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Abstract. The mathematical tools to calculate surface and wavefront local curvatures have been
growing in importance because, when studying and evaluating some optical systems, the local
curvature becomes extremely important. Many practical methods have been created to measure
the wavefront shape and local curvatures as well as many mathematical tools to describe them.
These methods are very useful in ophthalmology mainly for corneal evaluation, but the methods
are now being used in other fields of optical metrology, especially in optical testing, interfero-
metric wavefront description, and others. In some instruments and optical devices, mainly oph-
thalmic and optometric instruments, the local curvatures distribution over the pupil of an optical
system is more important than the wavefront topography. A typical example is a human eye, in
which corneal topographers, eye aberrometers, and several other instruments are used to measure
the local curvatures. In particular, the main aspects of the curvature calculation at a given point
for different slopes in any direction are introduced. The principal curvatures, mean, Gaussian,
cylindrical, tangential, and sagittal curvatures are described. In the second part of this review,
we describe the main methods and devices for wavefront sensing, measuring elevations, slopes,
or curvatures. We conclude with a description of some methods to measure and calculate local
curvatures from wavefront sensors by measuring the wavefront elevations, the transverse aber-
rations (slopes), or directly the curvatures.© 2022 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.OE.61.5.050901]
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1 Introduction

When evaluating most optical systems or surfaces, the wavefront or surface topography becomes
extremely important. Typically, it is represented by a topographic map that can be obtained
mostly by optical interferometric methods, for example, the Twyman–Green interferometer
in Fig. 1(a), representing an astigmatic (sphero-cylindrical deformation) which is a topographic
map with equal elevation deformation, where each line represents the geometrical locus of points
of equal elevation or separation from its reference sphere. The difference in elevation between
two consecutive fringes is one wavelength. Figure 1(b) shows a representation of an equal wave-
front map for the constant deviation points where the different colors represent different values
of the elevation.

Intuitively, we know that the local curvature tells us how fast the elevation slope changes at
some point. In some optical systems, the local curvature instead of the elevation becomes more
important since the value of the curvature is an indication of the local convergence or divergence
power of the optical surface or the local degree of convergence or divergence in a wavefront.
This will be described later in more detail.
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The geometrical concept of curvature and the mathematical theory of local curvatures are
quite old and they are the main subjects of the books about differential geometry. The history
of the concept of curvature has been treated recently by many authors with some detail, e.g., by
Margalit1 and Bardini and Gianella.2 The first attempts to formally define the curvature started
many centuries ago, beginning with the Greek writers, following with Johannes Kepler (1571 to
1630) who was the first to define the curvature as the inverse of the local radius of curvature.
However, the first successful study comes from Newton,3 as described by Coolidge.4 He said that
the curvature of a curved line is equal to the curvature of the largest circle that is tangent to the
curve on its concave side and that the center of the circle is the center of curvature. The study of
curvatures is increasing its importance and has recently become a very important concept in
optometry and ophthalmology.5 It is thus surprising that classical optics books ignore this subject
almost completely. Even ophthalmology and optometry books study curvatures at just an intro-
ductory level. Mathematicians and specialists in this field are the ones that study this subject in
detail and great advances have recently been made. It is the purpose of this article to make a
general review of the subject at a level so that opticians, optical engineers, and in general non-
specialists in the field can get an introductory description of the main concepts today in wide use.
In this review, we have made all mathematical derivations using elementary concepts of calculus,
without the use of differential geometry to make it simpler to understand for nonspecialists. The
concept of curvature is so important that has applications in many fields, even as something that
can be perceived by just touching the surface6 and as a tool for neurologic studies.7

When evaluating an optical surface, we might be interested in the map of the optical surface
or wavefront deformations, frequently called aberrations, as given by an elevation map. A typical
example includes the surface of a primary mirror for an astronomical telescope under polishing
or figuring. In some other optical surfaces, the important characteristics to be measured are not
the optical surface or the wavefront deviation but the local curvatures, as in the case of the human
eye corneas. The most commonly evaluated curvatures in optometry and ophthalmology are the
sagittal and tangential curvatures and the axis orientation.5 In most commercial instruments this
is done with approximations, frequently with the assumption that the optical surface or wave-
front is nearly rotationally symmetric. More general and precise evaluation methods were not
found to be described in any general optics, ophthalmology, or optometry books, perhaps with
the only exception of the book by Stavroudis.8 Surprisingly, to our knowledge, this information
was absent even in differential geometry books.

The subject of surface topography and shape, of surfaces studied in differential geometry
books, among them, by Stoker,9 Lipschutz,10 Bronshtein and Semendyayev,11 Kepr,12 Gray
et al.,13 and Krauthammer and Ventsel14 is quite important and useful in many fields, mainly
in ophthalmic and optometric optics and in geology.15 Typically, in these books, the first fun-
damental and the second fundamental forms are developed, leading to expressions for the prin-
cipal curvatures but not for the sagittal and tangential curvatures. In optics, these concepts are

Fig. 1 Maps of equal elevation deformation in a wavefront or surface of an optical system.
(a) Twyman–Green interferograms and (b) color-coded map. An advantage of the Twyman–Green
interferogram is that it provides more quantitative results than the color-coded map, but a dis-
advantage is that its elevation has a sign uncertainty that the color-coded map does not have.
In the Twyman–Green interferogram, the fringe separation is an indication of the elevation slope.
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useful for the study of many properties of the optical surfaces and wavefronts. The basic intrinsic
properties of a surface are described by the fundamental forms of surfaces, which are the subject
of differential geometry books. Their results can be applied to study the sagittal and tangential
curvatures, but frequently some other methods are used.16

2 Curvatures in a Plane Curve

To fully describe the concept of local curvature in a surface, let us first begin by considering a
one-dimensional function fðxÞ represented in a plane, as in Fig. 2, where three circles are drawn
close to the curve.

