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ing the NIS and TDSP models and demonstrate how NIS model results can be expressed in terms of a reduced
hyperexponential distribution for scenarios where observer and target are stationary. Target acquisition prob-
abilities are determined by analysis and confirmed by computer simulations and perception experiments. Search
by multiple stationary observers looking for a stationary target is described by the hyperexponential distribution.
Stationary scenarios with multiple observers are more accurately modeled by hyperexponential rather than
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1 Introduction

1.1 Meaning of Model, Simulation, and Experiment

The words “model,” “simulation,” and “experiment” are used
in the abstract and for clarity are discussed here. A model is a
set of equations intended to approximately describe a physi-
cal situation. This paper models search performance, i.e.,
target acquisition probability as a function of time P(t) for
several different situations. Target acquisition performance
is simulated by taking random draws from the appropriate
distribution and those random draws determine individual
or group search performance. In an experiment, observers
search for targets, either in the field or in the lab using
imagery collected in the field or simulated imagery. The
simulated imagery may be field collected imagery that has
been image processed to approximate imagery produced
by a sensor at a greater range, a sensor with less image res-
olution, and in some cases the imagery is computer gener-
ated. Experimental target acquisition probabilities as a
function of time are then compared with modeled and simu-
lated results. Measured and modeled results never exactly
agree, in part because the modeled results typically describe
results for a large number of identical observers and mea-
sured results are for a limited number of observers with dif-
ferent search capabilities. Simulation with a large number of
draws can show that the mathematics used to develop the
model and the simulation itself are in agreement; repeated
simulations with the number of draws equal to the number
of individuals taking a perception test can indicate if model
results are within the expected range of the experiment.

*Address all correspondence to Melvin Friedman, E-mail: melvin.h.friedman
.vol@mail.mil
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1.1.1 Literature review

Several books have been written on the subject of search.'~
Braga has given an elementary description of search theory.’
Mardell® investigated different methods of displaying video
to determine the best display method for finding a lost hiker
in forested terrain using aerial search. Mardell found serial
visual presentation was the best display method, but would
serial video display be as effective as video in reconnaissance
missions for stationary targets? In a series of experiments,
Skirlo presented evidence which supports the view that
serial visual presentation is at least as effective as video for
detecting stationary targets in reconnaissance missions.”!”
Rotman''™"* coauthored a series of articles on different
aspects of search. Data for testing search and detection
models are available!® and used to test visual search and
detection models.'® Variations of the classical search model
developed by Johnson and Lawson and later described by
Howe are currently in use at Night Vision Electronic
Sensors Directorate (NVESD).'”™" In the classical search
model, target size and the temperature difference between
the target and background are the signals that enable search.
It has been shown that targets can be detected using texture
differences between target and background even when the
temperature difference between the target and background
is zero.”” The neoclassical search model describes search
in terms of random transitions between: (1) the wandering
state, (2) N points of interest that are not the target, and
(3) a point P, that is near the target.”'~>* The model described
in this paper starts from a different set of assumptions and is
conceptually different from the neoclassical model but is
similar to this model in that it describes search in terms
of a distribution function with multiple exponentials.
NVESD develops sensors for the Army intended to
acquire enemy targets. The efficacy of a sensor is predicted
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by a NVESD developed model, night vision integrated
performance model (NV-IPM),**?* which is useful for writ-
ing sensor specifications and for evaluating purchasing
decisions for competing, not yet built, sensors. One way
to test NV-IPM target acquisition predictions is to collect
and store field imagery photos and then do perception tests
using that imagery to determine sensor target acquisition
characteristics.”®

Krendel and Wodinsky27 (K&W) showed that field-of-
view (FOV) search by observers with nearly identical target
acquisition skill searching for a small bright spot against a
uniform background is described by an exponential distribu-
tion, a result that can be derived by applying probability
theory to reasonable assumptions about how the eye works."”
Empirical evidence shows that search in rural scenes for a
military target by trained Army personnel is approximately
described by an exponential distribution.”®?® In this paper,
K&W results are generalized to the case where it can no
longer be assumed observers have nearly identical target
acquisition capability. The exponential distribution found
in the K&W experiment applies to FOV experiments where
the sensor and target are stationary. To generalize the K&W
result to scenarios where the target and/or sensor is moving,
the time-dependent search parameter (TDSP) model was
developed.'”?** Search where multiple observers look for
a target and the target is said to be detected the moment
the first observer detects the target is termed “cooperative
search.” To generalize the result of the K&W experiment
to scenarios where multiple observers are engaged in co-
operative search, the network imaging sensor (NIS) model
was developed.’*!

1.1.2 Background

This paper builds on the K&W experimental result: search in
a single stationary FOV with zero clutter by a single observer
searching for a single target is described by an exponential
distribution. The TDSP model generalized the K&W result.
It applies to cluttered or uncluttered imagery, applies to FOV
or field of regard (FOR) and no longer requires a stationary
target or observer, i.e., the sensor-target range can change
and/or the background can change while search is taking
place. The TDSP model gets its input from two sources:
(1) the NV-IPM and (2) from empirical fit equations for the
time constant 7 as a function of P,. A restriction of the TDSP
model is that it applies to a single observer and a single target.
The NIS model takes as input target detection probabilities
as functions of time produced by the TDSP model for each
sensor against each target and outputs target acquisition prob-
abilities for each target. The NIS model assumes statistical
independence of observers taking part in the search prior to
target detection. The assumptions of the TDSP model are
described in Table 1 of Ref. 19.

1.1.3 Objectives

This paper has six objectives: (1) provide an overview of
selected search theory results obtained over the past several
years, (2) point out to the reader that P, /r when averaged
over scenes and observers is a good metric for characterizing
sensor target acquisition capability, (3) to communicate that
analytical models exist for calculating how target acquisition
probability grows as a function of time in battlefield scenar-
ios where multiple moving targets are engaged by multiple
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moving observer/sensor combinations, (4) to show analyti-
cally that target acquisition by multiple stationary observers
searching for a stationary target in noncooperative search is
better described by the hyperexponential distribution rather
than the exponential distribution as is usually assumed, (5) to
show analytically cooperative target acquisition is also de-
scribed by the hyperexponential distribution, and (6) to show
that cooperative or noncooperative search for a single sta-
tionary target can be modeled using phase-type distributions.
Objectives 4, 5, and 6 have not been previously reported and
it is believed few readers are aware of objectives 2 and 3.
In the Army, the third objective is normally done using sim-
ulation methods, i.e., COMBATXXI simulation methods>>
are used. This paper shows that there is an alternative to sim-
ulation for describing target acquisition in combat situations.
Phase-type distributions are used by computer scientists
modeling computer systems and networks, queueing theo-
rists and operations research analysts. This paper makes a
connection between search theory and queueing theory
and will hopefully stimulate a beneficial dialogue among
researchers working in these specialties.

1.1.4 Paper outline

In Sec. 2, search background is discussed to minimize the
reader’s need to consult references quoted in this paper.
In Sec. 3, evidence is referenced that indicates P, /7, aver-
aged over scenes and observers, and measured in perception
experiments, is a good metric for characterizing sensor target
acquisition capability. Evidence is also referenced that indi-
cates P/t averaged over scenes and sensors is a good met-
ric for characterizing observer target acquisition capability.
In Sec. 4, it is also shown that noncooperative FOV and
FOR search is described by the reduced hyperexponential
distribution. Section 5 shows NIS model target acquisition
probabilities for scenarios where the target and sensor are
stationary are also described in terms of the reduced hyper-
exponential distribution. Section 6 describes phase-type
distributions and shows that the exponential and hyperexpo-
nential distributions are special cases of phase-type distribu-
tions. In this paper, it is shown that FOV or FOR search for a
stationary target by a stationary sensor, whether done by an
individual or a group of individuals engaged in cooperative
or noncooperative search, is described by phase-type distri-
butions. Results and conclusions are summarized in Sec. 7.

