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Abstract. Functional brain network analysis is important for understanding the causes of neurological disorders
and relevant brain mechanisms. Lately, functional near-infrared spectroscopy (fNIRS) yields outputs similar to
the blood-oxygen-level-dependent signals of functional magnetic resonance imaging (fMRI), and numerous
studies have been conducted on functional connectivity and causality using fMRI and fNIRS. Despite the exist-
ence of numerous analysis toolboxes for fNIRS, most of them are difficult to use because they involve numerous
steps, coefficients, and related files. In this study, we developed a MATLAB toolbox called OptoNet, to analyze
cortical networks in the brain for fNIRS. Given that OptoNet consists of a simple and intuitive graphical user
interface, users can readily analyze the cortical networks of the brain for fNIRS signals. To evaluate the efficacy
of the developed toolbox, the finger tapping task experiment—extensively used in brain functional activities and
causal connectivity studies—was employed. The experiment was performed using the right and left hands, and
both hands simultaneously, and the consequently elicited brain cortical network activity was analyzed using
developed OptoNet. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.6.061602]
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a noninva-
sive method used to measure hemodynamic brain signals
based on the absorption of near-infrared (NIR) light with
wavelengths in the range of 650 to 950 nm transmitted
through the intact skull.1 fNIRS monitors regional cerebral
blood flow variations and estimates oxyhemoglobin (HbO)
and deoxyhemoglobin (HbR).2 The hemodynamic signals of
fNIRS are highly correlated to the blood-oxygenation-level-
dependent signal outputs in functional magnetic resonance
imaging (fMRI).3 However, fNIRS lacks anatomical infor-
mation when used to localize brain areas that elicit hemo-
dynamic signals. Additionally, it has poor spatial resolution
and limits the penetration depth within brain tissue.4,5

Despite these disadvantages, fNIRS has several advantages
compared to other neuroimaging modalities, such as fMRI,
positron emission tomography, electroencephalography
(EEG), and magnetoencephalography. fNIRS can be used
for various experimental environments because it can be able
to be portable compared to fMRI and MEG. Since fNIRS
system is based on an optical signal, it is stronger than EEG
for electrical noise. Therefore, the important advantages of
fNIRS are low cost, portability, and the potential of extend-
ing the research to various ecological environments.6

Over the past decades, many research groups have con-
ducted extensive studies in the field of fNIRS and developed
statistical analyses toolboxes to enhance the fNIRS signal
quality based on the general linear model (GLM).7–12 GLM

is one of the most extensively used models that represent data
in a linear combination form and constitute a standard
method for analyzing the fMRI data. Many statistical analy-
sis toolboxes have been developed for fNIRS based on the
GLM.13–18 However, GLM-based analyses methods often
fail to analyze brain functions because of artifacts in the
fNIRS measurements. These artifacts exist for various rea-
sons, such as subjects’ movements, blood pressure varia-
tions, and instrumental instabilities.19,20 Artifacts cause the
fNIRS signal to change abruptly, thereby potentially induc-
ing spikes with amplitudes that are much larger than the
true hemodynamic responses. In previous studies, several
researchers tried to overcome this problem by using algo-
rithms based on bandpass filtering, moving averaging, and
Wiener filtering,21,22 but these algorithms usually failed to
eliminate abrupt noise. Recently, numerous algorithms
based on wavelet transform, signal correlation, and
artificial neural networks have been adopted for fNIRS sig-
nal analysis.19,22–27 Although these algorithms yield good
results, any excess preprocessing leads to attenuation of the
hemodynamic response. Therefore, the research interests of
fNIRS need to migrate to other analysis methods, such as
brain functional connectivity and causality, which are impor-
tant to achieve a better understanding of brain functions and
medical approaches.

Recently, various connections and causality estimation
methods for functional brain network analysis have been
developed and demonstrated their capacities for utilization
in cognitive neuroscience and neurological clinical studies.28

Correlation,29,30 coherence,31 frequency ratio,32 phase lock-
ing value (PLV),33 mean phase coherence,34 and mutual
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information35,36 have been used to estimate functional inter-
actions between multiple neural assemblies. These methods
have been applied to numerous functional neuroimaging
modalities, such as EEG, local field potential, intracranial
EEG, MEG, fMRI, and fNIRS. However, there is no avail-
able analysis software program of functional brain networks
for fNIRS, which can be used for free and unskilled users.
The most popular tools currently available for fNIRS analy-
sis are HomER37 and NIRS–statistical parametric mapping
(SPM).14 HomER (available at Ref. 38) calculates individual
hemodynamic responses using ordinary least-squares linear
deconvolution, and NIRS–SPM (available at Ref. 39) applies
the SPM method, which is a standard activation tool for
fMRI for NIRS data. However, these analysis tools cannot
estimate functional brain connections and they are difficult
to use because of their requirement for various types of
information.

