�
x − x 0

w

�
(37)

is an impulse function,43 and pðxÞ is a pulse-like function {e.
g., the rectangle function [cf. Eq. (32)]}. Note that in
Eq. (35), * denotes 2-D convolution, such that

EQ-TARGET;temp:intralink-;e038;63;186

Vðx; yÞ �Wðx; yÞ

¼
Z

∞

−∞

Z
∞

−∞
Vðx 0; y 0ÞWðx − x 0; y − y 0Þdx 0 dy 0; (38)

where x 0 and y 0 are dummy variables of integration.
From Eqs. (30)–(38), we can gain access to an estimate

of the signal complex field USðx1; y1Þ that exists in the
exit-pupil plane of the imaging system [cf. Fig. 2 and
Eq. (26)]. First, we let x2 ¼ λfνx and y2 ¼ λfνy and

apply a 2-D inverse Fourier transformation to Eq. (34),
such that

EQ-TARGET;temp:intralink-;e039;326;730

F−1fDHðλfνx; λfνyÞgx1;y1 ¼
1

λ2f2
D̃H

�
−x1
λf

;
−y1
λf

�

¼ ηT
hν

F−1fĨHðλfνx; λfνyÞgx1;y1

× wx sinc

�
wx
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�
wy sinc

�
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λf
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� 1
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1
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λf

x1
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λf

sinc

�
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λf

y1

�
; (39)

where sincðxÞ ¼ sinðπxÞ∕ðπxÞ is a sinc function. Taking a
look at the remaining 2-D inverse Fourier transformation in
Eq. (39), we obtain the following relationship:

EQ-TARGET;temp:intralink-;e040;326;541

F−1fĨHðλfνx; λfνyÞgx1;y1 ¼ F−1fjUSðλfνx; λfνyÞj2gx1;y1
þ F−1fjURðλfνx; λfνyÞj2gx1;y1
þ F−1fUSðλfνx; λfνyÞU�

Rðλfνx; λfνyÞgx1;y1
þ F−1fURðλfνx; λfνyÞU�

Sðλfνx; λfνyÞgx1;y1 ; (40)

where the superscript * denotes complex conjugate. From
Eqs. (25) and (29), it then follows that

EQ-TARGET;temp:intralink-;e041;326;430

F−1fĨHðλfνx; λfνyÞgx1;y1 ¼
1

λ2f2
USðx1; y1Þ �U�

Sð−x1;−y1Þ

þ jARj2δðx1Þδðy1Þ

þ A�
Re

jkf

jλf
USðx1 − xR; y1 − yRÞ

−
ARe

−jkf

jλf
U�

Sðx1 þ xR; y1 þ yRÞ: (41)

The first term in Eq. (41) is nothing more than a scaled 2-D
autocorrelation of the desired signal complex fieldUSðx1; y1Þ.
This term is centered on axis and is physically twice the
circumference of the exit-pupil diameter D1. The second
term in Eq. (41) is also centered on axis and contains sepa-
rable impulse functions [cf. Eq. (37)]. These impulse func-
tions are at the strength of the uniform irradiance associated
with the reference (i.e., jARj2). The last two terms in
Eq. (41) form complex conjugate pairs and contain the
desired signal complex field USðx1; y1Þ, both scaled and
shifted off axis by the coordinates ðxR; yRÞ.

Substituting Eq. (41) into Eq. (39), we obtain the follow-
ing result after rearranging the special functions:
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EQ-TARGET;temp:intralink-;e042;63;752
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�
; (42)

in units of photoelectrons (pe). This result is repeated above
in Eq. (1).
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