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Abstract. There is a need to remotely measure the full phase and amplitude information of small-scale acousto-
seismic vibrations in order to detect the presence of buried objects (e.g., tunnels, etc.), or for other purposes. This
remote sensing information may need to be collected with a large area coverage rate and at a safe standoff
distance. To accomplish this, we have implemented a shearographic imaging system that incorporates phase
stepping in a novel way, automatically separating random speckle noise from surface motion, without requiring
an intermediate unwrapping step. This method, which we call surface-phase-resolved shearography, is espe-
cially effective for very low-amplitude motions that generate less than one light-wavelength of phase change.
In laboratory studies, we have demonstrated sensitivity of two nanometers RMS with 532-nm-wavelength light.
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1 Introduction
In conventional nonphase-resolved (NPR) shearography, the
variations in the image intensity and contrast (due to surface
variations or beam inhomogeneity) add noise that must be
mitigated by algorithms to maximize the speckle contrast.
Current state-of-the-art phase-stepped (PS) shearography
separates optical phase, composed of random speckle and
signals of interest, from the variations in intensity and con-
trast, producing clearer fringes. However, even with phase
stepping, shearographic fringes are dominated by random
speckle-to-speckle phase variations. This random speckle-
phase noise consumes dynamic range and adds significant
processing burden to derive clear continuous fringes.
Further, the random speckle phases obscure the direction
(up or down) of the surface motion so that only the absolute
value of the vibration amplitude can be recovered without
postprocessing unwrapping methods. We have developed
an advanced phase-resolved (PR) shearography method that
separates the random phases from the desired signal phase.
Not only is it possible to recover both amplitude and phase of
the ground motion, PR shearography improves the sensitiv-
ity by up to an order of magnitude. The improved sensitivity
of PR shearography can be allocated to detect smaller signals
or to reduce the required seismic/acoustic excitation levels.
The system also provides information needed to backpropa-
gate surface-excitation waves and map the sources and
scatterers.

The structure of this article is thus: in Sec. 2.1, the basic
physics and mathematics of shearography is reviewed,
followed by explanations of two-shot nonphase resolved
(NPR) shearography in Sec. 2.2 and the prior state-of-the-art
PS shearography in Sec. 2.3. Section 2.4 introduces our new
PR shearography method, details the underlying mathemat-
ics, and summarizes its advantage relative to the previous art.
In Sec. 3, the mathematical analysis of noise is provided,
with an emphasis on the dominant noise source, random
speckle, for the various shearography methods. In Sec. 4,

confirmatory data are presented, showing the efficacy of
PR shearography. Section 5 summarizes the conclusions and
indicates the scope of future publications.

2 Review of Sheared Speckle Interferometry

2.1 Shearography Optics Overview

Each sheared specklegram represents a combination of two
images that pass through separate arms of a shearing inter-
ferometer before being combined and recorded on a focal
plane. A shearing interferometer operates by using a beam-
splitter or other optical element to make copies of an incom-
ing light field. An optical shearing device, such as a tilted
mirror, shear plate, or other element, shifts the copies relative
to each other such that a pixel representing location r in one
copy appears at a point (rþ Δr) in another copy. Ideally,
these two light fields are identical, other than the location
shift. The relatively shifted copies of the light field are opti-
cally recombined and recorded on a focal plane, creating an
image called a sheared specklegram. An example of a shear-
ing interferometer is sketched in Fig. 1.

The interferometer in Fig. 1 includes the capability to
introduce known phase differences between arms of the
interferometer. This enables PS shearography, as well as the
PR shearography that is the subject of this paper. In Fig. 1,
the phase modulation is separated from the shearing func-
tion, for simplicity of operation. However, shearing and
phase modulation can be combined on the same optical
element, if necessary.

Because the illumination is coherent, and the surface
being illuminated is microscopically rough, the reflected
light field has intensities and phases containing fluctuations
that are random from point-to point so that the recorded
image contains intensity fluctuations called speckles.
Depending on the phase-modulating mechanisms, speckles
may also be correlated with each other. The statistical fluc-
tuations have a time dependence, which is characterized by a
correlation time scale τC. The time τC is determined by the
imaging conditions and can be several seconds long, though
millisecond timescales are more common in terrestrial
observation.
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The speckle-containing optical fields are combined on a
focal-plane array, which records the intensity of the com-
bined field. Energy transport can be expressed in terms of
the Poynting1 vector:

EQ-TARGET;temp:intralink-;e001;63;417P ¼ E ×H ¼ 1

μc
E × ðk̂ × EÞ

¼ 1

μc
½ðE · EÞk̂ − ðk̂ · EÞE� ≈ 1

μc
ðE · EÞk̂: (1)

In Eq. (1), the light propagation direction k̂ is assumed to
be normal to the plane of the E- andH-fields. The integration
time of the imager is also assumed to be much longer than the
vibration period of the electromagnetic field so that the
recorded intensity is proportional to the squared magnitude
of a slowly varying complex envelope function ES multiplied
by the observation time T

EQ-TARGET;temp:intralink-;e002;63;267ZT
0

dtðE · EÞ ¼ 1

4

ZT
0

dtfESeðik·r−ωtÞ þ E�
Se

½−ðik·r−ωtÞ�g

· fESeðik·r−ωtÞ þ E�
Se

½−ðik·r−ωtÞ�g

¼ 1

2

ZT
0

dtjESj2 þ
1

4

ZT
0

dtfES · ESe½þ2ðik·r−ωtÞ�

þ E�
S · E

�
Se

½−2ðik·r−ωtÞ�g ¼ 1

2
jESj2T: (2)

The optical field ES in Eq. (2) retains vector (Jones
1) nota-

tion, due to polarization. The polarization of the optical field
may vary randomly from point to point, for example, if the
laser beam illuminates a birefringent material. In such cases,
polarizers in the receiver aperture can significantly degrade

the performance of shearography sensors. We will explore
polarized-light PR shearography in a future paper. For now,
we consider the case in which all polarizations are accepted
equally so that the received light is approximately a complex
scalar field:

EQ-TARGET;temp:intralink-;e003;326;406ES ¼ ESðr; tÞ exp½iϕðr; tÞ�; (3)

where the time t is a smoothed average over many waves of
light. In this paper, we assume that the correlation time of the
light field is longer than the observation time so that

EQ-TARGET;temp:intralink-;e004;326;342ðλ∕cÞ ≪ tObservation ≪ τC: (4)

The time tObservation in Eq. (4) is any time much longer
than the period λ∕c of a light wave that is characteristic
of a light-sensitive device. It can be, for example, the expo-
sure time of a camera or the time constant of a photocell.

Note that the time averaging in Eq. (2) also separates
different wavelengths of light so that each wavelength in a
finite-temporal-width pulse may be considered independently.

For coherent light reflected from an optically rough
surface, the optical field at any given locus on the focal plane
(of a camera viewing the surface) represents a summation of
many complex scalars with a statistical distribution of
phases. This summation is entailed by the finite-sized optical
spread function (OSF). Diffraction from the receiver aperture
determines the minimum OSF spread. Atmospheric scatter-
ing adds additional broadening. The summing of random
phasors yields a net field, which we express as

EQ-TARGET;temp:intralink-;e005;326;135ESðr; tÞ ¼
Z

Object

drOOSFðr; rOÞEOðrO; tÞ exp½iϕOðrO; tÞ�;

(5)

Beam
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Shearing interferometric imager Raw sheared-specklegram example(a) (b)

Fig. 1 (a) Example of a shearing interferometric imager based on a Michelson-type interferometer. Many
other types of shearing interferometer are possible. (b) Example of a sheared specklegram, showing
superposition of images along the shear direction.
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where OSF is the complex OSF connecting the observation
point r with an object point rO, and EO and ϕO are the
reflected E-field magnitude and phase at rO. The basic
statistics are illustrated by considering the simplest case,
in which the laser illumination and surface reflectance vary
little as rO varies, and in which the phases are independent
and identically distributed from point to point. The intensity
at a point on the focal plane is given as
EQ-TARGET;temp:intralink-;e006;63;664

Iðr; tÞ ¼ jESðr; tÞj2

≈ jEOðrO; tÞj2
Z

Object

drO

Z
Object

drO 0OSFðr; rOÞOSF

� ðr; rO 0Þ exp½iϕOðrO; tÞ − iϕOðrO 0; tÞ�: (6)

Carrying out the integral in Eq. (6) in this simplest case2

yields an optical field of the form:

EQ-TARGET;temp:intralink-;e007;63;556ESðr; tÞ ¼ jESðr; tÞj exp½iϕðr; tÞ�; (7)

with intensity

EQ-TARGET;temp:intralink-;e008;63;510ISðr; tÞ ¼ jESðr; tÞj2; (8)

and with probability distributions

EQ-TARGET;temp:intralink-;e009;63;463PðjESðr; tÞjÞ ¼ 2ðjESj∕hISiÞ expð−jESj2∕hISiÞ;
0 ≤ jESj < ∞;

(9)

and

EQ-TARGET;temp:intralink-;e010;63;390PðϕÞ ¼ 1∕ð2πÞ; − π ≤ ϕ < þπ: (10)

The derivation of Eq. (9) from Eq. (6) relies on the central
limit theorem, implicitly assuming that the extent of the OSF
is much larger than the range of phase correlations on the
object surface. The optical field probability distribution func-
tion (PDF) in Eq. (9) is an example of a Rayleigh distribu-
tion, and the intensity follows an exponential distribution:

EQ-TARGET;temp:intralink-;e011;63;295PðISÞ ¼ ð1∕hISiÞ expð−IS∕hISiÞ; 0 ≤ IS < ∞: (11)

The significance of Eq. (11) is twofold: (a) the most-likely
value of speckle intensity is zero and (b) the maximum value
of intensity is infinite. Because neither dark speckles (with
values below the camera noise levels) nor saturated speckles
carry useable phase information, the dynamic range of the
camera must be sufficient to record as many bright speckles
as possible without saturation.