The main contribution of the present study is the presen-
tation of a new cortical network analysis toolbox in
MATLAB for fNIRS, called “OptoNet,” which has an inter-
active graphical user interface (GUI). OptoNet allows func-
tions to analyze hemodynamic time-series data of fNIRS and
also to represent functional connections. Given that OptoNet
provides a three-dimensional (3-D) standard head model and
various causality estimation methods, the cortical brain net-
work of fNIRS can be clearly identified without any ana-
tomical information and MATLAB scripts. The remainder
of this paper introduces the implemented functions of
OptoNet and representative experimental examples of the
OptoNet toolbox.

2 Theory and Methods

2.1 fNIRS Measurement Model

The analyses of functional hemodynamic data, such as
fNIRS and fMRI, have generally been based on the
assumption of linearity of hemodynamic changes.40 The
modified Beer–Lambert law (MBLL)2 describes the optical
attenuation in scattering media, such as human tissues.
Accordingly, the optical density (OD) variation of the
HbO and HbR concentration changes (ΔcHbO, ΔcHbR) can
be described using the MBLL.14 According to the MBLL,
the raw OD for the wavelength (λ) at the brain cortex position
of the 3-D axis at time t is described as follows:19

EQ-TARGET;temp:intralink-;e001;63;269ΔODðλi; r; tÞ ¼ − ln

�
Im
I0

�
¼

XNc

t¼1

aiðλiÞΔcðiÞðr; tÞdðrÞlðrÞ;

(1)

where Im denotes the measured optical intensity, I0 is the
initial optical intensity, and Nc is the number of chromo-
phores. Additionally, aiðλiÞ denotes the extinction coeffi-
cient at wavelength λi of the i’th chromophore, Δc denotes
the chromophore concentration changes, dðrÞ is the differen-
tial pathlength factor (DPF),2 and lðrÞ is the distance
between the sources to the detector at position r. The DPF
depends on various parameters, such as the age of the
subject41 and the wavelength of the fNIRS system.42

The GLM has been established as a standard analysis
model for hemodynamic data from fMRI and fNIRS.
SPM has been used extensively within the fMRI domain for
hemodynamic functional neuroimages, and there is a

MATLAB toolbox for fNIRS called fNIRS SPM.14 The
SPM consists of the model specification, parameter estima-
tion, and statistical inference for hemodynamic data. The
corresponding GLM can be transferred to the interpolated
measured chromophore concentration changes of HbO and
HbR (ΔcHbO and ΔcHbR). The HbO and HbR signals (yHbO
and yHbR) are described by the following matrix formulation:

EQ-TARGET;temp:intralink-;e002;326;675

�
yHbOðr; tÞ
yHbRðr; tÞ

�
¼ dðrÞlðrÞ

�
ΔcHbO
ΔcHbR

�
þ
�
ϵHbOðr; tÞ
ϵHbRðr; tÞ

�
; (2)

where ϵHbOðr; tÞ and ϵHbRðr; tÞ are additive zero mean
Gaussian noise signals of the fNIRS channels. Let y denote
the time series of the hemodynamic signal, and ε be the error
vector at location r at time t. The errors (ε) can occur during
signal acquisitions from the hair, skull, and pores, and they
generally have high-frequency components. The correspond-
ing GLM is represented in the matrix form as follows:

EQ-TARGET;temp:intralink-;e003;326;554y ¼ ½yHbOðr; t1ÞyHbOðr; t2Þ · · · yHbOðr; tNÞ�T; (3)

EQ-TARGET;temp:intralink-;e004;326;511ε ¼ ½εHbOðr; t1ÞεHbOðr; t2Þ · · · εHbOðr; tNÞ�T; (4)

EQ-TARGET;temp:intralink-;e005;326;490y ¼ Xβþ ε: (5)

The elements of y are the sampled NIRS signal data corre-
sponding to N time points, and β represents the unknown
strengths of the response. X is a design matrix that predicts
the measured fNIRS signal.43

Friston et al.44 showed that the hemodynamic signal can
be approximated as a convolution model between a stimulus
function and a hemodynamic response function (HRF). The
canonical HRF, which is composed of two gamma functions,
was employed in Ref. 16. The derivatives of the HRF with
respect to the delay and dispersion can be used to mitigate
the problem such that the precise shape of the HRF varies
across the brain.43 An adaptive estimation of HRF using
multiple gamma functions can also be used in fNIRS
to account for oxygen species-dependent hemodynamic
variations.14