2 Search Background

This section describes search notation and ideas needed to
understand new results obtained in the following sections.

2.1 Search by a Single Observer

Krendel and Wodinsky’s experiment’’ provides evidence
that search in an unstructured field by a single-well-trained
individual is described by an exponential distribution:

P(t)=1-¢7 0<t<o0o, (D)
where P(f) is the target acquisition probability which
approaches one since in this experiment the observer always
found the target. The parameter 7 describes how quickly tar-
get acquisition probability approaches one. Target acquisi-

tion by a single, stationary soldier searching for a single
target in FOV or FOR is described by'®*
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P(t) =Py (l—e™), 0<t<oo. )

The asymptotic value of P(¢) is P, a number less than or
equal to one, which reflects the observation that even in time-
unlimited search the probability a soldier will find the target
is frequently <1. The time constant 7 is typically determined
experimentally: it goes up with increasing clutter and target
range, whereas the parameter P, goes down with increasing
clutter and target range. The NV-IPM model*** estimates
P, for the average observer as a function of sensor, target,
and atmospheric parameters. Equation (2) has been derived'”
using probability theory and properties of the human eye.
Empirical formulae' for 7 in urban and rural areas using
infrared sensors have been tabulated.

The value for 7z in Eq. (2) depends on whether one is
engaged in FOR or FOV search. For random search in a
FOR, the relationship between 7oy and 7pog is'”

tror = N Trov. (3)

where A describes the number of FOVs needed to fill the
FOR. If the sensor is systematically stepped over the FOR,
spending a time f, in each FOV, then the relationship
between 7poy and 7R is'’

2—-P; e
TFOR :%(/\f— Dty + troy; Ps=1-—ce Fov )

s

The derivation' of Eq. (4) assumes N is an integer but
Egs. (3) and (4) yield reasonable results for noninteger N
values. Equations (3) and (4) express tpor in terms of
Trov- An analytical model describing zpgy has not been
developed. The parameter zrgy is usually obtained experi-
mentally by curve fitting or by empirical equations for day-
time or nighttime long-wave infrared or medium-wave
infrared sensors in rural or urban terrain.'

Equation (2) describes how target acquisition probability
grows for an observer who acquires a target but does not
need to take action to point at the target. If the observer needs
to perform some task, say click on the target, before one
agrees the target has been acquired, then Eq. (2) needs to
be modified as follows:

P(t):Poo(l—e_%), 1y <1< oo. &)

Here ¢, is the delay time required to point. For a person mov-
ing, a mouse to click on the target, the delay time is typically
between 0.5 and 1 s. When ¢, is zero, Eq. (5) reduces to
Eq. (2).

Equations (2) and (5) correspond to “time-unlimited”
search by a single observer where sensor-target range is con-
stant. For “time-limited” search where the observer has time
t, to look for a target'

0, 1<ty
_ITtg
P() = P() <<, ®)
l—¢ TFOV
s <t

Here P, is the asymptotic target acquisition probability
when the observer has time f; to search for the target.
When ¢; is infinite, Eq. (6) reduces to Eq. (5).
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2.2 Moving Sensor and/or Moving Target

It should be realized that Egs. (2), (5), and (6) apply to
scenarios where the target-sensor range is fixed and the
background against which the target is seen is unchanging.
If the sensor-target range changes or the background against
which the target is seen changes then P and = change and
Egs. (2), (5), and (6) are no longer valid. In that case, target
acquisition probabilities are given by the TDSP model.'*>*%°
The equations of the TDSP model are too complicated to
exhibit here. However, the NV-IPM model has an ability to
calculate TDSP model results.?*?

2.3 Observer Variability

Observers differ in target acquisition ability. In one experi-
ment, carried out with simulated first- and second-generation
(gen) imagery, 42 observers searched for targets in 69 simu-
lated first-gen and second-gen images.”** Averaged over all
the images in a perception experiment, the observers with the
highest P, value in the first- and second-gen imagery had
P, values that were 76% and 36% higher than the P, value
for an average performer. For first- and second-gen images,
the best observers had 1/7 value that were 85% and 75%
higher than for an average performer. These observations
support the view that observers differ substantially in their
ability to find targets and the speed with which they do so.
This implies target acquisition performance can be substan-
tially improved if target acquisition performance was tested
and only the most talented target acquisition people are given
the target acquisition task. NV-IPM, the standard model***
used by the army to evaluate sensors, predicts P, values for
the average observer.

Other researchers have modeled search by multiple ob-
servers and the first detection of a target in multitarget
search.!"1> A distribution different from the exponential or
hyperexponential has been proposed to describe target
acquisition by a single observer searching for a single
stationary target.*

2.4 Cooperative Search: Stationary Sensor and Target

Cooperative search takes place when the first observer who is
certain he/she detected a target lets the other observers know
the target has been detected and P(r) is the target acquisition
probability for this process. Cooperative target acquisition
probability'® for a scenario where several “independent” and
“identical” observers search a scene on individual monitors
yields an equation which has the same form as Eq. (5):

(t=t4)

P(t) = Pyu(n, Poy) {1 _ e—r.mm] L <1< oo, )

where

Zn C(n,m) Pgno(l _ Poo)n—m

m=1__m

Tvin(n) =7 T—(I-P.) ®)
_ n!

C(n’m)zm!(n—m)!

Pdet(nﬁpoo) =1- (1 - Poo)n' )]

Note the independence assumption in search is not estab-
lished and there is conflicting evidence regarding the validity
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Py, versus Number of Observers
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Fig. 1 The dependence of Py in Egs. (7) and (9) versus single
observer detection probability P, and the number n of identical
observers searching for the target.®® Note the rapid increase in detec-
tion probability with n and that when n =1, Pyg = Py

Tmin / T VS P, with n as Parameter

1.0 - T-
e Simulation

Theory
0.8 1

0.6
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0.4
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0.0 : ~ ' k -
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Fig. 2 The dependence of 7, in Egs. (7) and (8) versus P, for a
single observer with number of identical observers n as a parameter.®
The parameter 7 is target acquisition probability time constant for a
single observer. Note the rapid increase in target acquisition speed
with increasing number of identical observers.

of this assumption in this context. A discussion of this point
is given in Sec. 7 of this paper. In Sec. 8, detailed P(¢) def-
initions are given for equations in this paper where this sym-
bol appears. Note that in Eq. (7), Py (n, Ps,) plays the role
of P, and 7, (n) plays the role of z in Eq. (5). In Egs. (8)
and (9), 7 and P, are, respectively, the time constant and
P, value of a single observer doing either FOV or FOR
search depending on the scenario. The n in Eqgs. (8) and
(9) corresponds to the number of identical observers search-
ing for a target in the target acquisition task. Evidence® that
Egs. (7)-(9) are valid is provided in Figs. 1-3. Observe that
when n = 1, in Fig. 1 then P4y = P,

Modeled curves in Fig. 1 were obtained from Eq. (9).
Simulated data were obtained by taking random draws from
a uniform distribution between 0 and 1. Detection events at
the level P, = 0.2 were obtained by taking a random draw
for a uniform distribution between O and 1 and assigning
detection to draws <0.2 and a similar process was used for
other values of P . For 10 observers, a detection event is
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Comparison of Model with Expt for 10 Observers
1.0 — \ — : ; ,

0.8} —  Model

e Perception Experiment

00 L L s L L s 1 L L 1 L s L L L
0.0 0.2 0.4 0.6 0.8 1.0

Po

Fig. 3 Comparison between experiment and model [Eq. (8)]. P, and
7 are single observer search parameters. Note that when n = 10 and
P, = 0.4 that 7, (n)/r = 0.3.

said to occur if any of the 10 observers detected the target.
Simulation was done with 10,000 draws per point.