In a physically realizable camera, the intensities of finite-
sized pixels will deviate from the exponential distribution,
due to the integration of intensities over a pixel area. In the
extreme case of very large pixels, the central limit theorem
again dictates that the distribution of intensities tends toward
a Gaussian. In practice, the intensity distribution more
resembles a Gamma or log-normal distribution, with an
asymmetric peak above the minimum value of zero. The
more PðISÞ deviates from an exponential distribution, the
more diluted is the phase information, and the less usable
the data are for shearography. This relationship between

pixel size and speckle size constrains the camera design: in
a diffraction-limited design, the optics must be slow enough
(i.e., have high enough f∕#) that the OSF fills or over-fills
each pixel.

A shearing interferometer such as that shown in Fig. 1 uses
a linear shear to combine the optical fields from points frOg
with those from points frO þ ΔrShearg. It can also be operated
so as to introduce an additional controlled phase difference
ϕStep between the interferometer arms. The net time-depen-
dent optical field at a point r in the combined field is

EQ-TARGET;temp:intralink-;e012;326;642ETotalðr; tÞ ¼ ESðr; tÞ þ ESðrþ ΔrShear; tÞ exp½iϕStepðr; tÞ�:
(12)

The time dependences in Eq. (12) apply to the slowly
varying envelope, with time scales on the order of
tObservation described in Eq. (4). Any spatial dependence of
the controlled phase step ϕStepðr; tÞ is usually an unintended
effect of optical aberrations, but as long as the spatial
dependences are constant between observations, they have
few adverse effects on shearography. Optical paths through
the interferometer arms will also have uncontrolled phase
differences, which typically vary over time scales longer than
the correlation time τC and which we absorb into the random
part of the optical-field phases.

From Eq. (12), the intensity of the sheared specklegram is

EQ-TARGET;temp:intralink-;e013;326;465

Iðr; tÞ ¼ jETotalðr; tÞj2
¼ jESðr; tÞ þ ESðrþ ΔrShear; tÞ exp½iϕStepðr; tÞ�j2

¼

8>><
>>:
ISðr; tÞ þ ISðrþ ΔrShear; tÞ
þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISðr; tÞISðrþ ΔrShear; tÞ

p
cos½ϕðrþ ΔrShear; tÞ

−ϕðr; tÞ þ ϕStepðr; tÞ�

9>>=
>>;:

(13)

For direct numerical simulations and detailed statistical
analysis, we use Eq. (12) or Eq. (13) directly, with surface-
roughness correlations, and medium-propagation effects
added as appropriate. In future papers, we will present com-
parisons of direct simulations to experimental data. For now,
we are concerned with basic phenomenology of PR versus
standard shearography methods. To simplify notation for the
explanations, we follow the standard treatment,2 rewriting
Eq. (13) as

EQ-TARGET;temp:intralink-;e014;326;243

Iðr; tÞ ¼ I0ðr;ΔrShear; tÞf1þ γðr;ΔrShear; tÞ
× cos½Δϕðr;ΔrShear; tÞ þ ϕStepðr; tÞ�g; (14)

where

EQ-TARGET;temp:intralink-;e015;326;176I0ðr;ΔrShear; tÞ ¼ ISðr; tÞ þ ISðrþ ΔrShear; tÞ; (15)

EQ-TARGET;temp:intralink-;e016;326;126γðr;ΔrShear; tÞ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ISðr; tÞISðrþΔrShear; tÞ

p
∕I0ðr;ΔrShear; tÞ;

(16)

and

EQ-TARGET;temp:intralink-;e017;326;85Δϕðr;ΔrShear; tÞ ¼ ½ϕðrþ ΔrShear; tÞ − ϕðr; tÞ�: (17)
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The sheared phase difference Δϕðr;ΔrShear; tÞ is com-
posed of a random speckle component ϕSpeckleðr;ΔrShear; tÞ
and a signal ϕSignalðr;ΔrShear; tÞ, so

EQ-TARGET;temp:intralink-;e018;63;719Δϕðr;ΔrShear; tÞ ¼ ½ϕSpeckleðr;ΔrShearÞ
þ ϕSignalðr;ΔrShear; tÞ þ ϕStepðtÞ�: (18)

The primary goal of shearography is to detect and quan-
tify the signal phase ϕSignal. To accomplish this, a series of
sheared specklegrams are acquired at a series of times ftjg,
with time separations that are much less than the random-
speckle decorrelation time τC so that ϕSpeckle in Eq. (18)
is nearly constant with time. The image series is acquired
quickly enough that the random-speckle contributions to the
intensities I and contrast γ are constant over time. Ideally,
the phase step ϕStep is designed to be uniform across each
specklegram, so we can ignore its spatial dependence.
With these considerations included, Eq. (14) for a sheared
specklegram becomes:
EQ-TARGET;temp:intralink-;e019;63;533

Iðr; tjÞ ¼ I0ðr;ΔrShearÞ

×

8>><
>>:1þ γðr;ΔrShearÞ cos

2
64
ϕSpeckleðr;ΔrShearÞ
þϕSignalðr;ΔrShear; tjÞ
þϕStepðtjÞ

3
75
9>>=
>>;: (19)

The quantity ϕSignalðr;ΔrShear; tjÞ is the phase difference
due to optical-path differences between points located at r
and (ðrþ ΔrShearÞ). The values of ϕSignalðr;ΔrShear; tjÞ can
vary significantly with time in the presence of deterministic
effects, such as surface vibrations, refractive-index changes,
thermally induced deformations, and other physically or
chemically induced changes over time. The effects causing
optical phase differences are commonly referred to as loads,
and their absence is commonly referred to as an unloaded
condition. In the PR method, the loading can be dynamic,
eliminating the need to identify unloaded or constant-load
conditions.

The variability in optical phase difference
φSignalðr;ΔrShear;tÞ is the quantity of interest—what the
shearography system and analysis methods are designed to
estimate. For the specific case of a vibrating, opaque, diffusely
reflective surface, the optical phase difference is given in
radians as

EQ-TARGET;temp:intralink-;e020;63;249φSignalðr;ΔrShear; tÞ ¼ 2 ×
2π

λ
× ½hðrþ ΔrShear; tÞ − hðr; tÞ�;

(20)

where hðr; tÞ is the time-varying surface elevation at a point
r and time t, and λ is the wavelength of the laser light. The
difference in elevation between points separated by the shear
distance is called the shear height. Because the wavelength
of light is short, typically on the order of a micron or less,
extremely small changes in shear height can be imaged.

2.2 Basic Two-Shot Shearography

In order to ground the discussion of PR shearography,
a review of basic two-laser-shot shearography is in order.
(Some terms to describe shearography are defined in
Table 1.) The separate camera shots can be acquired with

a camera triggered by a pulsed laser or can be frames
acquired under continuous-wave illumination.

The simplest shearogram-generation method uses two
specklegrams, with the load changed in the time between
their acquisitions, and ϕStep kept equal to zero. Define the
specklegram image acquired at time tj by Sj ¼ IðjÞ.
Then, using Eq. (19), the difference of specklegrams
acquired at t1 and t2 is a shearogram given as
EQ-TARGET;temp:intralink-;e021;326;363½S2−S1�¼I0:�γ:�fcos½ϕSpeckleþϕSignalð2Þ�
−cos½ϕSpeckleþϕSignalð1Þ�g

¼I0:�γ:�
�ðcosϕSpeckleÞ:�½cosϕSignalð2Þ−cosϕSignalð1Þ�
−ðsinϕSpeckleÞ:�½sinϕSignalð2Þ−sinϕSignalð1Þ�

�
:

(21)

Equation (21) is cast in a notation that treats the images as
time-dependent matrices, with the spatial coordinates r
replaced by matrix indices. The operator “.*” indicates
an element-by element multiplication of matrix elements
(i.e., a Hadamard or Schur product), and the trigonometric
functions operate element-by-element on their arguments.
In the case of small signal phases (≪1 wave of light),
Eq. (21) reduces to

EQ-TARGET;temp:intralink-;e022;326;178½Sð2Þ − Sð1Þ� ≈ ð−I0: � γ: � sin ϕSpeckleÞ:
� ½ϕSignalð2Þ − ϕSignalð1Þ�: (22)

The structure of Eq. (22) shows that the shearogram is an
image of random noise ð−I0: � γ: � sin ϕSpeckleÞ, modulated
by an image of signal phase changes ½ϕSignalð2Þ − ϕSignalð1Þ�.
Because the phases of the speckle noise ϕSpeckle are random,
only the magnitude of the signal phase is available—the
signal sign is ambiguous. Furthermore, the random noise is

Table 1 Shearography nomenclature.

Specklegram: The image obtained by interfering two speckled
wavefronts (images) in an imaging interferometer. In shearography,
the interferometer is configured as a shearing interferometer. Multiple
specklegrams are acquired and processed to yield a shearogram.

Shearing: Displacing or rotating an image in its own plane, for
example, by a linear displacement vector ΔrShear. In shearography,
the sheared image is the complex optical field before detection on
a focal plane.

Shearogram: The image produced by processing multiple
specklegrams created with a shearing interferometer. Fringe
boundaries are visible where there is high correlation between the
random components of the specklegrams. This occurs whenever the
optical phase difference between the specklegrams (at a given pixel)
equals zero or an integral number of wavelengths of optical path
difference.

Shearogram fringes:Generic term for patterns of fringes that appear
in shearograms as a consequence of surface change. In the special
case of a surface containing circularly symmetric time-varying bumps,
typical shearogram fringes appear as “butterfly” shapes. (Examples of
butterfly shearograms are shown in Sec. 4)

Shear height: The maximum change in the difference in elevation
between points separated by the shear vector ΔrShear, during the
interval between the first and last image used to produce a
shearogram.
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typically so high that it is difficult to detect small-amplitude
phases through the noisy background in two-shot shearogra-
phy. A noise analysis is presented in Sec. 3.