2.2 Phase Synchronization-Based Brain Network
Estimation Method

A number of causality estimation techniques have been
developed to infer functional interactions between multiple
neural assemblies. Lachaux et al.33 developed a brain net-
work analysis estimator based on phase synchronization
(PS) that identifies transient phase-locking between two neu-
roelectric signals. If the measured fNIRS signal is xðtÞ, the
instantaneous phase is constructed by the analytic signal that
is defined by the summation of HðxðtÞÞ and xðtÞ as follows:

EQ-TARGET;temp:intralink-;e006;326;189φðtÞ ¼ tan−1
ðH½xðtÞ�Þ

xðtÞ ; (6)

where φðtÞ are the instantaneous phase, and H½xðtÞ� is the
Hilbert transform of xðtÞ. To estimate the PS between two
fNIRS signals [xnðtÞ and xmðtÞ], the phase difference is
adopted. The PLV is defined based on the average value
of the phase difference as follows:
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EQ-TARGET;temp:intralink-;e007;63;752PLV ¼ 1

N

XN
t¼1

expðφnðtÞ − φmðtÞÞ; (7)

where N is the total sample length of the signal. It estimates
the variability of this phase difference between xnðtÞ and
xmðtÞ. If the phase difference varies somewhat across the sig-
nals, PLV is close to 1; otherwise, it is close to 0.33

2.3 OptoNet: New Cortical Network Analysis Toolbox

OptoNet requires a MATLAB (MathWorks, Natick,
Massachusetts) environment, and it incorporates the
MATLAB GUIs that allow users to intuitively analyze the
cortical network. The GUI of the toolbox is optimized for
MATLAB R2015b and the Nvidia GeForce graphics card
series. Figure 1 shows the overall procedure of the
OptoNet toolbox. First, the measured fNIRS data are loaded
onto the OptoNet GUI. The information of the fNIRS data,
such as the sampling rate of the fNIRS signal, task number,
size, number of trials, and subject number, are loaded onto
the GUI. The fNIRS signal analysis options can control this
step before estimating the brain cortical network. OptoNet
provides the network analyses options and choices of spe-
cific task blocks, or the entire signal lengths for each subject
and trial. Second, the head model is loaded onto the GUI to
visually represent the fNIRS channels and the brain’s causal
connectivity.

OptoNet provides a standard head and cortex model and
can also support the functionality of loading individual head
and cortex models. Third, the channel set of the loaded
fNIRS data is represented on the head model. The channel
set must be synchronized with the information of the loaded
fNIRS channel and the channel set can easily add, save, and
load data using the OptoNet GUI. Finally, the brain causal
connection of the cortical network is estimated and repre-
sented on the head model. OptoNet provides visual brain
connection to easily identify the cortical network, and there
are various view options, as indicated in Fig. 2.

The head and cortex models can be loaded by the GUI
button shown in Fig. 2(a). OptoNet allows 3-D rotations
to enable visualization of every direction on the head.
Additionally, it can set up numerous view options, such
as the depiction of the points associated with the 10–20 sys-
tem, camera light (camlight), interpolation (interp), depiction
of axis (view axis), and the depiction of the mesh plot (view
mesh) with the use of the checkbox on the GUI panel in
Fig. 2(b). The fNIRS channels can be set up using the panel
in Fig. 2(c) and can load a saved channel set using the panel
in Fig. 2(d). The connectivity estimation method and thresh-
old are established using the panel shown in Fig. 2(e).
OptoNet provides not only PLV but also additional three
methods, which are correlation,29,30 coherence,31 and fre-
quency ratio.32 Correlation is one of the most widely used
methods to evaluate signal similarity in time domain.
Coherence measures the phase similarity of two signals in
the frequency domain, and the frequency ratio is a measure
of frequency synchronization that is evaluated by frequency
ratio. However, PLV was selected by the connectivity esti-
mation method of this study, because it can simultaneously
evaluate time–frequency synchronization between two sig-
nals. These provide the choice of automatic or manual
thresholding. The autothresholding type is statistically

evaluated by surrogate datasets, and it can be set up to
acquire specific values from 0 to 1 when the manual-thresh-
old is selected. Finally, the significant cortical connections,
which were evaluated by surrogate datasets or have higher
causality values than the setup threshold, are represented
on the GUI. The estimation result of the functional causality
can be automatically saved into MATLAB. mat files, which
can be loaded in MATLAB at any time.