Modeled curves in Fig. 2 were obtained from Eq. (8).
Each simulated point in this figure is an average taken over
many outcomes of a random experiment. Take n draws from
an exponential distribution with 7 = 1 resulting in n detec-
tion times. To determine if a detection time is accepted, take
a draw from a uniform distribution and only accept a detec-
tion time draw if the draw is less than P . Thus the number
of accepted exponential draws goes down as P, decreases.
Tmin 18 defined as the smallest of the accepted exponential
draws since a target is detected the moment the first observer
declares the target is found.

Tremendous improvements in target acquisition probabil-
ities were analytically predicted by Egs. (7)—(9) and con-
firmed by simulations in Figs. 1 and 2. Figure 3 shows
experimental data®® which supports Eqs. (7)—(9).

Results predicted by Eqs. (7) and (8) illustrated in Figs. 1
and 2 show search performance improves dramatically with
increases in number of observers. Figure 2, for example,
shows that for scenes with P, = 0.8 the mean time to find
a target with six observers is a little more than 0.2 the mean
time to find the target with one observer. A quick defense
of these results is that they depend only on (1) the observa-
tion that search by an individual is described by an exponen-
tial distribution and (2) target acquisition times of different
observers are statistically independent. The first condition is
supported by the K&W experiment®’ and the second condi-
tion is supported by Fig. 3.

The wvalidity of Egs. (7) and (8) depends on the
assumption of independent, identical observers whose detec-
tion time is described by an exponential distribution so it is
important to understand the meaning of identical and inde-
pendent. In the formalism of probability theory, Ty,...,T,
are random variables representing the target acquisition
times of the n observers. The assumption of identical observ-
ers means that Ty, ..., T, are drawn from the same exponen-
tial distribution. The independence assumption means that

P(T,<t,T,<ty,..., T, <t,)
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Less formally, target acquisition times 7', and 7', are sta-
tistically independent if the conditional distribution of T
given T, is the same as the (unconditional) distribution of 7';.

The agreement between the modeled curve in Fig. 3 and
the data merits discussion. The modeled curve in Fig. 3 was
obtained from Eq. (8). For each P, the value of 7 and its
standard deviation was measured from experimental data.*®
Thus the modeled curve has no fit parameters and detection
times were experimentally measured.

A more detailed defense of Eqs. (7) and (8) illustrated in
Figs. 1 and 2 follows. The validity of Eqs. (7) and (8) results
was first investigated using data®® reported in 2005 which
were reanalyzed® in 2010. These results are shown in Fig. 3
which shows a comparison of mean detection time 7,/
for 10 observers searching for a target in FOR computer-
generated scenes. T, is defined by min(7'y, ..., T o), where
T; is the detection time of the i’th observer. The definition
for 7., is reasonable because when multiple observers
search for a target, detection takes place the moment the first
observer finds the target. Here 7 is calculated in the usual
way and represents the mean acquisition time for a single
observer representative of the ensemble of observers. The
model curve was calculated using Eqs. (7) and (8) with
P set equal to one because only events where at least one
of the ten observers detected the target were considered in
the analysis. Measured probabilities in Fig. 3 were obtained
by examining data in Ref. 36 which consist of detection
times for a particular scene binned for different P, values.
Dots in Fig. 3 correspond to 7,,,/7 values averaged over
scenes binned about the plotted P, value. Error bars corre-
spond to the standard deviation of 7.;,/7. The agreement
of measured results in Fig. 3 supports Egs. (7) and (8) illus-
trated by Figs. 1 and 2. Other evidence [Egs. (7) and (8)] are
valid is provided in Fig. 5, since these are expressed by
Eq. (12) and Eq. (12) reduces to Egs. (7) and (8) for the spe-
cial case of identical observers.

2.5 Cooperative Search: Moving Target and Sensor

Equations (7)—(9) model target acquisition probability when
independent and identical observers cooperatively search an
FOR or FOV for a stationary target with a stationary sensor.
In this section, the requirement for identical observers is no
longer assumed. If the target-sensor range is changing or if
the target-background contrast is changing, then the target
acquisition probability for the i’th observer P;(¢) is obtained
from the TDSP model.'***? Suppose target acquisition prob-
abilities for observers 1 and 2 are known having been com-
puted from the TDSP model, i.e., P;(¢) and P,(¢) are known.
Denote the system target acquisition probability for two
observers engaged in cooperative search by P,(2). Then®

Py(2)=P(t)+Py(t) =Py (t)Pr(t) =P +P,—P P, (10)

where in the second equality the time dependence of P;
and P, were suppressed for notational convenience. The
improvement in target acquisition with cooperative search
over individual search is illustrated in Fig. 4.

The generalization of Eq. (10) for 3 and n observers are,
respectively,*

PS(3):P1+P2+P3—PlPZ—P1P3—P2P3+PlP2P3,
Y
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Target Acquisition Probabilities

Py, P2, Ps(2)

t(s)

Fig. 4 Comparison of target acquisition probabilities with observers
working alone and cooperatively. Py and P, represent target acquis-
ition probabilities from observers 1 and 2 working alone. Observers 1
and 2 are characterized, respectively, by search parameters {P,, 7}
values of {0.5,4},{0.6,3}. P4(2) is the system target acquisition
probability with observers 1 and 2 searching cooperatively.

n
Pin)=>_P;=Y PiPj+ > PP;P,
i=1

i<j i<j<k

— - (=)tPP, - P, (12)

Equations (10)—(12) are exemplars of the NIS model for
2, 3, and n observers. Detailed definitions of P(2), P(3),
and P(n) are given in Sec. 8. Equations (10) and (11) are
supported by perception tests.*’

Evidence®! that Egs. (10)—(12) and the generalizations of
these equations to a larger number of observers are valid is
provided in Fig. 5.

The dashed blue curve in Fig. 5 is an interpolation curve
taken from perception data.?®>!-%® The blue, purple, tan, and
green dots in this figure were obtained by taking 2, 4, 6, or 8
random draws from data used to construct the dashed blue
curve. The solid lines in Fig. 5 are modeled results [Eq. (12)].
The good agreement between the dots and the solid curves

Fig. 5 Modeled and simulated target acquisition probabilities for 2,
4, 6, and 8 stationary observers engaged in search for a stationary
target.3! The dashed blue line describes detection experiment mea-
sured time-limited (12 s) target acquisition probability using simulated
imagery from a second-gen sensor for a single observer search a
FOV that has a single target. The solid blue and purple lines are mod-
eled results from Egs. (10) and (12) for two and four observers
engaged in cooperative search. The blue and purple dots correspond,
respectively, to two or four draws taken from data used to construct
the dashed blue line.
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support the view that Egs. (10) and (12) are valid. Figure 5
illustrates how cooperative search improves target acquisi-
tion probability. At the end of 12 s, the target acquisition
probability for the single observer is about 0.3. With two
observers at the end of 12 s, the target acquisition probability
is about 0.5 and with four observers it is about 0.75.