2.3 Prior Art: Phase-Stepped Shearogram Analysis

The goal of specklegram-image analysis is to estimate the
signal ϕSignalðtÞ with as little error as possible, despite the

speckle noise in I0, γ, and ϕSpeckle. Inspection of Eq. (22)
shows that the noisy terms I0 and γ can be removed by
computing ratios of differences of specklegrams. All that
is required is that all of the specklegrams are acquired within
a time span shorter than the correlation time τC. For example,
with ϕStepðiÞ ¼ ð3π∕2Þ, ϕStepðjÞ ¼ ðπ∕2Þ, ϕStepðkÞ ¼ 0, and
ϕStepðlÞ ¼ π, we obtain

EQ-TARGET;temp:intralink-;e023;63;658Ri;j;k;l ¼
½Si − Sj�
½Sk − Sl�

≈
ffiffiffiffiffiffiffiffiffiffi
I0IΔr

p fcos½ϕSpeckle þ ϕSignalðAÞ þ 3π∕2� − cos½ϕSpeckle þ ϕSignalðAÞ þ π∕2�gffiffiffiffiffiffiffiffiffiffi
I0IΔr

p fcos½ϕSpeckle þ ϕSignalðAÞ� − cos½ϕSpeckle þ ϕSignalðAÞ þ π�g : (23)

The ratios of cosines in Eq. (23) can vary randomly between �∞ and provide little information about the signal phases.
Standard PS shearography3 addresses this by introducing specific shot-dependent values for the controlled phases ϕStepðjÞ
and synchronizes the specklegram collection with the loading conditions. For each shot j, ϕStepðjÞ is constant across the
image. For a given loading condition Load_A, multiple specklegrams are collected with different ϕStep values. The speck-
legrams can be sequential or spatially multiplexed,4 as long as the load is constant during their acquisition. With the load
held constant for a set of specklegrams, Eq. (23) becomes

EQ-TARGET;temp:intralink-;e024;63;515RLoad_A ≈
cos½ϕSpeckle þ ϕSignalðAÞ þ ϕStepðiÞ� − cos½ϕSpeckle þ ϕSignalðAÞ þ ϕStepðjÞ�
cos½ϕSpeckle þ ϕSignalðAÞ þ ϕStepðkÞ� − cos½ϕSpeckle þ ϕSignalðAÞ þ ϕStepðlÞ�

; (24)

which after expanding the trigonometric functions reduces to

EQ-TARGET;temp:intralink-;e025;63;447RLoad_A ≈
½cos ϕStepðiÞ − cos ϕStepðjÞ� − tan½ϕSignalðAÞ þ ϕSpeckle�: � ½sin ϕStepðiÞ − sin ϕStepðjÞ�
½cos ϕStepðkÞ − cos ϕStepðlÞ� − tan½ϕSignalðAÞ þ ϕSpeckle�: � ½sin ϕStepðkÞ − sin ϕStepðlÞ�

; (25)

where the ratio is also an element-by-element (Hadamard) operation.

Equation (25) is formally invertible to yield the sum of signal and noise phases

EQ-TARGET;temp:intralink-;e026;63;361 arctan

�
RLoad_A: � ½cos ϕStepðkÞ − cos ϕStepðlÞ� − ½cos ϕStepðiÞ − cos ϕStepðjÞ�
RLoad_A: � ½sin ϕStepðkÞ − sin ϕStepðlÞ� − ½sin ϕStepðiÞ − sin ϕStepðjÞ�

�
¼ arctanftan½ϕSignalðAÞ þ ϕSpeckle�g: (26)

A common choice of the controlled phases is

EQ-TARGET;temp:intralink-;e027;63;285

ϕStepðiÞ ¼ ð3π∕2Þ; ϕStepðjÞ ¼ ðπ∕2Þ;
ϕStepðkÞ ¼ 0; and ϕStepðlÞ ¼ π; (27)

in which case Eq. (25) reduces to

EQ-TARGET;temp:intralink-;e028;63;224 arctanðRLoad_AÞ ≈ arctanftan½ϕSignalðAÞ þ ϕSpeckle�g: (28)

Using four-quadrant inversions to compute the inverse
tangent, Eq. (28) actually yields, in terms of the noise and
signal phases

EQ-TARGET;temp:intralink-;e029;63;151

arctanftan½ϕSignalðAÞ þ ϕSpeckle�g ≈ ½ϕSignalðAÞ þ ϕSpeckle�
þ N½ϕSpeckle;ϕSignalðAÞ�; (29)

where

EQ-TARGET;temp:intralink-;e030;326;296N½ϕSpeckle;ϕSignalðAÞ�

¼
�

−2πΘfϕSpeckle− ½π−ϕSignalðAÞ�g; π>ϕSignalðAÞ≥0

þ2πΘfϕSpeckle− ½−π−ϕSignalðAÞ�g; −π≤ϕSignalðAÞ<0:
(30)

In Eq. (29), both ϕSignal and ϕSpeckle are defined modulus
2π on the interval ð−π;þπÞ, and the unit step function
Θ is

EQ-TARGET;temp:intralink-;e031;326;196ΘðxÞ ¼
�
0; x < 0

1; x ≥ 0
: (31)

Because the random phases ϕSpeckle span the full 2π
radian range of possible phases, Eq. (29) does not yield a
usable image of the signal phases. To obtain a usable esti-
mate, another loading condition Load_B must be applied,
and the PS image acquisition repeated. If the second set
of images is acquired within the correlation time τC, then the
signal phase differences can be computed from two succes-
sive ratio calculations, to yield a PS shearogram:
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EQ-TARGET;temp:intralink-;e035;63;748farctan½tanϕSignalðBÞ� − arctan½tanϕSignalðAÞ�g
≈ ½arctanðRLoad_BÞ − arctanðRLoad_AÞ�: (32)

With Eq. (29) inserted, Eq. (32) yields

EQ-TARGET;temp:intralink-;e033;63;698

XPS ¼ X0þfN½ϕSpeckle;ϕSignalðBÞ�−N½ϕSpeckle;ϕSignalðAÞ�g;
(33)

where

EQ-TARGET;temp:intralink-;e034;63;636XPS ¼ ½arctanðRLoad_BÞ − arctanðRLoad_AÞ�; (34)

is the signal-change estimate, and

EQ-TARGET;temp:intralink-;e035;326;737X0 ¼ ½ϕSignalðBÞ − ϕSignalðAÞ�; (35)

is the ideal noise-free result.
Due to the wrap-around properties of trigonometric

functions and inversions, Eq. (33) gives an image of
the load-induced signal-phase variation but with speckle
noise.

In much of the PS shearography literature, noise terms are
completely ignored and XPS ¼ X0 is directly presented at the
final result. The speckle-noise terms in Eq. (33) are

EQ-TARGET;temp:intralink-;e036;63;600

n
N½ϕSpeckle;ϕSignalðBÞ� − N½ϕSpeckle;ϕSignalðAÞ�g

¼

8>>>>>>>>>>><
>>>>>>>>>>>:

2π

�
−Θ½ϕSpeckle þ ϕSignalðBÞ − π�
þΘ½ϕSpeckle þ ϕSignalðAÞ − π�

�
; ϕSignalðAÞ ≥ 0 andϕSignalðBÞ ≥ 0

−2π
�
Θ½ϕSpeckle þ ϕSignalðBÞ − π�
þΘ½ϕSpeckle þ ϕSignalðAÞ þ π�

�
; ϕSignalðAÞ < 0 andϕSignalðBÞ ≥ 0

þ2π

�
Θ½ϕSpeckle þ ϕSignalðBÞ þ π�
þΘ½ϕSpeckle þ ϕSignalðAÞ − π�

�
; ϕSignalðAÞ ≥ 0 andϕSignalðBÞ < 0

þ2π

�
Θ½ϕSpeckle þ ϕSignalðBÞ þ π�
−Θ½ϕSpeckle þ ϕSignalðAÞ þ π�

�
; ϕSignalðAÞ < 0 andϕSignalðBÞ < 0

(36)

Equation (36) implies that the speckle noise vanishes as
the signal change vanishes, providing vastly improved per-
formance versus two-shot nonphase-stepped shearography.
The nonspeckle sources do not vanish and some can reintro-
duce the speckle noise at any signal level. A fuller treatment
of noise, for PR shearography, will be the subject of a
future paper.

Equation (33) can also be obtained using two sets of three
(instead of four) specklegrams, if the phase steps are chosen
to be

EQ-TARGET;temp:intralink-;e037;63;331 ϕStepð1Þ ¼ 0; ϕStepð2Þ ¼ ð2π∕3Þ; and ϕStepð3Þ
¼ ð4π∕3Þ: (37)

In which case, the ratios to be used in Eq. (32) are

EQ-TARGET;temp:intralink-;e038;63;270RLoad_AorB ¼
ffiffiffi
3

p ½Sð2Þ − Sð3Þ�
½Sð1Þ − Sð2Þ� þ ½Sð1Þ − Sð3Þ�

����
Load_AorB

:

(38)

Thus, the previous state-of-the-art requires at least six
specklegrams in order to yield the signal phase changes
between loading conditions. In the most-basic implementa-
tion, the specklegrams must be acquired in groups for which
the loading conditions are constant. This is readily accom-
plished for quasistatic loads under the control of the inves-
tigator: load A is applied, the system is allowed to settle, PS
specklegrams (at least 3) are acquired, then load B is applied,
the system is again allowed to settle, and another set of PS
specklegrams is acquired.