3 Experimental Results
This section introduces an example that demonstrates the
utility of the OptoNet toolbox. The experimental task para-
digm consisted of the finger tapping task combined with a
rest control task. Seven subjects (24.1� 5.64 years, five
males, two females, and right-handed) were recruited. All
subjects were healthy with no brain injury, neurologic, or
psychiatric disease profiles. Informed consent was obtained
from all subjects. Using a block design, the fNIRS signal of
the subjects was measured, where three activation trials were
alternated while repetitive finger tapping was performed with
the right hand, left hand, and simultaneously with the use of
both hands, during a 20-s period. fNIRS data acquisition was
performed with an fNIRS brain imaging system (NIRsPORT
8–8, NIRx Medizintechnik GmbH, Berlin, Germany). This
instrument emitted LED light with wavelengths in the range
of 760 and 850 nm with eight NIR sources, eight NIR detec-
tors, and 20 fNIRS channels. The arrangements of the fNIRS
channels and optodes are shown in Fig. 3. Figure 3(a) depicts
the structure of the optodes that formed the fNIRS system
with 20 channels, Fig. 3(b) presents the channel locations
based on the use of the head model of OptoNet, and Fig. 3(c)
shows the actual experimental fNIRS cap with the eight
wired sources and eight detectors. The regions-of-interest
of the finger tapping were selected within the primary motor
cortex (M1) and the supplementary motor area (SMA).45 The
fNIRS channels in Fig. 3 cover the SMA and M1 of the left
and right hemispheres, which are areas related to the finger
tapping task.

To estimate the hemodynamic signals (HbO and HbR)
and the brain activity map, data processing was performed
using the NIRS–SPM software14,39 in MATLAB. Two wave-
lengths (760 and 850 nm) of LED light were used for this
experiment, and the DPFs were set to 6.2966 for the wave-
length of 760 nm, and 5.23433 for the wavelength of 850 nm,
as recommended in the user manual of NIRsPORT. To
enhance the fNIRS signal, an HRF smoothing filter44 was
applied for preprocessing. A first-level of analysis used the
preprocessed fNIRS data to obtain parameter images of indi-
viduals for contrasting the design (finger tapping task > rest
control task). The brain activity images from all the subjects
were entered into a second-level analysis group with one-
sample t-test to confirm the statistically significant cortical
activation area of the motor task (p < 0.05). The brain acti-
vation results of the finger tapping task are shown in Fig. 4.
As can be observed in Fig. 4, the M1 of the left hemisphere
was activated from the right-hand finger tapping task in
Fig. 4(a). From the left-hand task in Fig. 4(b), the right
M1 was strongly activated, and Fig. 4(c) shows the result
of the tasks conducted with both hands indicating activities
in M1 on both hemispheres. The results of the fNIRS cortical
functional connection were estimated using Monte Carlo
simulations with PLV.33 The group analyses results of the
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cortical connections were elicited with the use of OptoNet
based on estimations with all trials, all epochs, and all sub-
jects, as shown in Fig. 5. Figure 5(a) shows the functional
connections at M1 of the left hemisphere following the

right-hand finger-tapping task, and they are represented in
the same regions of the detected brain activities shown in
Fig. 4(a). In Fig. 5(b), the functional connection result of the
left-hand shows the connections that are connected to a

Fig. 1 Procedure of OptoNet toolbox: (a) GUI capture showing the loading of fNIRS data and (b) loaded
head model, generation of an fNIRS channel set, and cortical network visualization. Example of OptoNet
process is shown in Video 1 (MP4, 32.2 MB [URL: https://doi.org/10.1117/1.OE.59.6.061602.1]).
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larger region in the right hemisphere. Figure 5(c) shows the
functional connection results following the execution of the
finger-tapping task of both hands. The results show the func-
tional connections at both sides of the M1 of the right and left
hemisphere, where the connections are established on both
sides of the brain.

4 Discussion
Functional brain network analyses of fNIRS have played an
important role in recent fNIRS studies. Heretofore, most
fNIRS studies focused on the hemodynamic activation elic-
ited owing to the vasodilation. Given that fNIRS signals con-
tain numerous artifacts, such as baseline drifts, measured
noise, equipment noise, and motion artifacts, it is not easy
to estimate a correct hemodynamic dataset. Further, it is very
difficult to identify a hemodynamic response from a task that
generates little motion. Therefore, the research focus needs
to shift toward the description of how different brain areas
interact with one another to understand the functional organi-
zation of the cortical network.