Knowing details of how Fig. 5 was constructed facilitates
a deeper understanding of what this figure means. The
dashed curve labeled 1 in Fig. 5 is an interpolation curve
taken from perception experiments.”®>!3® The curves labeled
2, 4, and 6 correspond to 2, 4, and 6 observers engaged in
cooperative search, which means the observers search inde-
pendently and the target is found the moment one of the
observers involved in the search finds the target, i.e., observ-
ers search independently but make other observers aware tar-
get is found as soon as one of them finds the target. Figure 5
assumes that identical observers are taking part in the search
and each observer is characterized by target acquisition capa-
bilities illustrated by the interpolation curve labeled 1. The
solid curves labeled 1, 2, 4, 6, and 8 were calculated using
Eq. (12). We describe how the dots in Fig. 5 were constructed
by considering the case of 4 observers (similar methods were
used to construct the data curves for 2, 6, and 8 observers).
For four observers, a random experiment is conducted by
taking four random draws from perception experiment data
used to construct the curve labeled one. Each experimental
result is an outcome belonging to one of two mutually exclu-
sive events: (1) detection or (2) no detection. An outcome is
said to result in a detection event if one of the four draws
resulted in a detection and the time of the detection is the
smallest of the draws that resulted in a detection. An outcome
is said to result in no detection if none of the four observers
detected the target. After conducting a large number of ran-
dom experiments, say 1000 we have a list of 1000 data points
(each data point is either a detection time, or an indication
that no detection took place for that event). Using standard
methods, these 1000 data points are converted to dots asso-
ciated with four observers shown in Fig. 5. More details of
how Fig. 5 was constructed are available.’!

3 Target Acquisition Metric for Sensors and
Observers

3.1 Sensor or Observer Target Acquisition Metric

In this section, a simple metric is proposed that can be used
to rank target acquisition capabilities of observers and sen-
sors. The ability of an observer to quickly find a target has
great military value: a tank commander who finds an enemy
tank before the enemy tank has found him can carefully aim
and destroy the enemy tank before the enemy tank even
knows he is there.

3.2 Background

Perception search experiments®*?® intended to compare tar-

get acquisition performance of first- and second-gen sensors
had an interesting result. In these experiments, scenes, tar-
gets, target locations, and FOV were identical for first- and
second-gen sensors. The differences between the two sets of
imagery is that first-gen imagery was blurred more than the
second-gen imagery reflecting the empirical fact that first-
gen sensors are typically more blurred than second-gen sen-
sors. Perception experiment results revealed P, and 7 were
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higher for second-gen sensors than they were for first-gen
sensors. The results made sense. Since second-gen sensors
have more detail, more difficult targets could be found which
explains why P, went up. Also because second-gen imagery
had more detail than first-gen imagery, observers took longer
to finish searching a second-gen image. Difficult targets were
found after a long time in second-gen imagery that were
not found in first-gen imagery, which caused second-gen
imagery to have a larger mean time then first-gen imagery.
If one took P, and 7 averaged over observers and scenes as
a measure of sensor target acquisition capability, because
second-gen sensors had a higher 7 value than first-gen sen-
sors they might not seem to be the obvious choice for the
preferred target acquisition sensor. Empirically, it is known
that second-gen sensors are superior to first-gen sensors in
target acquisition. The problem is P, and 7 are natural
parameters for describing search but are not appropriate
metrics for ranking sensor target acquisition capability.

3.3 Solution

Equation (2) implies that the slope at the origin is P, /z, the
initial rate for acquiring a target. Figure 6 illustrates this
result. What happens is that 7 is a little larger for second-gen
sensors than for first-gen sensors, but P, is a lot larger for
second-gen sensors than for first-gen sensors. The net result
is that the initial slope of target acquisition probability is
greater for second-gen sensors than it is for first-gen sensors.

3.4 Conclusion

P, and 7 are natural parameters for describing target acquis-
ition probability but when averaged over observers and
scenes are not good measures of sensor performance for tar-
get acquisition. A good overall*> measure of sensor target
acquisition performance is P, /7 averaged over observers
and scenes. Similarly, a measure of observer target acquis-
ition capability is P, /7 averaged over scenes for a particular
Sensor.

4 Noncooperative Search by Observers
with Different Search Capabilities

This section describes why the hyperexponential distribution
is a more accurate description of search performance than the
exponential when it is carried out by more than one observer.
This result depends on the observation that individuals vary
in search capability.>**

Target Acquisition Probability for Single Observer

— Pt

—— Slope at t=0

Target Acquisition Probability

Time

Fig. 6 lllustration of single observer target acquisition probability
P(t), P, = and the slope at t = 0. The slope at the origin is P /z.
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It is important to understand the distinction between
noncooperative and cooperative search. In noncooperative
search, each observer searches until they find the target or
the time allocated to search is used up, whereas in co-
operative search each observer stops searching as soon as
the first observer is confident he/she has found the target.
Noncooperative search is often used in search experiments
and might be used in the field if observers could not
communicate with one another. Our theory requires the
assumption of independent observers for cooperative search
but not for noncooperative search.

It is important to understand the distinction between the
symbols P(z) and P,.(t). Target acquisition time is sampled
uniformly from among the set of observers who have found
the target or from the set of all observers. Target acquisition
probability is denoted by P.(¢) in the former case and P(t)
in the latter. Less formally, all observers taking part in the
perception experiment are considered when calculating
P(t), whereas only observers who found the target are
considered when calculating P, (t).

4.1 Two Sets of Observers

Consider the case where a group of n; identical stationary
observers each characterized by search parameters P,; and
71, and a second group of n, identical stationary observers
each characterized by search parameters P, and 7, search
for a stationary target in an image produced by a stationary
sensor. Although it is difficult to get and train observers so
they have nearly identical search performance, it has already
been done for several observers?’*’ and conceptually it could
be done for any number of observers. Thus we are free to
consider the case where n; and n, are large. For this case,
the expected number of detections among all observers is
given by

Dy =Py + 3P

Of the expected number of detections, n; P, are from the
first group of observers and n,P., are from the second
group of observers. The first and second groups of observers
detect targets with time constants z; and z,, respectively.
Thus the cumulative distribution function (CDF) for this
scenario is

P.(t)=a(1—e ) +ap(l —e™), 0<t<oo, (13)

where

- niPOO,- l 1
a=—"2 =
NPy +nyPy T

For ¢ > max(z;, 7,), the exponentials are essentially zero
which shows that Eq. (13) asymptotically approaches a; +
a, which is one. Thus Eq. (13) is a hyperexponential CDF.
Equation (13) describes how target acquisition probability
grows with time for those observers who eventually find the
target.

It is of value to calculate target acquisition probability for
all observers taking part in the experiment. Some observers
detect the target, others do not. By hypothesis, the total num-
ber of observers taking part in the experiment is n; + n,.
The estimated number of detections is unchanged from the
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estimate made to compute Eq. (13). In this case, target
acquisition probability is given by
1
P(t) = Py (1 —e™ 1) +ny Py (1 — e,
(1) = o Pt (1= ) 4+ mP (1 =)

0<1<o0. (14)

For large t, P(t) asymptotes to (n; P + n2P2)/ (11 + 1)
which is less than or equal to one since P,,; are probabilities
less than or equal to one. Because Eq. (14) does not asymp-
tote to one, we call it the reduced CDF.

The probability density function associated with Eq. (13)
is obtained by differentiating with respect to time
pe(t) = qjde™ + aydpe™, 0<t< 0. (15)

Equations (13)—(15) apply to a scenario where there are
two large sets of observers and each set has observers with
nearly identical search performance. In practice, it is hard to
get a large number of observers looking for a target and
harder yet to get a large number of observers with nearly
identical search performance. For that reason, these equa-
tions are conceptually useful but of limited practical utility.
One use of these equations is to specialize them to the fre-
quently occurring case where n; = n, = 1.