If the signal varies with time too quickly for quasistatic
operation, then the load must be controlled or predicted
in such a way that the controlled phases are synchronized

with the signal phase so that sets of specklegrams having the
same relationships of phase steps to signal phases can be
acquired. For example, if the surface loading varies periodi-
cally with a period T, then acquiring specklegrams with
phases ϕStepð1Þ, ϕStepð2Þ, and ϕStepð3Þ at times TA, TA þ T,
and TA þ 2T, respectively, would yield specklegrams for load
A. Similarly, acquiring specklegrams with phases ϕStepð1Þ,
ϕStepð2Þ, and ϕStepð3Þ, at times TB, TB þ T, and TB þ 2T,
respectively, would yield specklegrams for load B. The system
operator chooses the difference between TA and TB to maxi-
mize the likelihood of a significant signal difference.

The set of requirements that: (1) the controlled phases in
the shearography system be synchronized with the loading
conditions and (2) that at least two groups of specklegrams
be used to construct a shearogram is a significant limiter of
performance for very dynamic conditions in which the inves-
tigator cannot control or predict the loading of the area being
investigated, or in which the time to acquire synchronized
sets of specklegrams exceeds τC. Examples include imaging
in situations in which dwell times are limited by hazardous
conditions (as in a combat situation), or in which the excitation
causing the loading is transient and not controlled by the
investigator. One alternative is to construct shearograms
by differencing specklegrams acquired under loading condi-
tions with constant phase steps (that is, with no phase step-
ping at all), implementing Eq. (22). This two-shot approach
yields very noisy estimates of the differences between load-
ing conditions, typically requiring many repeated measure-
ments to achieve high sensitivity, limiting the performance of
the measurement system for dynamic phenomena.

An alternative to sequential phase-stepping is to imple-
ment a spatial-multiplexing method, such as in Ref. 4,
then apply Eq. (32). Spatial multiplexing sacrifices spatial
resolution in order to achieve faster PS image acquisition.
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An additional cost of spatial multiplexing is that the imaging
system must operate at a higher f∕#, because the camera blur
function must distribute phase information over a multipixel
area that is typically four times the area of a single pixel. A
higher f∕# requires increasing the laser power to compensate
for the reduced light-gathering power of the optics. Trading
resolution and sensitivity for speed is not always possible
or desirable, so we have developed another approach: PR
shearography.

2.4 Phase-Resolved Shearography Separates Signal
and Speckle Phase Dynamically

In PR shearography, achieving a highly sensitive estimate of
the signal phase:

• requires four (not six or eight) images,
• computes a single shearogram,

• exploits uncontrolled (asynchronous) loading
conditions,

• operates at the full resolution of the optics, and
• provides unambiguous signal-phase-gradient signs.

The mathematical underpinnings are based on Eq. (19),
with the trigonometric functions expanded as follows:

EQ-TARGET;temp:intralink-;e039;326;672

cos½ϕSpeckle þ ϕSignalðiÞ þ ϕStepðiÞ�
¼ cos½ϕSignalðiÞ þ ϕStepðiÞ�: � cos ϕSpeckle

þ sin½ϕSignalðiÞ þ ϕStepðiÞ�: � sin ϕSpeckle: (39)

The controlled phase ϕStepðiÞ is varied for every image as
the load changes over time. Substituting Eq. (39) into
Eq. (23) gives

EQ-TARGET;temp:intralink-;e040;63;547

Ri;j;k;l ¼ ½Si − Sj�∕½Sk − Sl�

≈
cos½ϕSpeckle þ ϕSignalðiÞ þ ϕStepðiÞ� − cos½ϕSpeckle þ ϕSignalðjÞ þ ϕStepðjÞ�
cos½ϕSpeckle þ ϕSignalðkÞ þ ϕStepðkÞ� − cos½ϕSpeckle þ ϕSignalðlÞ þ ϕStepðlÞ�

≈

�
cos½ϕSignalðiÞ þ ϕStepðiÞ�
− cos½ϕSignalðjÞ þ ϕStepðjÞ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalðiÞ þ ϕStepðiÞ�
− sin½ϕSignalðjÞ þ ϕStepðjÞ�

�
�
cos½ϕSignalðkÞ þ ϕStepðkÞ�
− cos½ϕSignalðlÞ þ ϕStepðlÞ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalðkÞ þ ϕStepðkÞ�
− sin½ϕSignalðlÞ þ ϕStepðlÞ�

� ; (40)

where

EQ-TARGET;temp:intralink-;e041;63;400 cot ϕSpeckle ¼ cos ϕSpeckle:∕ sin ϕSpeckle: (41)

In Eq. (40), all of the random speckle noise is in the terms
proportional to ðcotϕSpeckleÞ, so it is possible to dynamically
vary the controlled phases fϕStepðjÞg so as to minimize the
speckle noise in the shearogram R. For the cases of very

small signal phases, it is even possible to make the speckle
noise terms infinitesimal, providing exquisite sensitivity to
signal phases.

To see this, consider a surface moving under continuously
time-varying load such that points separated by the shear
distance move with a time-varying relative amplitude ϕðtÞ,
which is a small fraction of the wavelength of the laser
radiation. For a four-shot series, expand the trigonometric
functions in Eq. (40) to give

EQ-TARGET;temp:intralink-;e042;63;298

Ri;j;k;l ¼ ½Si − Sj�∕½Sk − Sl�

≈
cos½ϕSpeckle þ ϕSignalðiÞ þ ϕStepðiÞ� − cos½ϕSpeckle þ ϕSignalðjÞ þ ϕStepðjÞ�
cos½ϕSpeckle þ ϕSignalðkÞ þ ϕStepðkÞ� − cos½ϕSpeckle þ ϕSignalðlÞ þ ϕStepðlÞ�

¼

�
cos½ϕSignalðiÞ þ ϕStepðiÞ�
− cos½ϕSignalðjÞ þ ϕStepðjÞ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalðiÞ þ ϕStepðiÞ�
− sin½ϕSignalðjÞ þ ϕStepðjÞ�

�
�
cos½ϕSignalðkÞ þ ϕStepðkÞ�
− cos½ϕSignalðlÞ þ ϕStepðlÞ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalðkÞ þ ϕStepðkÞ�
− sin½ϕSignalðlÞ þ ϕStepðlÞ�

� : (42)

If the phase-steps are chosen so that
EQ-TARGET;temp:intralink-;e043;63;150

cos ϕStepð4Þ ¼ cos ϕStepð1Þ ¼ 1;

sin ϕStepð4Þ ¼ sin ϕStepð1Þ ¼ 0;

cos ϕStepð3Þ ¼ cos ϕStepð2Þ; and
sin ϕStepð3Þ ¼ − sin ϕStepð2Þ ≠ 0; (43)

and we use the relations

EQ-TARGET;temp:intralink-;e044;326;161

cos½ϕSignalðiÞ þ ϕStepðiÞ�
¼ ½cos ϕSignalðiÞ cos ϕStepðiÞ − sin ϕSignalðiÞ sin ϕStepðiÞ�;

and

sin½ϕSignalðiÞ þ ϕStepðiÞ�
¼ ½cos ϕSignalðiÞ sin ϕStepðiÞ þ sin ϕSignalðiÞ cos ϕStepðiÞ�;

then∶ (44)

Optical Engineering 114103-7 November 2019 • Vol. 58(11)

DeWeert et al.: Principles of surface-phase-resolved shearography



EQ-TARGET;temp:intralink-;e045;63;740

R4;1;3;2 ≈

�
cos½ϕSignalð4Þ þ ϕStepð4Þ�
− cos½ϕSignalð1Þ þ ϕStepð1Þ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalð4Þ þ ϕStepð4Þ�
− sin½ϕSignalð1Þ þ ϕStepð1Þ�

�
�
cos½ϕSignalð3Þ þ ϕStepð3Þ�
− cos½ϕSignalð2Þ þ ϕStepð2Þ�

�
: � cot ϕSpeckle −

�
sin½ϕSignalð3Þ þ ϕStepð3Þ�
− sin½ϕSignalð2Þ þ ϕStepð2Þ�

�

≈

2
66664

� ½cos ϕSignalð4Þ cos ϕStepð4Þ − sin ϕSignalð4Þ sin ϕStepð4Þ�
−½cos ϕSignalð1Þ cos ϕStepð1Þ − sin ϕSignalð1Þ sin ϕStepð1Þ�

�
: � cot ϕSpeckle

−
� ½cos ϕSignalð4Þ sin ϕStepð4Þ þ sin ϕSignalð4Þ cos ϕStepð4Þ�
−½cos ϕSignalð1Þ sin ϕStepð1Þ þ sin ϕSignalð1Þ cos ϕStepð1Þ�

�
3
77775

2
66664

� ½cos ϕSignalð3Þ cos ϕStepð3Þ − sin ϕSignalð3Þ sin ϕStepð3Þ�
−½cos ϕSignalð2Þ cos ϕStepð2Þ − sin ϕSignalð2Þ sin ϕStepð2Þ�

�
: � cot ϕSpeckle

−
� ½cos ϕSignalð3Þ sin ϕStepð3Þ þ sin ϕSignalð3Þ cos ϕStepð3Þ�
−½cos ϕSignalð2Þ sin ϕStepð2Þ þ sin ϕSignalð2Þ cos ϕStepð2Þ�

�
3
77775

≈

� ½cos ϕSignalð4Þ − cos ϕSignalð1Þ�: � cot ϕSpeckle

−½sin ϕSignalð4Þ − sin ϕSignalð1Þ�

�
2
66664

� ½cos ϕSignalð3Þ − cos ϕSignalð2Þ� cos ϕStepð2Þ
þ½sin ϕSignalð3Þ þ sin ϕSignalð2Þ� sin ϕStepð2Þ

�
: � cot ϕSpeckle

þ
� ½cos ϕSignalð3Þ þ cos ϕSignalð2Þ� sin ϕStepð2Þ
−½sin ϕSignalð3Þ − sin ϕSignalð2Þ� cos ϕStepð2Þ

�
3
77775

(45)