We have developed a MATLAB toolbox called OptoNet
that can be used to analyze functional cortical networks for
fNIRS. It is easy and simple to use for plotting fNIRS signals
and functional cortical connections without anatomical infor-
mation, such as 3-D MRI images and MNI co-ordinates. To
demonstrate the performance of OptoNet, the well-known
finger-tapping task experiment was conducted, and the brain
activation function was mapped.46–50 The task was per-
formed with the right and left hands, as well as with both
hands. Accordingly, the cortical brain activity results were
represented pictorially and showed the well-known role of
the hand movements in the opposite sides of the two cerebral
hemispheres. However, the activation of the left-hemispheric
areas was much smaller than the activation of the right areas.
This is indicative of the fact that there is much stronger and
wider activation from the left-hand movements than the
right-hand, and it appears to be in accordance with efficient
activities of the dominant hand, which represents a small area
because it is using the brain efficiently and because it is used
for the action.51–53 However, the elicited outcomes cannot be
clearly demonstrated based only on brain activation maps.

Fig. 2 Control panel in the OptoNet GUI.
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Although the brain areas that elicited significant connections
were estimated to exist at similar locations to those associ-
ated with the brain activation maps, the functional brain net-
work yielded connectivity differences between the right and
left hemispheres. Figure 5(a) showed that the functional con-
nections have a strong and close-set network in each other’s

fNIRS channels from the movement of the dominant hand.
Further, the functional connections from the left-hand move-
ment in Fig. 5(b) exhibit a weaker connection than the right-
hand movements in Fig. 5(a). It can be seen in Fig. 5(c) that
there are functional connections across the right- to left-
hemisphere and strong and close-set connections can be

Fig. 4 Group analysis brain activity maps with the use of NIRS SPM (p < 0.05) elicited with (a) finger
tapping tasks of the right hand, (b) the left hand, and (c) following the simultaneous tapping of both hands.

Fig. 3 fNIRS measuring information: (a) schematic diagram of the source and detector, (b) fNIRS
channel locations on the head model, and (c) fNIRS cap with 8 × 8 wired optodes.
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found in the left-hemisphere. Therefore, OptoNet is a very
powerful toolbox that can be used to estimate functional cort-
ical connectivity, and it can help identify other information in
the brain, which cannot be detected using conventional brain
activation analyses.

5 Conclusions
In the present study, OptoNet was evaluated to estimate its
strengths and to validate its performance for brain functional
network analyses. We demonstrated the necessity and perfor-
mance of OptoNet with the use of the basic experimental
paradigm of fNIRS. Given that the technique of brain
network analysis can be used for the understanding of neuro-
science and neurological clinical studies, OptoNet has
tremendous potential for use in brain cortical network
research of fNIRS.

OptoNet can be downloaded for free from Ref. 54. The
toolbox can be used for research and educational purposes.
The user manual for OptoNet is included in the download
page. We invite users to provide feedback for improving
OptoNet on the website. We hope that our toolbox can con-
tribute to the popularization of brain network analyses of
cortical connectivity in the field of fNIRS research.

Acknowledgments
This work was supported by Dongseo University, “Dongseo
Cluster Project” Research Fund of 2019 (Grant No. DSU-
2019002).

References

1. A. Villringer and U. Dirnagl, “Coupling of brain activity and cerebral
blood flow: basis of functional neuroimaging,” Cerebrovasc. Brain
Metab. Rev. 7(3), 240–276 (1995).

2. M. Cope and D. T. Delpy, “System for long-term measurement of cer-
ebral blood and tissue oxygenation on newborn infants by near infra-red
transillumination,” Med. Biol. Eng. Comput. 26(3), 289–294 (1988).

3. Y. Hoshi, “Functional near‐infrared optical imaging: utility and limita-
tions in human brain mapping,” Psychophysiology 40(4), 511–520
(2003).

4. R. W. Homan, J. Herman, and P. Purdy, “Cerebral location of
international 10–20 system electrode placement,” Electroencephalogr.
Clin. Neurophysiol. 66(4), 376–382 (1987).

5. M. Okamoto et al., “Three-dimensional probabilistic anatomical cranio-
cerebral correlation via the international 10–20 system oriented for
transcranial functional brain mapping,” Neuroimage 21(1), 99–111
(2004).

6. T. Fekete et al., “The NIRS analysis package: noise reduction and
statistical inference,” PloS One 6(9), e24322 (2011).

7. J. van Erp, F. Lotte, and M. Tangermann, “Brain-computer interfaces:
beyond medical applications,” Computer 45(4), 26–34 (2012).

8. A. Kleinschmidt et al., “Simultaneous recording of cerebral blood
oxygenation changes during human brain activation by magnetic reso-
nance imaging and near-infrared spectroscopy,” J. Cereb. Blood Flow
Metab. 16(5), 817–826 (1996).