4.2 Two Individual Observers
When n; = n, = 1, Egs. (13)-(15) become

P P
P()=—2  (1—eHt _ oo 1 —eht),
(() P001+P002( ¢ >+P001+Poo2( ¢ )
(16)
1
P(t):E[Pool(l_e_}”t)—"_PooZ(]_e_}qt)}’ a7
Py Py
)=—"0 peht "X g o=kt 18
pC() P001+Poo2 e +Pool+P002 2 ( )

For typographical convenience, in Eqgs. (16)-(18), restric-
tions on ¢ are not explicitly stated.

4.3 Three Individual Observers

The method already used for two individual observers can be
extended to three individual observers

Pult) = oS (1 = eht) o2 (1 = )

ZiPooi Zipooi

+ %(1 — k), (19)
P(t) = %[Pool(l —e7h) 4+ Py (1 — eht)

+ Pes(1 = ™), (20)
pelt) =SSyt e

= e, @1

ZiPooi
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where in Egs. (19) and (20), the symbol > ;P is short
forPoo1+P002+Poo3.

4.4 N Individual Observers

The extension of Egs. (19)—(21) to N observers is straight-
forward:

1 N P,
P()=——) a(l—e), aj=—=r—, (22
Z{'\l:lpooilzzl: Y Posi

|
P(t) = szoot(l - e_ﬂ’l)v (23)
=1
1 N
pe(t) = SV p_ P idie™ . (24)
i=1"% ool j—]

4.5 Applications

Results of this section are applicable to search experiments
intended to determine P, and <.

4.6 Conclusion

Equations (22) and (23) are, respectively, a hyperexponential
distribution with a; = Py;/ >N | P,; and a reduced hyper-
exponential distribution. FOV or FOR search where the
target and sensor are stationary is described by a reduced
hyperexponential distribution. When the observers have
identical search capabilities, the reduced hyperexponential
simplifies to a reduced exponential distribution.

5 Cooperative Search by Observers with Different
Search Capabilities

Cooperative search by two, three and n observers where
the sensors and targets are either stationary or moving is
described by Eqgs. (10)=(12).%° Development of the equations
in this section requires independent observers. In general,
P;, i=1,2,...,n are functions of time and are obtained
from the TDSP model.' Here we consider the case where
the sensors and target are stationary to show that for this case
target acquisition probability is a reduced hyperexponential
distribution. To simplify notation, the derivation given here
is for two observers but the result is true for any number of
observers.

5.1 Derivation for Two Observers
Substitute P; = P.;(1 —e™"), i = 1,2 into Eq. (10) to get

Ps(z) = Pocl +P002 _PoolPoc2 - [Poo](l _POOZ)E_MI
+ PooZ(l - Pool)e_tllz + POOIPOOZE_Z(A]_‘%Z)]' (25)

Let P., denote system asymptotic target acquisition
probability. Then for the case of two observers:

Poc.SZPool+P002_P001P002' (26)
Using this result, Eq. (25) becomes

Py(2) =Py {1 —[aje™™ +aye™™ + oge"“ﬁm]}, (27a)
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where
P (1-P P ,(1-P
ay = ool( 002) i ay = 002( ool) i
Poos Poos
PoolpooZ
=—". 27b
P (27b)

Equation (27b) implies

3

Sa=1. (27¢)

i—1
An equation of the form
P.(t)=1—-aje™™ —aye™™ —aze™™,

which satisfies Eq. (27¢) is said to be a hyperexponential dis-
tribution. In Eq. (27a), the quantity multiplied by P is the
hyperexponential distribution. Equation (27a) asymptotes to
P, a value <1, and for that reason is called a reduced
hyperexponential distribution.

5.2 Conclusion

We have shown that cooperative search by two independent
observers is characterized by a reduced hyperexponential
distribution. Similarly, Eqs. (11) and (12) and the generali-
zation of those equations to an arbitrary number of observers
is described by a reduced hyperexponential distribution. The
derivation given here starts from the assumption that Eq. (10)
is valid. A derivation from first principles that the hyperex-
ponential distribution applies to cooperative search is given
in Sec. 9.

6 Phase-Type Distributions

To the best of our knowledge, this paper is the first to apply
the methodology of phase-type distributions to search. No
new models are presented in this section. Instead, we show
that some of the results already given in Secs. 2, 4, and 5 can
be more elegantly expressed using phase-type distributions.
Just like Newton’s law of motion can be expressed in terms
of the Lagrange’s or Hamilton’s equations, the K&W expo-
nential distribution®’ result which applies to a single observer
can be generalized to cooperative or noncooperative search
using phase-type distributions. Simplifying a little, the K&W
exponential distribution is described by Eq. (1); phase-type
distributions are also described by Eq. (1) only 1/7 is
replaced by a matrix S and the exponential is multiplied by
a row vector. It is remarkable that search by multiple ob-
servers is described by a generalization of the exponential
distribution. Phase-type distributions are used extensively
by computer scientists and engineers who study the perfor-
mance of computer systems and networks*' and by opera-
tions research analysts who study queuing theory.*” The
value of this section is that it provides a link between search
theory on one hand and computer networks and queuing
theory on the other. Cross fertilization of ideas between these
fields may be beneficial.

In Secs. 4 and 5, it was shown that both cooperative and
noncooperative target acquisition by multiple observers is
described by a reduced hyperexponential distribution. For
a single observer, the reduced hyperexponential distribution
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simplifies to a reduced exponential distribution. In this sec-
tion, we point out that the exponential and hyperexponential
distributions are special cases of phase-type distributions.
This section applies phase-type distribution methodology to
search scenarios described by exponential and hyperexpo-
nential distributions.

6.1 Theory of Phase-Type Distributions
The probability density function p(x) for a phase-type dis-
tribution is given*’ by

p(x) = a exp(xS)S°, x>0, (28a)

where a is a row vector of weights:
aE(al,a2,a3,...,am), (28b)

where @; > 0 and ) ", a; = 1. As will be seen later, S is a
m X m matrix, which determines the form of the particular
phase-type distribution and S° is defined by the relationship
S0 = —S1, where 1 represents a m X 1 column vector of
ones.

It is important to know that an exponential raised to a
matrix power is calculated using a Taylor series expansion:

X ReME L, M M
,T,M +T+2—!+.... 29)

exp(M)

This allows us to show that p(x) in Eq. (28a) is a scalar.
Since any power of a m X m matrix is a m X m matrix,
Eq. (29) implies exp(xS) is a m X m matrix. The definition
of $® implies that it is a m x 1 vector. The product exp(xS)S°
is thus a m X 1 column vector. This is premultiplied by e,
a 1 x m vector, to produce a scalar.

The CDF P(x) for a phase-type distribution is given by*’

P(x) =1 —a exp(xS)1. (30)

Realize that & exp(xS)1 is a scalar. This implies P(x) in
Eq. (30) is a scalar.

When m = 1, Eq. (30) reduces to the exponential distri-
bution described by Eq. (1) because then a and S° have just
one component and are scalars. The condition that the sum
over i of a; is one implies « = 1. When m > 1, Egs. (28a),
(28b), and (29) generalize the exponential distribution.

6.2 Computer Implementation of Phase-Type
Distributions

In this section, we show that the exponential and hyperex-
ponential distribution are special cases of phase-type distri-
butions. Work with phase-type distributions is facilitated by
computer implementation because of the difficulty in evalu-
ating Eq. (29) by hand. Mathematica code for computer-
generated PDFs and CDFs for phase-type distributions is
shown in Figs. 7 and 8.

Several examples are provided which demonstrate how
to use these functions.

6.2.1 Exponential random variable
Figure 9 demonstrates how to use the code shown in Figs. 7

and 8 to calculate the exponential distribution.
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f(x , a ,S ] := Module[{1, S@, n, m},
Length[a];

m = Length[S]; (% n and m should be equal «x)
1 = Table[1l, {n}];

S8 = -S.1;

If[m=n, o .MatrixExp[xS] .S@,
"Inconsistent input dimensions!"]