For small signals, cos ϕSignalðjÞ ≈ 1 (to second order), and sin ϕSignalðjÞ ≪ 1. For a system chosen to have a significant
step size, sin ϕSignalðjÞ ≪ sin ϕStepð2Þ, then, to first order in signal phase, we obtain the PR shearogram

EQ-TARGET;temp:intralink-;e046;63;424

ShearogramPR ≡ R4;1;3;2

≈
f½cos ϕSignalð4Þ − cos ϕSignalð1Þ�: � cot ϕSpeckle − ½sin ϕSignalð4Þ − sin ϕSignalð1Þ�g2

66664

� ½cos ϕSignalð3Þ − cos ϕSignalð2Þ� cos ϕStepð2Þ
þ½sin ϕSignalð3Þ þ sin ϕSignalð2Þ� sin ϕStepð2Þ

�
: � cot ϕSpeckle

þ
� ½cos ϕSignalð3Þ þ cos ϕSignalð2Þ� sin ϕStepð2Þ
−½sin ϕSignalð3Þ − sin ϕSignalð2Þ� cos ϕStepð2Þ

�
3
77775

≈
−½sin ϕSignalð4Þ − sin ϕSignalð1Þ��þ2 sin ϕStepð2Þ þ ½sin ϕSignalð3Þ þ sin ϕSignalð2Þ� sin ϕStepð2Þ: � cot ϕSpeckle

−½sin ϕSignalð3Þ − sin ϕSignalð2Þ�: � cos ϕStepð2Þ

�

≈K: � ½sin ϕSignalð4Þ − sin ϕSignalð1Þ�: (46)

If the phase-stepping optics are well designed, then

EQ-TARGET;temp:intralink-;e047;63;225K ¼ −0.5∕ sin ϕStepð2Þ; (47)

is a scalar, constant across the image. For small signals, the
first-order approximation

EQ-TARGET;temp:intralink-;e048;63;1608><
>:
2 sinϕStepð2Þ
þ½sinϕSignalð3ÞþsinϕSignalð2Þ�sinϕStepð2Þ:�cotϕSpeckle

−½sinϕSignalð3Þ−sinϕSignalð2Þ�:�cosϕStepð2Þ

9>=
>;

≈2 sinϕStepð2Þ; (48)

is justified by (1) the fact that the numerator of Eq. (46) is
already first order in signal, and (2) the relative rarity of

speckles for which the magnitude of cot ϕSpeckle is signifi-
cant compared to 1∕ sin ϕSignalðjÞ.

The significance of Eq. (42) with the phase constraints in
Eq. (43) is that the PR shearogram is directly proportional to
the signal changes between the measurement times t1 and t4.
The resulting scale factor K in Eq. (46) is immaterial—the
output of the algorithm can be scaled to whatever units are
convenient—such as waves, radians, or meters of ground
motion. Unlike the conventional PS method embodied in
Eq. (32), the signs of small signal phases are preserved, with-
out the processing-intensive phase-unwrapping required by
arctangent operations. In addition, computation of only one
shearogram is required, reducing both noise and computa-
tional burden.

The main interest of our work is in identifying hidden
structures and defects, for which a shearogram or a sequence
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of shearograms is sufficient. There may also be applications
for which the absolute phase change is desired, in addition to
phase differences across a shear field. The PR shearograms
provide the relevant data for subsequent processing for such
cases. For the example of a vibrating surface, from Eq. (20),
we have

φSignalðr;ΔrShear; tjÞ ¼ 4π
λ × ½hðrþ ΔrShear; tjÞ − hðr; tjÞ�

so that the shearogram is
EQ-TARGET;temp:intralink-;e049;63;664

ShearogramPRðr; t1; t4Þ
≈K:� ½sin ϕSignalð4Þ− sin ϕSignalð1Þ�
≈K:� ½ϕSignalð4Þ−ϕSignalð1Þ�

≈
�
4π

λ
K
�
:

� ½hðrþΔrShear; t4Þ−hðr; t4Þ−hðrþΔrShear; t1Þþhðr; t1Þ�

≈
�
4π

λ
K
�
:�f½hðrþΔrShear; t4Þ−hðrþΔrShear; t1Þ�

− ½hðr; t4Þ−hðr; t1Þ�g: (49)

We now define a temporal strain field as

EQ-TARGET;temp:intralink-;e050;63;496εStrainðt1; t4Þ ¼ ½hðt4Þ − hðt1Þ�; (50)

where we have dropped the explicit reference to the loci. If
the shearing field ΔrShear is a simple linear displacement of
the entire image, then the shear is separable in the row and
column directions and can be represented by a pair of matri-
ces SL and SR operating to the left and right sides of the strain
field so that

EQ-TARGET;temp:intralink-;e051;63;399ShearogramPRðt1; t4Þ ≈
�
4π

λ
K
�
:

� ½SLεStrainðt1; t4ÞSR − εStrainðt1; t4Þ�: (51)

Applying one of the various regularized pseudoinversion
methods to Eq. (51) then yields the temporal strain field
εStrainðt1; t4Þ, to within a global constant. If there are points
(such as clamped edges) at which the absolute strain is
known, the global constant can be determined, and the abso-
lute strain computed for the entire image. Analysis of the
performance of pseudoinverting Eq. (51) to obtain time-de-
pendent strain field εStrainðt1; t4Þ is a topic for future research.

Multiple choices for the intermediate phase steps are pos-
sible, consistent with Eq. (43). For a linearly actuated con-
stant-speed phase-shifting element (such as in Fig. 1) and a
laser with constant pulse repetition rate, the practical imple-
mentation is eased by choosing equal steps in phase, such that

EQ-TARGET;temp:intralink-;e052;63;193ϕStepð1Þ ¼ 0; ϕStepð2Þ ¼ 2π∕3; ϕStepð3Þ
¼ 4π∕3; and ϕStepð4Þ ¼ 2π: (52)

With Eq. (52) choice of steps, the PR shearogram gives
EQ-TARGET;temp:intralink-;e053;63;132

ShearogramPR ¼ ½Sð4Þ − Sð1Þ�
½Sð2Þ − Sð3Þ�

≈
1ffiffiffi
3

p ½sin ϕSignalð4Þ − sin ϕSignalð1Þ�: (53)

The PR processing can also be applied continuously, for
example, computing ShearogramPR for four shots with
phases ð0;þ2π∕3;þ4π∕3; 0Þ at times ð0;Δt; 2Δt; 3ΔtÞ,
then four shots with phases ðþ2π∕3;þ4π∕3; 0;þ2π∕3Þ at
times ðΔt; 2Δt; 3Δt; 4ΔtÞ, then four shots with phases
ðþ4π∕3; 0;þ2π∕3;þ4π∕3Þ at times ð2Δt; 3Δt; 4Δt; 5ΔtÞ,
etc., to produce a continuous movie of the surface motion.
The preservation of both the amplitude and the phase of the
motion facilitates backpropagation analysis, for example, to
infer the locations of sources and scatters.

The only drawback to choosing the phase steps in Eq. (52)
is that for large signals, ShearogramPR will yield signal esti-
mates that are biased between positive and negative values.
An unbiased estimator is provided by instead choosing phase
steps of

EQ-TARGET;temp:intralink-;e054;326;587ϕStepð1Þ ¼ 0; ϕStepð2Þ ¼ π∕2; ϕStepð3Þ
¼ 3π∕2; and ϕStepð4Þ ¼ 2π; (54)

so that

EQ-TARGET;temp:intralink-;e055;326;515ShearogramPR ¼ ½Sð4Þ − Sð1Þ�
½Sð2Þ − Sð3Þ�

≈
1

2
½sin ϕSignalð4Þ − sin ϕSignalð1Þ�:

(55)

The application of Eq. (54) entails the complication of an
unequal rate of phase stepping with time but provides an
unbiased estimate, so we designate it as the unbiased sequence.

To summarize this overview: we have reviewed two com-
monly used shearography methods: NPS shearography from
one shearogram using two shots, Eq. (22), and conventional
PS shearography from two shearograms with six to eight
shots, Eq. (32). We have also touched on a variation, spatially
multiplexed conventional PS shearography from two shearo-
grams using two shots at reduced resolution, Eq. (32). We
then presented a new method, PR shearography that creates
one shearogram from four shots collected asynchronously
with the acoustic excitation, Eq. (53). The asynchronous
operation of PR shearography removes a limiter of other PS
methods, such as the need to collect four shearograms simul-
taneously (which limits resolution and f∕#), or to hold the sys-
tem stationary for all four laser pulses (which limits coverage
rate), or to synchronize the laser pulses with the phase of
the surface motion (impossible in many applications).

PR shearography is the subject of US Patent # 94767005

and other patents in process, and its application and exploi-
tation in airborne systems is facilitated by several additional
shearography innovations.6–9

To compare the performance of the various shearography
methods, we compute their noise characteristics, outlined in
the following section.

3 Noise Analysis
The dominant noise source in shearography is laser speckle,
which cannot be ameliorated by strategies such as increasing
laser power or cooling the optics, that reduce other noise
sources such as photon-counting noise or dark noise. Thus,
the noise analysis in this paper focuses on the speckle noise.
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Extensions to the other noise sources will be presented in
future publications.

The noise statistic compute here is the full-width at half-
maximum (FWHM) of the probability distribution of signal
phase inferred from each shearography method.