9. D. A. Benaron et al., “Noninvasive functional imaging of human
brain using light,” J. Cereb. Blood Flow Metab. 20(3), 469–477
(2000).

10. D. Boas et al., “Can the cerebral metabolic rate of oxygen be estimated
with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418
(2003).

11. N. Fujiwara et al., “Evoked-cerebral blood oxygenation changes in
false-negative activations in BOLD contrast functional MRI of patients
with brain tumors,” Neuroimage 21(4), 1464–1471 (2004).

12. R. A. Shirvan, S. K. Setarehdan, and A. M. Nasrabadi, “A new approach
to estimating the evoked hemodynamic response applied to dual channel
functional near infrared spectroscopy,” Comput. Biol. Med. 84, 9–19
(2017).

13. W. Wei et al., “A near-infrared spectrometer based on novel grating light
modulators,” Sensors 9(4), 3109–3121 (2009).

14. J. C. Ye et al., “NIRS-SPM: statistical parametric mapping for near-
infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).

15. M. L. Schroeter et al., “Towards a standard analysis for functional near-
infrared imaging,” NeuroImage 21(1), 283–290 (2004).

16. M. Plichta et al., “Model-based analysis of rapid event-related func-
tional near-infrared spectroscopy (NIRS) data: a parametric validation
study,” Neuroimage 35(2), 625–634 (2007).

17. P. H. Koh et al., “Functional optical signal analysis: a software tool for
near-infrared spectroscopy data processing incorporating statistical
parametric mapping,” J. Biomed. Opt. 12(6), 064010 (2007).

18. F. Aletti et al., “Deep and surface hemodynamic signal from functional
time resolved transcranial near infrared spectroscopy compared to skin
flowmotion,” Comput. Biol. Med. 42(3), 282–289 (2012).

19. K. E. Jang et al., “Wavelet minimum description length detrending
for near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004
(2009).

20. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy
(NIRS) signal improvement based on negative correlation between
oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage
49(4), 3039–3046 (2010).

21. M. Izzetoglu et al., “Motion artifact cancellation in NIR spectroscopy
using Wiener filtering,” IEEE Trans. Biomed. Eng. 52(5), 934–938
(2005).

Fig. 5 Group analyses outcomes of cortical functional connections with the use of OptoNet (p < 0.01),
elicited with the finger tapping tasks of (a) the right hand, (b) left hand, and (c) the simultaneous use
of both hands.

Optical Engineering 061602-7 June 2020 • Vol. 59(6)

Lee, Park, and Jung: OptoNet: a MATLAB-based toolbox for cortical network analyses. . .

https://doi.org/10.1007/BF02447083
https://doi.org/10.1111/psyp.2003.40.issue-4
https://doi.org/10.1016/0013-4694(87)90206-9
https://doi.org/10.1016/0013-4694(87)90206-9
https://doi.org/10.1016/j.neuroimage.2003.08.026
https://doi.org/10.1371/journal.pone.0024322
https://doi.org/10.1109/MC.2012.107
https://doi.org/10.1097/00004647-199609000-00006
https://doi.org/10.1097/00004647-199609000-00006
https://doi.org/10.1097/00004647-200003000-00005
https://doi.org/10.1088/0031-9155/48/15/311
https://doi.org/10.1016/j.neuroimage.2003.10.042
https://doi.org/10.1016/j.compbiomed.2017.03.010
https://doi.org/10.3390/s90403109
https://doi.org/10.1016/j.neuroimage.2008.08.036
https://doi.org/10.1016/j.neuroimage.2003.09.054
https://doi.org/10.1016/j.neuroimage.2006.11.028
https://doi.org/10.1117/1.2804092
https://doi.org/10.1016/j.compbiomed.2011.06.001
https://doi.org/10.1117/1.3127204
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1109/TBME.2005.845243


22. G. Lee et al., “Cross-correlation between HbO and HbR as an effective
feature of motion artifact in fNIRS signal,” in 6th Int. Conf. Brain-
Comput. Interface (BCI), pp. 1–3 (2018).

23. G. Lee et al., “fNIRS motion artifact correction for overground walking
using entropy based unbalanced optode decision and wavelet regression
neural network,” in IEEE Int. Conf. Multisensor Fusion and Integr.
Intell. Syst. (MFI), pp. 186–193 (2017).

24. G. Lee et al., “Baseline drift detection index using wavelet transform
analysis for fNIRS signal,” in 5th Int. Winter Conf. Brain-Comput.
Interface (BCI), pp. 73–76 (2017).

25. G. Lee et al., “Selective detrending using baseline drift detection index
for task-dependant fNIRS signal,” Adv. Sci. Technol. Eng. Syst. J. 2(3),
1147–1151 (2017).