]

n

Fig. 7 Mathematica code for implementing Eq. (28a). Here f is the
PDF determined by input row vector a and matrix S.

F[x ,a ,5 ] := Module[{1, n, m},
n = Length[a];
m = Length[S];
1 = Table[1l, {n}];
If{m=n, 1 - o . MatrixExp[x S].1,
"Inconsistent input dimensions!"]]

Fig. 8 Code forimplementing Eq. (30). Here F is the CDF determined
by input vector @ and matrix S.

a= (1}; § = ({-11};
{f[t, a, S], F[t, a, S] }

{e_t’\/\, 1- e'“}

Fig. 9 Technique for calculating the PDF and CDF of an exponential
random variable.

The first line of Fig. 9 defines the a row and the S matrix
appropriate to the exponential distribution. The set of braces
enclosing 1 and the double set of braces enclosing —4 tell
Mathematica that 1 is a row vector and —1 is a matrix.
The second line computes the PDF and CDF which are input
as row vectors. The third line is the output of the second line
and displays the calculated PDF and CDF as row vectors. The
reduced CDF is obtained by multiplying the CDF by P,.

6.2.2 Hyperexponential random variables
(noncooperative search)

Recall from Sec. 4 that noncooperative search by observers
with individual search characteristics is described by the hyper-
exponential distribution. Figure 10 shows how to use phase-
type distribution methodology to calculate those distributions.

The first two lines of Fig. 10 define the appropriate a and
S parameters. The hyperexponential PDF and CDF are cal-
culated in the third line and the results are shown in the
fourth and fifth line. Hyperexponential PDFs and CDFs of
different order can be calculated by suitably adjusting the
number of entries in S and a, i.e., adjust the number of
A values on the main diagonal of S and adjust the number
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a = {al, a2, a3};

21 @ o
s=| e -22 o |[;
@ o -3

{f[t, a, S], F[t, a, S]}

{e_t Moll+e ™22+ a3 A3,

R e NI R L P a3}

Fig. 10 Technique for calculating the PDF and CDF of a hyperexpo-
nential random variable for three observers engaged in noncoopera-
tive search.

of a values so that i matches order of the S matrix. The a;,
i=1,2,3,..., for noncooperative search are given by
Eq. (22). The reduced CDF is obtained by multiplying
the CDF by the asymptotic system target acquisition prob-
ability P.

The hyperexponential PDF and CDF for the case of three
observers in noncooperative search is

p([) :al/lle_”l' +(X2/12€_Mz +a3/13e_”13, [24] +(X2 +(l3 = 1,
(€2

P.(t)=1—-aje™™™ —me™™ —aze™, aj+ay+az=1,

(32)

a= {al, a2, a3};

-1 e e
s-| e -x ] H
8 0 -(A1+22)

{f[t, &, S], F[t, a, S]}
{e*Mo1x1+e ™ a222+e™ M) 03 (A1+22),

1-_ e-t A1 ol - e-t A2 o2 - e-t (A1+22) 03}

Fig. 11 Technique for calculating the PDF and CDF of a hyperexpo-
nential random variable for two observers engaged in cooperative
search.

a= {al, a2, a3, al2, al3, a23, al23};

-1 e e e )
e -x2 o ) )
e o -3 ) )
s=| e e e -(1:i2) )
e o e ) — (A1 +23)
e o e ) )
e o e e )

{f[t, a, S]1, F[t, a, S]}
{e*Mo11+et o222+

et (A1+23) 513 (a1 + A3)

Ps(3) = PoosPc(t)’ (33)
where P, is given by Eq. (11) with P; replaced by P.,;.
Figure 10 is in agreement with Eqgs. (23)-(26).

6.2.3 Hyperexponential random variables
(cooperative search)

The technique for calculating the cooperative hyperexponen-
tial distribution for two independent observers is shown
in Fig. 11.

The first two lines of Fig. 11 define the appropriate o
and S parameters. The hyperexponential PDF and CDF are
calculated in the third line and the results are shown in the
fourth and fifth lines. The appropriate values for a;, a,, and
a3 are given by Eq. (27b).

As illustrated in Fig. 12, the technique for calculating the
appropriate PDF and CDF for three observers engaged in co-
operative search is more intricate than that for two observers.

The first two lines of Fig. 12 define the appropriate o
and S parameters. The hyperexponential PDF and CDF are
calculated in the third line. The fourth and fifth lines display
the PDF associated with the input @ and S parameters and the
last line displays the CDF for this hyperexponential distribu-
tion. The reduced CDF is obtained by multiplying the CDF
by P

We need to generalize Eq. (27b) to the case of three
observers, that is, we need to identify how individual a’s
relate to individual P.;. The generalization of Eq. (27b)
for a; is @] = Py (1 — Pyy)(1 — P3)/Pss With similar
expressions for a;, and a3. The coefficient for a;, is @), =
PoiPor(1 = Py3)/Pss with similar expressions for a; 3
and a, 3. The coefficient for a3 is @123 = Po1 P2 Poo3-
In general, a subscripts match the 4 numerals in the S matrix
and the alpha coefficients describe which exponentials sur-
vive given a combination of P, values for different observ-
ers that are either zero or one. Thus only the 4; exponent
survives with Py =1, Py, = Py3 = 0. Similarly, only
the (4, + 4, + 43) exponent survives when P, = Py, =
P,z = 1. The value for P, is found from Eq. (11) by
replacing P; in that equation by P,;.

6.3 Conclusions

In Secs. 4 and 5, we have shown there is reason to believe
that when multiple nonidentical observers search for a
stationary target with a stationary sensor, the reduced

] -]
e e
e e
e e H
e e
- (A2 + A3) e
e - (A1 + A2 + A3)

(A1+22) 512 (A1+22) +e T3 0323+

+ et 2223 523 A2+ 23) s et

(A1222423) 5123 (A1 + X2 + A3),

1 - et g _ ot (A1:22) g9 _ oot (A1222423) 153 _ oot (A1423) [q3 _ o t22 45 _ o=t (02423) [53 _ o-t23 37

Fig. 12 Technique for calculating the PDF and CDF of a hyperexponential distribution for three

observers engaged in cooperative search.
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hyperexponential distribution is a better model than the
reduced exponential distribution for describing target acquis-
ition of a stationary target by stationary sensors. Here we
have shown that the hyperexponential distribution can be
expressed using the phase-type distribution methodology
frequently employed in queuing theory.*’ It is anticipated
that this section will foster a connection between queuing
and search theory that will be mutually beneficial to both
subjects. The neoclassical search model*!** is couched in the
language of random transitions between different observer
states and it may be that this model can be described more
simply using phase-type distributions.

7 Summary of Results and Conclusions

7.1 Summary of Known Results

Research pertinent to the work done here and evidence for
believing that the research is valid was discussed in Sec. 2.
Time-unlimited target acquisition probabilities for scenarios
where the sensor and target are both stationary when search
is done by a single observer or by many observers was
described. These results were generalized to time-limited
search and finally the results were generalized further to the
case where the observer, the target, or both are moving.
Experimental evidence (Fig. 3) showing how the mean time
to detect a target decreased with increasing P, was com-
pared with a model with excellent agreement. Simulations
of cooperative search which assumed search by individual
independent observers are described by an exponential dis-
tribution are in excellent agreement with modeled results
(Figs. 1 and 2). It is obvious that for target acquisition, two
heads are better than one. How much better is quantified by
Egs. (10)—(12) and illustrated in Fig. 4. The model was tested
in a simulation that used experimental data in Fig. 5 with
excellent agreement between model and experiment.