3.1 Basic Two-Shot Shearography Speckle Noise

The statistics of the NPR shearogram ShearogramNPR can
be derived from the PDFs, Eq. (11), of the intensities and
the PDF, Eq. (10), of the random speckle phase difference
ϕSpeckle:

EQ-TARGET;temp:intralink-;e056;63;626

ShearogramNPR ¼ ½Sð2Þ − Sð1Þ�
¼ −jE0j: � jEΔrj:

�
�−ðcos ϕSpeckleÞ: � ½cos ϕSignalð2Þ − cos ϕSignalð1Þ�
þðsin ϕSpeckleÞ: � ½sin ϕSignalð2Þ − sin ϕSignalð1Þ�

�

≈ −jE0j: � jEΔrj: � sin ϕSpeckle:

� ½sin ϕSignalð2Þ − sin ϕSignalð1Þ�: (56)

The ratio of the measured shearogram to the input signal
change is

EQ-TARGET;temp:intralink-;e057;63;489RNPR ¼ ShearogramNPR

½sin ϕSignalð1Þ − sin ϕSignalð2Þ�
¼ jE0j: � jEΔrj: � sin ϕSpeckle: (57)

To compute the statistics ofRNPR, we first perform a coor-
dinate transformation from ðsin ϕSpeckle; jE0j: � jEΔrjÞ to
ðRNPR; jE0j; jEΔrjÞ, using the Jacobian of the transformation,
then integrate over the variables jE0j and jEΔrj to get the PDF
PðRNPRÞ:

EQ-TARGET;temp:intralink-;e058;63;371PðRNPRÞ ¼
Z∞
0

djE0j
Z∞
0

djEΔrjPðRNPR; jE0j; jEΔrjÞ: (58)

The coordinate transformation gives

EQ-TARGET;temp:intralink-;e059;63;303

PðRNPR; jE0j; jEΔrjÞ ¼ Pðsin ϕSpeckleÞ: � PðjE0jÞ: � PðjEΔrjÞ:

�

���������

∂ sin ϕSpeckle

∂RNPR

∂jE0j
∂RNPR

∂jEΔrj
∂RNPR

∂ sin ϕSpeckle

∂jE0j
∂jE0j
∂jE0j

∂jEΔrj
∂jE0j

∂ sin ϕSpeckle

∂jEΔrj
∂jE0j
∂jEΔrj

∂jEΔrj
∂jEΔrj

���������
¼ Pðsin ϕSpeckleÞ: � PðjE0jÞ: � PðjEΔrjÞ: �

∂ sin ϕSpeckle

∂RNPR

¼ Pðsin ϕSpeckleÞ: � ½PðjE0jÞ:∕jE0j�: � ½PðjEΔrjÞ:∕jEΔrj�;
(59)

with the values of sin ϕSpeckle evaluated at

EQ-TARGET;temp:intralink-;e060;63;136 sin ϕSpeckle ¼ RNPR:∕ðjE0j: � jEΔrjÞ: (60)

PDF of (sin ϕSpeckle) is

EQ-TARGET;temp:intralink-;e061;326;590Pðsin ϕSpeckleÞ ¼ PðϕSpeckleÞð∂ϕSpeckle∕∂ sin ϕSpeckleÞ

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϕSpeckle

q : (61)

On the interval* −π∕2 < ϕSpeckle < þπ∕2, Eq. (61) gives
a “cat ears” distribution with integrable singularities at
sin ϕSpeckle ¼ �1, as shown in Fig. 2. Thus, while the mean
value of sin ϕSpeckle is zero, the most likely values are the
extremes ±1.

Substituting Eqs. (59)–(61), into Eq. (58) gives
EQ-TARGET;temp:intralink-;e062;326;452

PðRNPRÞ ¼
Z∞
0

djE0j
Z∞
0

djEΔrjPðRNPR; jE0j; jEΔrjÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihI0i: � hIΔri
p : � exp

	
−2

jRNPRjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihIΔri: � hI0i
p 


:

(62)

The mean and most likely values ofRNPR are always zero,
although it is unbounded, ranging between �∞. The signals
of interest are jXNPRj, given as

EQ-TARGET;temp:intralink-;e063;326;315

jXNPRj ¼ 2jShearogramNPRj:∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIΔri: � hI0i

p
¼ 2ð½sin ϕSignalð1Þ− sin ϕSignalð2Þ�:∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIΔri: � hI0i

p
Þ:

�RNPR

¼ 2X0: �RNPR:∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hIΔri: � hI0i

p
; (63)

where the “true” input signal is

EQ-TARGET;temp:intralink-;e064;326;212X0 ¼ j sin ϕSignalð1Þ − sin ϕSignalð2Þj: (64)

The probability distribution for jXNPRj, derived from
PðRNPRÞ is

EQ-TARGET;temp:intralink-;e065;326;152PðXNPRÞ ¼ ½expð−jXNPRj:∕X0Þ�:∕X0: (65)

As Fig. 3 shows, regardless of signal level, the most-likely
value of XNPR is zero, annihilating the signal signs. The
FWHM is 2X0: � lnð0.5X0Þ. Equation (63) shows the diffi-
culty of estimating the signal phase from the shearograms
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Fig. 2 Probability distribution in Eq. (61). While the mean value is
zero, the most likely values are singularities at sin ϕSpeckle ¼ �1, pre-
senting a large noise source for speckle imaging.
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since the actual mean signal levels hIΔri and hI0i are often
not well known or precisely characterizable. This makes the
scaling, from shearograms to signal phases, dependent on
postprocessing and various “phase unwrapping” methods.
For signals smaller than a wavelength of light, the actual
magnitude of the signal is thus indeterminate.

3.2 Phase-Stepped Shearography Speckle Noise

Equation (36), together with conservation of probabilities,
yields the probability distribution of the estimated PS-
shearography signal XPS is

EQ-TARGET;temp:intralink-;e066;63;421PðXPSÞ ¼
�
1 −

jX0j
2π

�
: � δðXPS − X0Þ þ

jX0j
2π

:

�
�
δ½XPS − ð−2π þ X0Þ�; X0 > 0

δ½XPS − ð2π þ X0Þ�; X0 < 0
: (66)

Because the true range of X0 and XPS are both ð−π;þπÞ
radians, Eq. (66) can be rectified by adding �2π to values
outside the valid range so that

EQ-TARGET;temp:intralink-;e067;63;314PðXPSÞ ¼ δðXPS − X0Þ: (67)

In real-world applications, other sources of noise blur the
PDFs. Resolving the ambiguities requires processing groups
of adjacent pixels, using various processing methods.10

3.3 Phase-Resolved Shearography Speckle Noise

The error ranges in the present method arise from the terms
containing elements proportional to ϕSpeckle. In the general
case for finite amplitudes is derived from Eqs. (42) and
(43), and for ShearPR_1 yields

EQ-TARGET;temp:intralink-;e068;63;179

ShearogramPR ¼ ½ðS4Þ − ðS1Þ�
½ðS2Þ − ðS3Þ�

≈
S4;1 − C4;1: � cot ϕSpeckle

S3;2 − C3;2: � cot ϕSpeckle

; (68)

where

EQ-TARGET;temp:intralink-;e069;326;547

C4;1 ¼ ½cos ϕSignalð4Þ− cos ϕSignalð1Þ�;
S4;1 ¼ ½sin ϕSignalð4Þ− sin ϕSignalð1Þ�;

C3;2 ¼
� ½cos ϕSignalð2Þ− cos ϕSignalð3Þ�: � cos ϕStepð2Þ
−½sin ϕSignalð2Þ þ sin ϕSignalð3Þ�: � sin ϕStepð2Þ

�
;

and

S3;2 ¼
� ½sin ϕSignalð2Þ− sin ϕSignalð3Þ�: � cos ϕStepð2Þ
þ½cos ϕSignalð2Þ þ cos ϕSignalð3Þ�: � sin ϕStepð2Þ

�
:

(69)

The PDF for Eq. (68) is derived from conservation of
probabilities

EQ-TARGET;temp:intralink-;e070;326;389PðShearogramPRÞ ¼ PðcotϕSpeckleÞ: �
∂ðcotϕSpeckleÞ

∂ShearogramPR

;

(70)

evaluated at

EQ-TARGET;temp:intralink-;e071;326;328 cotϕSpeckle ¼
½S4;1 − S3;2: � ShearogramPR�
½C4;1 − C3;2: � ShearogramPR�

: (71)

Substituting

EQ-TARGET;temp:intralink-;e072;326;278PðcotϕSpeckleÞ ¼
1

π

∂ϕSpeckle

∂ðcotϕSpeckleÞ
¼ 1

π

	
1

1þ ðcotϕSpeckleÞ2


;

(72)

and

EQ-TARGET;temp:intralink-;e073;326;217

∂ðcot ϕSpeckleÞ
∂ShearogramPR

¼ ½C3;2: � S4;1 − S3;2: � C4;1�
½C4;1 − C3;2: � ShearogramPR�2

;

(73)

into Eq. (70) yields the probability distribution for the signal-
change estimate XPR

EQ-TARGET;temp:intralink-;e074;326;141PðXPRÞ ¼
1

π

W
½ðXPR − XMLÞ2 þW2� ; (74)

where

EQ-TARGET;temp:intralink-;e075;326;86XPR ¼ ShearogramPR: �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

3;2 þ S23;2

q
; (75)
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Fig. 3 NPR shearogram-output PDFs from Eq. (65) for various true signals X 0. NPR shearography gives
ambiguous sign and always has a most likely value of zero. The true value X 0 is estimated by processing
many adjacent shearogram pixels.
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EQ-TARGET;temp:intralink-;e076;63;741XML ¼ ½C3;2: � C4;1 þ S3;2: � S4;1�:∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

3;2 þ S23;2

q
; (76)

and

EQ-TARGET;temp:intralink-;e077;63;713W2 ¼ ½C4;1: � S3;2 − C3;2: � S4;2�2:∕½C2
3;2 þ S23;2�: (77)

Equation (74) is a Cauchy-type distribution for XPR, sym-
metrically distributed about the most-likely vector XPR¼XML,
with width-parameter vectorW. The most-likely value is also
the median of the distribution, and the FWHM equals 2W.
As the signal levels become small, the parameters in Eq. (77)
have the limits

EQ-TARGET;temp:intralink-;e078;326;752

XML →
small signal

½ϕSignalð4Þ−ϕSignalð1Þ� ¼X0; and

W →
small signal

1

2
j½ϕSignalð2ÞþϕSignalð3Þ�½ϕSignalð4Þ−ϕSignalð1Þ�j:

(78)

Thus, even though the distribution’s variance is unde-
fined, the widthsW of the distribution fall to zero faster than
the medians XML as the signals approach zero, allowing
exquisite sensitivity to small signal phases.