26. G. Lee et al., “Robust functional near infrared spectroscopy denoising
using multiple wavelet shrinkage based on a hemodynamic response
model,” J. Near Infrared Spectrosc. 26(2), 79–86 (2018).

27. G. Lee, S. Jin, and J. An, “Motion artifact correction of multi-measured
functional near-infrared spectroscopy signals based on signal recon-
struction using an artificial neural network,” Sensors 18(9), 2957
(2018).

28. Y.-J. Jung, K. H. Kim, and C.-H. Im, “Mathematical issues in the infer-
ence of causal interactions among multichannel neural signals,” J. Appl.
Math. 2012, 1–14 (2012).

29. A. Aarabi, F. Wallois, and R. Grebe, “Does spatiotemporal synchroni-
zation of EEG change prior to absence seizures?” Brain Res. 1188, 207–
221 (2008).

30. G. Thut et al., “Rhythmic TMS causes local entrainment of natural oscil-
latory signatures,” Curr. Biol. 21(14), 1176–1185 (2011).

31. G. Varotto et al., “Spectral and coherence analysis of EEG during inter-
mittent photic stimulation in patients with photosensitive epilepsy,” Int.
J. Bioelectromagn. 11(4), 189–193 (2009).

32. I. Yilmaz, “Landslide susceptibility mapping using frequency ratio,
logistic regression, artificial neural networks and their comparison: a
case study from Kat landslides (Tokat—Turkey),” Comput. Geosci.
35(6), 1125–1138 (2009).

33. J. P. Lachaux et al., “Measuring phase synchrony in brain signals,”Hum.
Brain Mapp. 8(4), 194–208 (1999).

34. F. Mormann et al., “Mean phase coherence as a measure for phase syn-
chronization and its application to the EEG of epilepsy patients,”
Physica D 144(3-4), 358–369 (2000).

35. S. Baillet et al., “Combined MEG and EEG source imaging by mini-
mization of mutual information,” IEEE Trans. Biomed. Eng. 46(5),
522–534 (1999).

36. J. Jeong, J. C. Gore, and B. S. Peterson, “Mutual information analysis of
the EEG in patients with Alzheimer’s disease,” Clin. Neurophysiol.
112(5), 827–835 (2001).

37. T. J. Huppert et al., “HomER: a review of time-series analysis methods
for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–
D298 (2009).

38. D. Boas and J. Dubb, “HOMER,” http://www.nmr.mgh.harvard.edu/
PMI/resources/homer/home.htm (2005).

39. J. C. Ye, https://bispl.weebly.com/nirs-spm.html (2012).
40. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain

function by near-infrared spectroscopy using an adaptive general linear
model,” Neuroimage 46(1), 133–143 (2009).

41. A. Duncan et al., “Optical pathlength measurements on adult head, calf
and forearm and the head of the newborn infant using phase resolved
optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995).

42. M. Essenpreis et al., “Wavelength dependence of the differential path-
length factor and the log slope in time-resolved tissue spectroscopy,”
in Optical Imaging of Brain Function and Metabolism, U. Dirnagl,
A. Villringer, and K. M. Einhäupl, Eds., Advances in Experimental
Medicine and Biology, Vol. 333, pp. 9–20, Springer, Boston,
Massachusetts (1993).

43. W. D. Penny et al., Statistical Parametric Mapping: The Analysis of
Functional Brain Images, Academic Press, New York (2011).

44. K. J. Friston et al., “Event-related fMRI: characterizing differential
responses,” Neuroimage 7(1), 30–40 (1998).

45. M. Dhamala et al., “Neural correlates of the complexity of rhythmic
finger tapping,” Neuroimage 20(2), 918–926 (2003).

46. S. T. Witt, A. R. Laird, and M. E. Meyerand, “Functional neuroimaging
correlates of finger-tapping task variations: an ALE meta-analysis,”
Neuroimage 42(1), 343–356 (2008).

47. C. H. Moritz et al., “Whole-brain functional MR imaging activation
from a finger-tapping task examined with independent component
analysis,” Am. J. Neuroradiol. 21(9), 1629–1635 (2000).

48. V.-E. Gountouna et al., “Functional magnetic resonance imaging
(fMRI) reproducibility and variance components across visits and scan-
ning sites with a finger tapping task,” Neuroimage 49(1), 552–560
(2010).

49. C. A. Carroll et al., “Timing dysfunctions in schizophrenia as measured
by a repetitive finger tapping task,” Brain Cognit. 71(3), 345–353
(2009).