7.2 Summary of New Results

In Sec. 4, it was shown that target acquisition by multiple
observers, who differ in target acquisition skills, is described
by a hyperexponential rather than an exponential distribu-
tion. In Sec. 5, it was shown that cooperative target acquis-
ition is also described by a hyperexponential distribution.
The a parameters and the order of the hyperexponential
are different for noncooperative and cooperative search
and methods for calculating @ parameters was presented.
Mathematica code was developed to calculate PDFs and
CDFs for phase-type distributions and this code was applied
to calculating hyperexponential distributions appropriate to
cooperative and noncooperative search.

Target acquisition probabilities for a scenario with a
stationary sensor and target are naturally described using
parameters 7 and P. Sensors can also be described using
these parameters by doing target acquisition perception
experiments (stationary target and stationary sensor) with
an ensemble of observers over a large number of images.
When this was done with simulated first- and second-gen
sensors, it was found that second-gen sensors had higher
P, and 7 values than first-gen sensors. The fact that sec-
ond-gen sensors had a larger = value than first-gen sensors
could be disturbing. Analysis showed that the efficacy of
sensors for target acquisition is better ranked using P/
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and that second-gen sensors had a higher P, /7 value than
first-gen sensors.

Observers too can be ranked for target acquisition efficacy
using P /7 values by doing perception experiment over
a large number of images with different imaging sensors.
Experiment showed that observers differ substantially in
target acquisition capabilities.

We emphasize: (1) the hyperexponential distribution in
Sec. 4 does not rely on the independence assumption but
does rely on the observation that observers differ in search
capability and (2) the hyperexponential distribution in Sec. 5
does rely on the independence assumption but not on the
different capabilities of the observer.

7.3 Conclusions

We have shown that sometimes target acquisition distribu-
tions are given by the exponential distribution, sometimes
they are given by the hyperexponential distribution, and for
the case where the sensor or target or both are moving, target
acquisition distribution results are predicted by the TDSP
and NIS models and in general are not a named distribution.

Evidence for the above conclusion follows. Experi-
mental”’***> and theoretical'® evidence supports the belief
that the exponential distribution describes search by an indi-
vidual observer. Evidence also supports the validity of the
TDSP?*% and NIS***' models. The validity of the hyper-
exponential distribution of Sec. 4 on noncooperative search
depends on two observations: (1) search by an individual is
described by an exponential distribution and (2) observers
substantially differ in their search capabilities. The validity
of the exponential distribution is generally accepted.”’*%
Evidence®*?’ is expected and established that observers dif-
fer substantially in their search capabilities. Although there is
no direct experimental evidence for the validity of the hyper-
exponential distributions described in Sec. 4, it is a direct
logical consequence of the observations 1 and 2 that search
described by an individual is described by an exponential
distribution and observers differ substantially in their search
capabilities and both of these observations are supported by
experiment.

The validity of the hyperexponential distribution of Sec. 5
on cooperative search depends on observation 1 as well as
an assumption 2’ that observers search independently. The
validity of the hyperexponential distributions of Sec. 5 is
a logical consequence of observation 1 and assumption 2'.
We note the validity of the independence assumption used
in much of our work is subject to debate.

7.3.1 Evidence for independent observers

(1) Figure 3 presents evidence that predictions based on the
independence assumption are valid. (2) It has been shown
that search is more effective if multiple observers participate
in search.*® The results of the theory developed here, illus-
trated in Fig. 5 also support the view that search is more
effective with multiple observers.

7.3.2 Evidence against independent observers

For two observers, Fig. 4 in Ref. 47 graphs the probability of
joint missed detections against the product of the probability
for individual missed detections for targets of 50% and 2%
prevalence. If the missed detections are independent, these
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two probabilities would be the same and fall on a straight line
with unity slope. The experimental data clearly fall above
the straight line showing that missed detections are not in-
dependent. This was also done for false alarms, which were
also shown to be not independent. This suggests that detec-
tion events by two observers are not independent.

7.3.3 Conclusion on the independence assumption

More experiments are needed to determine the conditions
under which search by multiple observers are well modeled
using the independence assumption.

Methods for finding the appropriate distribution for a
specified target acquisition scenario are described in this
paper.

A parameter which characterizes target acquisition cap-
ability in a sensor or observer is P, /. For a sensor percep-
tion test, data are averaged over observers, whereas for
observer perception tests, data are averaged over images.
This belief is supported using data used in Refs. 26 and
28 which was analyzed in Ref. 33.

This is the first paper to show that target acquisition prob-
abilities by multiple observers can be described using
phase-type distributions and the method for doing this was
illustrated. Although no new models were found using this
technique, we are hopeful it will lead to new search insights
which may come from the computer systems performance
and queuing communities where phase-type distributions are
widely used.

Because observers differ substantially in target acquisi-
tion capability, it is suggested observers be tested for target
acquisition capability and assigned target acquisition respon-
sibilities based on their capability. A technique for testing
observers has been described.*

False alarms have been ignored in this paper because
our proposed method of search yields a negligible number
of false alarms. Search is done in the wide field of view
(WFOV) and confirmed in the narrow field of view (NFOV).
Targets initially found in the WFOV can easily be false
alarms but we assume that in switching to the NFOV almost
all false alarms are rejected. Results for cooperative search
illustrated in Fig. 5 indicate substantial improvements in
detection probability and initial rate of detection with in-
creases in observers. For that reason, achieving objective 2
below is especially important.

Arguably, the three most important unsolved target
acquisition problems are: (1) develop a model which de-
scribes the mean FOV target detection time 7rqy, (2) deter-
mine if search by observers who do not communicate with
one another until the object is found search independently,
and (3) determine how to model target acquisition of low-
prevalence targets.

8 Appendix A: The Meaning of Noncooperative
and Cooperative Target Acquisition Probability

Although the target acquisition probabilities in Eqgs. (1), (2),
(5)—(7), and (10)—(12) are all denoted by the symbol P(¢)
and are all properly termed target acquisition probabilities,
the distinction among these probabilities may escape some
readers. This appendix is written to make the distinction
among these probabilities clear to the reader.

Equation (1). An ideal experiment for which Eq. (1)
applies is described. The subject is asked to detect a circular
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spot (the target) that is brighter than the uniform circular
background against which the target is seen. The angular
size of the target, the angular size of the circular field to be
searched, and the contrast between the target and background
are adjusted so that finding the target is challenging, but once
the target is found the contrast and target size is such that the
observer is confident this is not a false alarm and is indeed
the target. The observer is given unlimited time to detect the
target and since the observer knows a target is present, with
persistence the observer always finds the target. The obser-
vation that Eq. (1) asymptotes to one reflects this reality.
Because of the structureless background, the difficulty in
finding the target did not depend on where the target is
located in the visual field. For a fixed angular size target with
fixed contrast and fixed visual field size, the experiment can
be done N times. The detection time is a random variable.
Out of the N trials, let n(#) denote the number of times the
target is detected in a time less than or equal to ¢. Then in
Eq. (1), the definition of P(t) is

P(i) = o) (34)

Equation (2). A thought experiment for which Eq. (2)
applies is described. Suppose N identical observers have
individual monitors showing identical images from an imag-
ing sensor. The scene is typical of what might be seen in a
military context: there are trees, rocks, bushes, and perhaps
dirt roads in the scene. The scene may or may not have a
military target but never has more than one target. The ob-
server’s task is to find the military target using the sensor’s
WFOV. In the WFOV miilitary targets cannot be clearly dis-
tinguished from the background so sometimes an observer
clicks on a spot where no target is present, i.e., sometimes
there are false alarms. When a detection is made, the ob-
server clicks the place where the target is the moment, the
target is detected, and this time, a random variable, is
recorded. In this experiment, each observer is only allowed
one click on an image if the observer believes a target is
present or no click if the observer believes no target is
present. If a target is present its location is known to person-
nel running the experiment which enables grading of ob-
server responses. Let n(¢) denote the number of times the
target is detected in a time less than or equal to ¢. Then
in Eq. (2), P(7) is defined by Eq. (34).