For the general case of nonsmall signal phases with the
unbiased sequence of phase steps in Eq. (54), the width
parameter reduces to

EQ-TARGET;temp:intralink-;e079;63;590Wunbiased ¼

�
cos½ϕSignalð4Þ − ϕSignalð2Þ� þ cos½ϕSignalð4Þ − ϕSignalð3Þ�
− cos½ϕSignalð1Þ − ϕSignalð2Þ� − cos½ϕSignalð1Þ − ϕSignalð3Þ�

�
1∕2

f2þ 2 cos½ϕSignalð3Þ − ϕSignalð2Þ�g1∕2
; (79)

and the most-likely value becomes

EQ-TARGET;temp:intralink-;e080;63;518XML;unbiased ¼

�
sin½ϕSignalð4Þ − ϕSignalð2Þ� þ sin½ϕSignalð4Þ − ϕSignalð3Þ�
þ sin½ϕSignalð3Þ − ϕSignalð1Þ� þ sin½ϕSignalð2Þ − ϕSignalð1Þ�

�
f2þ 2 cos½ϕSignalð3Þ − ϕSignalð2Þ�g1∕2

: (80)

In the special case of a linear variation of signal phase
with time, the signal phase differences are equal in each time
interval so that the width Wquarter-steps ⇒ 0, even for large
signals, and the PDF becomes a delta function at the most-
likely values XML;unbiased:

EQ-TARGET;temp:intralink-;e081;63;394XML;unbiased ⇒
ffiffiffi
2

p 	
sin

�
2

3
X0

�

þ sin

�
1

3
X0

�

∕
	
1þ cos

�
1

3
X0

�

1∕2

: (81)

For X0 in the interval ð−π;þπÞ, Eq. (81) is monotonic
and smoothly varying, and thus numerically invertible to
yield an unbiased estimate of X0 so that for linear signal
variation with time (or for small signals with any time
dependence):

EQ-TARGET;temp:intralink-;e082;63;264PðXPR;debiasedÞ ¼ δðXPR;debiased − X0Þ: (82)

3.4 Phase-Resolved Statistics with 2π/3 Steps

For a many-shot sequence, synchronizing phase steps pro-
duced by a moving phase-element with a pulsed laser is greatly
facilitated if the phase steps are equally spaced in 1∕3-wave
steps of sequence Eq. (52) ð0; 2π∕3; 4π∕3; 2π; : : : Þ rather
than the unequal intervals ð0; π∕2; 3π∕2; 2π; : : : Þ. In this
case, Eq. (69) gives

EQ-TARGET;temp:intralink-;e083;326;449

C4;1 ¼ ½cos ϕSignalð4Þ − cos ϕSignalð1Þ�;
S4;1 ¼ ½sin ϕSignalð4Þ − sin ϕSignalð1Þ�;

C3;2 ¼
1

2

n
−
ffiffiffi
3

p
½cos ϕSignalð2Þ − cos ϕSignalð3Þ�

− ½sin ϕSignalð2Þ þ sin ϕSignalð3Þ�
o
; and

S3;2 ¼
1

2

n
½sin ϕSignalð2Þ − sin ϕSignalð3Þ�

−
ffiffiffi
3

p
½cos ϕSignalð2Þ þ cos ϕSignalð3Þ�

o
: (83)

Figure 4 shows PDFs from Eq. (74) for several cases,
obtained by substituting Eq. (83) into Eqs. (76) and (77).
This case is for a linear phase variation over time, with
X0 ¼ ½ϕSignalð4Þ − ϕSignalð1Þ�.

Unlike the unbiased optimal sequence, Eq. (54), the equal-
step values in Eq. (52) give widths that do not vanish identi-
cally for linear signal ramps, though they still go to zero as the
signal levels become small. Thus, there is a trade-off between
mechanical simplicity and surface-vibration sensitivity in
selecting step sequences for PR shearography.

For linear ramps, Eq. (83) reduce to

EQ-TARGET;temp:intralink-;e084;326;193

C4;1 ¼ ½cosðX0Þ − 1�; S4;1 ¼ sinðX0Þ;

C3;2 ¼
1

2

n
−
ffiffiffi
3

p
½cosðX0∕3Þ − cosð2X0∕3Þ�

− ½sinðX0∕3Þ þ sinð2X0∕3Þ�
o
; and

S3;2 ¼
1

2

n
½sinðX0∕3Þ − sinð2X0∕3Þ� −

ffiffiffi
3

p
½cosðX0∕3Þ

þ cosð2X0∕3Þ�
o
: (84)
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3.5 Speckle Statistics Summary

Figure 5 graphs the PDFs for the various shearography
methods. The perfect signal reconstructions of the PS and
PR methods rely on speckle persistence during the image-
acquisition time, the exact speckle registration between
images, and the absence of nonspeckle noise sources.

Figure 6 compares PDF examples for NPR shearography
to PR shearography for two different phase-step sequences:
the unbiased sequence ð0; π∕2; 3π∕2; 2πÞ radians and the
equal-phase sequence ð0; 2π∕3; 4π∕3; 2πÞ radians. In this
example, the true signal is relatively large, 0.8 rad
(≈1∕8 wave). Both the unbiased and equal-step PR sequen-
ces have most-likely values near the true signal value,
whereas the NPR shearography has most-likely value of

zero. The main difference between the two PR step sequen-
ces is in the widths of the distributions—the unbiased distri-
bution approximates a delta function, whereas the equal-time
distribution has widths from Eq. (77).

3.6 Nonspeckle Sources of Noise

While random laser speckle dominates the noise of shearog-
raphy systems, other noise sources also contribute, such as
photon-counting noise, read noise, dark noise, and fixed-
pattern noise. In addition, any electrical or mechanical
effects that cause the controlled phase to deviate from the
nominal values also introduce noise. Our data and analyses
show that these effects interact in nonlinear ways. We have
developed system-design and processing strategies that
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Fig. 5 Comparison of PDFs for two-shot NPR shearography Eq. (65), standard PS shearography
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shearography perfectly reconstruct the input signal, whereas NPR shearography yields an exponential
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mitigate these noise sources, which will be the subject of
future publications.

4 Experimental Confirmation
To test the PR shearography system with a controlled con-
ditions, we constructed a test target with a piezo-electrically
actuated deformation. The target was a 0.25-in.-thick alumi-
num plate with a thinned section. The thinned section
was 8 in. (20.3 cm) in diameter and thinned to 0.06in.

(1.52 mm). The method of exciting the thinned-aluminum
target is shown in Fig. 7. The front of the aluminum plate
was covered with custom-fabricated rough surface to provide
a laser-reflective surface representative of diffusely reflecting
natural surfaces. At the amplitudes studied, the thinned por-
tion is a thick membrane, with deflections described as11

EQ-TARGET;temp:intralink-;e085;326;467hðrÞ ¼ A½1 − ðr∕aÞ2�2 for r ≥ a; (85)

where
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Fig. 7 Laboratory target for shearography experiments.
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EQ-TARGET;temp:intralink-;sec4;326;752

r ¼ distance from center;

h ¼ height of deformation at radius r;

a ¼ radius of membrane ¼ 4 in:; and

A ¼ hð0Þ ¼ center deformation amplitude:

The quantity of interest for shearography is the shear
height, which is defined as the elevation difference between
two points separated by the shear vector. For two points sep-
arated by a shear vector ΔrShear on the membrane described
by Eq. (85), the shear distance is

Table 2 Circular-membrane deflection and phase steps for labora-
tory experiments.

Laser
pulse

Membrane
deflection at center

Phase step “equal
time” sequence

Phase step
“unbiased”
sequence

1 h0 0 0

2 h0 þ A∕3 λ∕3 λ∕4

3 h0 þ 2A∕3 2λ∕3 3λ∕4

4 h0 þ A λ Λ

(a)

Amplitude = 4µ,
Max. Shear 

height
≈ 760 nm

PR step sequence = 
0, 1/3, 2/3, 1 Waves

PR step sequence = 
0, 1/4, 3/4, 1 Waves

(b)

Amplitude = 3µ,
Max. Shear 

height
≈ 570 nm

(c)

Amplitude = 2µ,
Max. Shear 

height
≈ 380 nm

(d)

Amplitude = 1.5µ
Max. Shear 

height
≈ 285 nm

Sequence for equal 
inter-pulse times

Sequence for unbiased 
large amplitudes

Fig. 9 PR shearograms of a roughened diffusely coated circular-membrane target illuminated with
a λ ¼ 1064 nm laser. Shear height represents the actual sensitivity of the shearography system.
(Shear height is the change in displacement over the shear distance between the first and last laser
pulse.) Note that for small amplitudes, the sign of the signal is recovered in the raw shearograms, with
no additional computational or unwrapping steps. White is positive, black negative, and gray neutral.
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EQ-TARGET;temp:intralink-;e086;63;489hShearðrÞ ¼ ½hðjrþ ΔrShearjÞ − hðrÞ�

¼ A

�	
1 −

�jrþ ΔrShearj
a

�
2


2

−
	
1 −

�
r
a

�
2


2
�
:

(86)

This can be approximated as
EQ-TARGET;temp:intralink-;e087;63;411

hShearðrÞ ≈ ΔrShear · ∇hðrÞ ¼ AΔrShear · ∇
	
1 −

�
r
a

�
2


2

¼ 4

	
1 −

�
r
a

�
2


ΔrShear · r

a2
:

(87)

The shear height is maximized for r parallel to the shear
direction at the points where ðr∕aÞ2 ¼ 1∕3, yielding a maxi-
mum shear height (from first to last pulse) of

EQ-TARGET;temp:intralink-;e088;63;288hShear;Max ≈
8

3
ffiffiffi
3

p
�
ΔrShear

a

�
A: (88)

In these laboratory tests, the range to target was 0.93 m.
The camera focal length 25 mm, the laser wavelength λ
was 1064 nm, and the shear distance at target was 0.5 in.
(1.27 cm). The active portion of the target was 8 in. (20.5 cm)
in diameter. The shear distance was kept small because of
extreme sensitivity of the membrane to vibrations in the
laboratory. For the case a ¼ 4 in: and ΔrShear ¼ 0.5 in:,
Eq. (86) gives

EQ-TARGET;temp:intralink-;e089;63;155hShear;Max ≈ 0.19 × A; (89)

as shown in Fig. 8.
The test-target deformation and the shearography phase-

stepping mirror positions were varied as the laser pulsed, to
generate PR shearograms with the stepping sequences sum-
marized in Table 2.