50. J. E. Desmond et al., “Lobular patterns of cerebellar activation in verbal
working-memory and finger-tapping tasks as revealed by functional
MRI,” J. Neurosci. 17(24), 9675–9685 (1997).

51. S. T. Yang et al., “Dominant and subdominant hand exhibit different
cortical activation patterns during tactile stimulation: an fNIRS study,”
in 6th Int. Conf. Brain-Comput. Interface (BCI), pp. 1–3 (2018).

52. P. S. Boggio et al., “Enhancement of non-dominant hand motor function
by anodal transcranial direct current stimulation,” Neurosci. Lett.
404(1–2), 232–236 (2006).

53. L. Jäncke et al., “The effect of finger-movement speed of the domi-
nant and the subdominant hand on cerebellar activation: a functional
magnetic resonance imaging study,” Neuroimage 9(5), 497–507
(1999).

54. Y. J. Jung, https://sites.google.com/site/dsucore/free/optonet (2019).

Gihyoun Lee is a postdoctoral researcher at Samsung Medical
Center. He joined the Department of Physical and Rehabilitation
Medicine, Center for Prevention and Rehabilitation, Heart Vascular
Stroke Institute, in March 2019. He obtained his PhD, MS, and BS
degrees from KNU in 2009, 2012, and 2016, respectively. His
research interests are brain network analysis, neural networks, artifi-
cial intelligence, machine learning, brain signal processing, and brain
activation mapping.

Ji-Su Park earned his PhD in the Department of Rehabilitation
Science from Inje University, Gimhae, Republic of Korea, in 2018
and is now a research professor in the Advanced Human Resource
Development Project Group for Health Care in Aging Friendly Industry
at Dongseo University. His research interests brain stimulation,
dysphagia, and therapeutic exercise for stroke.

Young-Jin Jung has completed his PhD from Yonsei University, and
he worked at Hanyang University as a research assistant professor
(2011). In 2012, he worked at the Engineering Center at Florida
International University (FIU) as a postdoc, and then he was promoted
to assistant professor at the College of Nursing and Health Science
FIU in USA (2014–2015). He is now an assistant professor at the
Department of Radiological Science at Dongseo University (Republic
of Korea). His current research interest includes computational radio-
logical engineering, especially signal and imaging processing and
reconstruction.

Optical Engineering 061602-8 June 2020 • Vol. 59(6)

Lee, Park, and Jung: OptoNet: a MATLAB-based toolbox for cortical network analyses. . .

https://doi.org/10.1109/IWW-BCI.2018.8311513
https://doi.org/10.1109/IWW-BCI.2018.8311513
https://doi.org/10.1109/MFI.2017.8170427
https://doi.org/10.1109/MFI.2017.8170427
https://doi.org/10.1109/IWW-BCI.2017.7858163
https://doi.org/10.1109/IWW-BCI.2017.7858163
https://doi.org/10.25046/astesj
https://doi.org/10.1177/0967033518757231
https://doi.org/10.3390/s18092957
https://doi.org/10.1155/2012/472036
https://doi.org/10.1155/2012/472036
https://doi.org/10.1016/j.brainres.2007.10.048
https://doi.org/10.1016/j.cub.2011.05.049
https://doi.org/10.1016/j.cageo.2008.08.007
https://doi.org/10.1002/(ISSN)1097-0193
https://doi.org/10.1002/(ISSN)1097-0193
https://doi.org/10.1016/S0167-2789(00)00087-7
https://doi.org/10.1109/10.759053
https://doi.org/10.1016/S1388-2457(01)00513-2
https://doi.org/10.1364/AO.48.00D280
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
https://bispl.weebly.com/nirs-spm.html
https://bispl.weebly.com/nirs-spm.html
https://bispl.weebly.com/nirs-spm.html
https://bispl.weebly.com/nirs-spm.html
https://doi.org/10.1016/j.neuroimage.2009.01.033
https://doi.org/10.1088/0031-9155/40/2/007
https://doi.org/10.1006/nimg.1997.0306
https://doi.org/10.1016/S1053-8119(03)00304-5
https://doi.org/10.1016/j.neuroimage.2008.04.025
https://doi.org/10.1016/j.neuroimage.2009.07.026
https://doi.org/10.1016/j.bandc.2009.06.009
https://doi.org/10.1523/JNEUROSCI.17-24-09675.1997
https://doi.org/10.1109/IWW-BCI.2018.8311502
https://doi.org/10.1016/j.neulet.2006.05.051
https://doi.org/10.1006/nimg.1998.0426
https://sites.google.com/site/dsucore/free/optonet
https://sites.google.com/site/dsucore/free/optonet
https://sites.google.com/site/dsucore/free/optonet