Equation (5). The same thought experiment which applies
to Eq. (2) also applies to Eq. (5). For Eq. (5), it is assumed
the observer takes a time #; to go from target detection to
clicking on the target.

Equation (6). The same thought experiment which applies
to Eq. (5) also applies to Eq. (6). In Eq. (6), it is assumed the
observer has time #; to click on the target. Any clicks on the
image after time #; are ignored.

Equation (7). Here n identical observers engaged in time-
unlimited search are looking at individual monitors each
showing an image produced by a stationary camera looking
at a rural scene that may or may not contain a single sta-
tionary military target, e.g., a tank. The target-background-
contrast-sensor-range is such that the probability any single
observer detects the target is P, and this is known from
NV-IPM model. Target detection time for any single observer
is a random variable with mean z. A target is said to be
detected the moment any one of the n observers is certain
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the military target is detected. Each observer is allowed one
click, searches with the sensor in the WFOV mode but
switches to NFOV mode to make certain it is a target that
was seen in WFOV mode. The 7; in Eq. (7) corresponds
to the time to switch from WFOV to NFOV plus the time
to take some action to indicate the location of the target,

e., click on the target or put crosshairs on the target.
Suppose now that the n identical observers are memoryless,
i.e., they do not remember where the target is from one trial
to another, so the experiment can be repeated as many times
as desired. The detection time for this process is a random
variable. Let T, (n) denote the mean detection time for that
process, N denotes the number of trials which have a target,
and n(t) denotes the number of detections in those N trials
that take place in a time less than . Then in Eq. (7), P(¢) is
defined by Eq. (34).

Equation (10). Here two observers with different search
capabilities are engaged in search for a single target. The
observers may be stationary or moving and the target may
be stationary or moving. Target acquisition probabilities
P () and P,(¢) refer, respectively, to observers 1 and 2
searching separately and are calculated using the methods
of the TDSP model which have been programmed into
NV-IPM. Equation (10) applies to FOV and FOR search,
an input to the TDSP model. As in Eq. (7), a target is said
to be detected the moment the first of the two observers
engaged in search detect the target. Imagine the two observ-
ers are memoryless and the search process described above is
repeated N times in searches that contain a target. The detec-
tion time for the search process described above is a random
variable. In the N searches, let n(#) denote the number of
detections in a time less than or equal to ¢. Then in
Eq. (10), P(t) is defined by Eq. (34).

Equations (11) and (12). Comments already given for
Eq. (10) apply to these equations with appropriate modifica-
tions that reflect these equations apply to three and four
observers instead of two observers.

9 Appendix B: Cooperative Search and
Hyperexponential Distribution

In this section, it is directly shown that target acquisition
probability Eq. (33), appropriate to two observers, can be
derived from first principles without assuming the validity
of Eq. (10). The result obtained here for two observers can
be extended to any number of observers. However, doing so
requires a more complicated notation and a more difficult to
understand derivation.

9.1 Derivation

Express Eq. (2) in terms of A and a random variable 7, the
time a single Soldier detects the target. Then
P(t)=P(T<t) =Py (1—e*), 0<t<oo, (35)
where 1 =1/7 and P, is needed because even with time-
unlimited search there is some probability the observer will
not find the target. Let D and D, respectively, denote the
event that a target was or was not detected. Thus the prob-
ability that a Soldier eventually detects the target P(D) =
P.. Since D and D exhaust the space P(D) = 1 — P,. The
condmonal probability given that the target is found is

Optical Engineering

093103-13

P(T<tiD)=1-e, 0<1t<o0. (36)

Consider two observers with detection times given by in-
dependent random variables 7', and T,. The event that each
observer eventually finds the target is now denoted by D,
and D,, respectively. When two observers search, a target
is found as soon as either observer finds the target. Let T';
denote the system time for target detection. Then

T, =min(T,,T,). (37)

Let D, denote the system detection event which means
Soldier 1 or Soldier 2 or both detect the target. It is possible
that given as much time as desired neither Soldier finds the
target. Let P, denote the probability that either Soldier
detects the target. Then P(D;) = P,. We seek the CDF
associated with the random variable 7. To get the CDF,
it is convenient to first calculate P(T, > t) as follows:

P(T, > 1) = P(T, > 1|D,D,)P(D,.D,)

+ P(T, > t|D,,D,)P(D,.D,)
+ P(T, > t|D,,D,)P(D,, D,)
+ P(T, > t|Dy, D,)P(Dy,D,), (38)

where P(D,, D,) means the joint probability of D; and D5.
The equality in Eq. (38) follows from the law of total prob-
ability since the conditional events are mutually exclusive
and exhaust the space. The first term corresponds to neither
observer detecting the target, the second term corresponds to
only the first observer detecting the target, the third term cor-
responds to only the second observer detecting the target,
and the last term corresponds to both observers detecting the
target. The assumption that the random variables T'; and T,
are independent allows us to write

= P(D)P(D;) = (1 = Peo1)(1 = Pos2)
_1_( 001+Poo2_PoolP002)
=1-P, (39a)

P(ﬁl’ 52)

The last equality follows from the observation:

P., = P(D,) = P(D, U D,)

= P(Dy) + P(D,) = P(D; N D)

=Py + Por — P11 P (39b)
Similarly,
P(D,D;) = Pei (1 = Po2), (39¢)
P(Dy.Dy) = (1 = Pe1)Pess (39d)
P(Dy,D;) = Py Poop- (3%)

Referring to Eq. (38), we need to evaluate P(T, > t|D,D5).
It must be that

Since given that neither observer detects the target, T, is
certainly greater than any finite time. Note that
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P(T, > t|D,,D,) = P(T, > t)|D,) = e~*", (40b)
P(T, > 1Dy, D;) = P(T, > 1|D;) = ™™, (40c)

P(TS > [|D1,D2) = P(T] > 1, T2 > t|D1D2)
= P(T, > 1|[D,)P(T, > 1|D,)
— e—/l]te—/lzt _ e—(/11+/12)l_ (40d)
Equation (40d) provides a derivation of the well-known
property that the minimum of two independent exponential
variables with parameters 1; and A, has an exponential
distribution'** with parameter 1, + 4,.
Using Egs. (392)-(39¢) and (40a)-(40d), Eq. (38)
becomes
P(TY > t) - (1 _Poox) +Pool (1 _POOZ)e_/l]t
+ (1 =Py )Peze ™ + Py Pope™F2)1 . (41a)

The last equation simplifies to

P(T, > 1) =1—Py,[l —aje™! —ae ™" —a e~ hth)]

(41b)
where
_Pool(l_POOZ) _(1_P001)Poo2
a = ) 2= B
Poos Poos
PoolPoo2
[04 =
1,2 Poos

It is easy to verify that a; + a, + a;, = 1. Thus the quantity
within the parenthesis in Eq. (41b) is a hyperexponential dis-
tribution. We are really interested in Py(r) = P(T, <1t) =
1 —P(T, > t). Using Eq. (41b)

Py(f) = Poy[l — aje ™" — ape™! — qy je~ iR, (42)
Equation (42) is identical to Eq. (33).

9.2 Conclusion

In this section, the application of the hyperexponential
distribution to cooperative search was derived from first
principles.
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