PR shearograms are shown in Fig. 9, labeled with the
maximum shear heights for each membrane-deflection
amplitude. At large shear heights, greater than λ∕2, [(a) and
(b)], the equal-time sequence shows a bias between positive
(bright) and negative (dark) changes in surface elevation.
At low amplitudes (≪λ), the biases disappear, and all PR
sequences asymptote to the ideal case given by Eq. (78).

Figure 9 shows PR imagery for shear amplitudes of ∼0.27
waves of light. This is not the lower limit of resolution.
Under ideal conditions, we have achieved ground resolutions
(noise equivalent shear height) of 0.004 waves (2 nm with
532-nm light).12

Compared to standard two-image NPR shearography, our
data also confirm that PR shearography provides better phase
discrimination, reduced speckle noise, and improved fringe
contrast (Fig. 10). In our laboratory experiments, the SNR
improvement is over nine decibels, though applications in
natural environments may show less improvement. Future
publications will detail real-world performance from air-
borne systems.

5 Conclusions
This paper has outlined the basic physics and mathematics
of shearographic imaging, starting from first principles.
Standard methods for NPR shearography and phase-stepped
shearography were explained. The innovation of PR shear-
ography was introduced and compared to the prior art.
The key advantage of PR shearography versus standard NPR
or PS methods is its reduced sensitivity to random speckle
noise, and its ability to work asynchronously with the
motions of the surface being imaged.

After outlining the shearography methods, analysis of
speckle noise was presented, showing the statistical distribu-
tions of the various shearography methods. The analysis
tools also can be applied to more-comprehensive computa-
tions that include other noise sources.

Finally, we showed laboratory data that confirm the effi-
cacy of PR shearography.

Fig. 10 (a) “Butterfly” pattern using the basic two-shot shearography method. Only the amplitude of
the motion is resolved, not its sign. (b) Tests of PR shearography: blue areas have positive signal
(phase-gradient) change, red negative, and green areas were stationary. Because PR shearography
can resolve the sign of the surface phase gradient, it gives half as many fringes as NPR shearography.
This reduces the need for phase unwrapping for high signal amplitudes and completely eliminates
the need for phase unwrapping for low-amplitude signals.
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Future publications will cover:

• More-comprehensive noise analyses, both analytical
and from direct simulations, that include nonspeckle
sources, such as photon-counting and dark noise

• First-principles simulations (laser transmitter to surface
to receiver) of PR shearography, including:

○ Laser coherence
○ System aperture and f/#
○ Effects of receiver and transmitter motion and

rotation
○ Effects of atmospheric turbulence
○ Effects of polarization.

• Airborne and ground-based applications from moving
systems. Ground motion of a few tens of nanometers is
routinely resolved from a moving airborne platform
and will be detailed in future publications.

• Operation through scattering media

6 Appendix: Derivation of Equation Eq. (62)
Equation (62) is obtained by substituting Eqs. (9) and
(59)–(61), into Eq. (58)

EQ-TARGET;temp:intralink-;sec6;63;464PðRNPRÞ ¼
Z∞
0

djE0j
Z∞
0

djEΔrjPðRNPR; jE0j; jEΔrjÞ: ð58Þ

First, substitute Eq. (9)

EQ-TARGET;temp:intralink-;sec6;63;391PðjESjÞ ¼ 2ðjESj∕hISiÞ expð−jESj2∕hISiÞ; 0 ≤ jESj <∞:

(9)

Eq. (60)

EQ-TARGET;temp:intralink-;sec6;63;335 sin ϕSpeckle ¼ RNPR:∕ðjE0j: � jEΔrjÞ; (60)

and Eq. (61)

EQ-TARGET;temp:intralink-;sec6;63;292Pðsin ϕSpeckleÞ ¼ PðϕSpeckleÞð∂ϕSpeckle∕∂ sin ϕSpeckleÞ

¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϕSpeckle

q ; (61)

into Eq. (59)
EQ-TARGET;temp:intralink-;sec6;63;212

PðRNPR; jE0j; jEΔrjÞ ¼ Pðsin ϕSpeckleÞ: � ½PðjE0jÞ:∕jE0j�:
� ½PðjEΔrjÞ:∕jEΔrj�; (59)

to give

EQ-TARGET;temp:intralink-;e090;63;151PðRNPR; jE0j; jEΔrjÞ ¼
2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½RNPR:∕ðjE0j: � jEΔrjÞ�:2

p :

�
�

1

hI0i
: � 1

hIΔri
�
: � exp

�
−
jE0j:2
hI0i

�
: � exp

�
−
jEΔrj:2
hIΔri

�
:

(90)

With Eq. (90) inserted, Eq. (58) becomes

EQ-TARGET;temp:intralink-;e091;326;741

PðRNPRÞ ¼
2

πhI0i: � hIΔri
: �
Z∞
0

djE0j: � eð−ðjE0j:2Þ:∕hI0iÞ:

�
Z∞

jEΔrj¼jRNPRj:∕jE0j

djEΔrj: �
jE0j: � jEΔrj: � eð−ðjEΔrj:2Þ:∕hIΔriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjE0j: � jEΔrjÞ:2 −RNPR:2
p :

(91)

Next, carry out the integral over jEΔrj, using the changes
of variables

EQ-TARGET;temp:intralink-;e092;326;603x ¼ jEΔrj: � jE0j:∕RNPR; (92)

and

EQ-TARGET;temp:intralink-;e093;326;561y2 ¼ x2 − 1; (93)

to give
EQ-TARGET;temp:intralink-;e094;326;521 Z∞
jEΔrj¼jRNPRj:∕jE0j

djEΔrj:�
jE0j:� jEΔrj:� eð−jEΔrj:2:∕hIΔriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjE0j2:� jEΔrj2Þ−R2
NPR

p

¼ jRNPRj
jE0j

:�
Z∞
x¼1

dx
x�e

n
−
��

RNPR
jE0 j


:
2
�
:� x2

hIΔri

o
ffiffiffiffiffiffiffiffiffiffiffiffi
x2−1

p

¼ jRNPRj
jE0j

Z∞
y¼0

dy:�e
n
−
��

RNPR
jE0 j


:
2
�
:�ð1þy2Þ

hIΔri

o

¼ e

n
−
��

RNPR
jE0 j


:
2
�
:� 1

hIΔri

o
jRNPRj
jE0j

Z∞
y¼0

dy: �e
n
−
��

RNPR
jE0 j


:
2
�
:� ðy2Þ

hIΔri

o
:

(94)

The integral over y is just an error function so that
Eq. (94) further reduces to

EQ-TARGET;temp:intralink-;e095;326;302 Z∞
jEΔrj¼jRNPRj:∕jE0j

djEΔrj: �
jE0j: � jEΔrj: � eð−jEΔrj:2:∕hIΔriÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjE0j2: � jEΔrj2Þ − R2
NPR

p

¼ e

�
− RNPR :2

hIΔrijE0 j:2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
πhIΔri

p 1ffiffiffiffiffi
2π

p h ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
hIΔri

q
:∕
�
RNPR
jE0j
�i Z ∞

y¼0

dy:

� e

 
−1
2

y2n
1
2
hIΔri:∕½ðRNPRjE0 j Þ:2�

o
!

¼ e

�
− RNPR :2

hIΔrijE0 j:2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πhIΔri

p
: (95)
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Substituting Eq. (95) into Eq. (91) gives
EQ-TARGET;temp:intralink-;e096;63;741

PðRNPRÞ ¼
ffiffiffiffiffiffiffiffiffiffihIΔri

p
ffiffiffi
π

p hI0i: � hIΔri
: �
Z∞
0

djE0j: � e½−ðjE0j:2Þ:∕hI0i�:

� e
�
− RNPR :2

hIΔrijE0 j:2

�
: (96)

With the substitution x ¼ ðjE0j∕
ffiffiffiffiffiffiffiffihI0i

p Þ, Eq. (96)
becomes
EQ-TARGET;temp:intralink-;e097;63;635

PðRNPRÞ ¼
1ffiffiffi

π
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihI0i: � hIΔri
p : �

Z∞
0

dx:

� e
h
−x2− 1

x2

�
RNPR :2

hI0i:�hIΔri

�i
: (97)

Finally, Eq. (97) is solvable in closed form to give13

EQ-TARGET;temp:intralink-;sec6;63;541

PðRNPRÞ ¼
1

2π

2
ffiffiffi
π

pffiffiffiffiffiffiffiffihI0i
p

: � ffiffiffiffiffiffiffiffiffiffihIΔri
p : �

Z
∞

0

dx: � eð−x2Þ:

� e
�
− jRNPR j2
hI0ihIΔrix2

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihI0i: � hIΔri
p : � e−2

jRNPR jffiffiffiffiffiffiffiffiffiffiffiffi
hIΔri:�hI0i

p
: (62)
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