The first circle at the left, in Fig. 2 is intersected by the curve at two points. The second circle
touches the curve at only one point, where the first derivative (slope) at this point is the same both
at the curve and at the circle. At a given point in the curve, we can trace an infinite number of
tangent circles of different sizes, on any side of the curve. The third circle touches the curve in a
small region, where both, the first and the second derivatives are the same at the center of the
region where they touch each other. At a given point in the curve, we can trace only one of these
circles. Then, we say that the circle and the curve are osculating (from Latin: osculum = kiss).
The curve at this small region has the same radius of curvature as the osculating circle. The unit
normal vector is a vector passing through the point in the curve being considered and pointing to
the center of curvature of the osculating circle. The curvature is defined by the inverse of the
radius of curvature r. More formally, we may say that for a small length along with the curve ds,
the curvature is given by how fast the slope is changing at the point P in Fig. 2, then, as defined
probably for the first time by Kästner,17 the curvature along the x-direction cx at the point P
would then be expressed as

EQ-TARGET;temp:intralink-;e001;116;441cx ¼
dαx
ds

; (1)

where ds is the small length traveled along the curve and dα is the change in the slope of the
curve along the x axis. On the other hand, the slope at the same point P is given by the derivative
of fðxÞ respect to x

EQ-TARGET;temp:intralink-;e002;116;363

dfðxÞ
dx

¼ tan αx: (2)

The second derivative of the function fðxÞ with respect to x is equal to the curvature only if the
slope at that point is zero. Otherwise, the curvature can be found by writing the second derivative
at any point where the first derivative (slope angle equal to αx) is not zero, as follows:

Fig. 2 Three circles near a curve. The first circle is intersected by the curve at two points and
the second circle is tangent to the curve at one point. There are many possible tangent circles
of any size, at any point. The third circle is osculating to the curve at the point P. At a given point
in the curve, we can trace only one osculating circle.
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EQ-TARGET;temp:intralink-;e003;116;735

d2fðxÞ
dx2

¼ d tan αx
dx

¼ sec2 αx
dαx
dx

¼ 1

cos2αx

dαx
ds

ds
dx

¼ 1

cos3 αx
cx: (3)

Hence, the curvature, measured along a curve contained in a flat surface, is given as

EQ-TARGET;temp:intralink-;e004;116;687cx ¼
d2fðxÞ
dx2

cos3 αx; (4)

which, by writing cos αx in terms of the tan αx, which is the first derivative of fðxÞ respect to x
can be written as

EQ-TARGET;temp:intralink-;e005;116;620cx ¼
d2fðxÞ
dx2�

1þ
�
dfðxÞ
dx

�
2
�
3∕2 : (5)

This result was found with a different notation by Bernoulli18 and more formally some years later
by Newton.3 This curvature is a function of both, the first and the second derivative. If the first
derivative is zero, the curvature in the x-direction is just the second derivative of fðxÞ. Thus, we
have found expressions to obtain the curvature at a point along a curve fðxÞ contained in a plane,
and the normal to this curve is contained in the same plane.

This result can also be applied to find the exact value of the local curvature over a curve on a
surface fðx; yÞ in the direction of maximum slope (gradient), where the slope in the perpen-
dicular direction is zero. In the next section, we will describe how to find the local curvature
along a curve on the surface fðx; yÞ in the direction of no slope, perpendicularly to the direction
of maximum slope.

3 Local Curvatures in a Direction Perpendicular to its Maximum Slope

The concept of curvature was extended by Euler,19 Bernoulli’s doctoral student, to three dimen-
sions. In a more general case we have a surface fðx; yÞ, and a curve on this surface, this expres-
sion is strictly valid if the points Pðx; yÞ where the curvature is to be evaluated has a slope along
some direction of the curve but not in the perpendicular direction. We will study the local cur-
vatures over an open surface fðx; yÞ, so that given any point P with coordinates ðx; yÞ there is
only one possible value of the function fðx; yÞ describing the surface. Let us start by defining
some important concepts. A normal plane at a point in a surface is any plane containing the
normal to the surface at that point. The intersection of a normal plane with the surface is a curve
called a normal section and the curvature of this curve at that point is the normal curvature.

At any point on the surface, we can place a plane tangent at that point. This plane is not
necessarily horizontal, which in the general case has a tilt. At the point of tangency on this
surface, there is a different slope for different directions, which is equal to the first derivative
in the given direction. Thus, at this point, there are two mutually perpendicular directions, one
with a zero slope and one with a maximum slope (gradient). It should be pointed out that these
zero and maximum slope directions are not necessarily the same as the maximum and minimum
curvatures, which are also called the principal curvatures. However, it is interesting to notice two
particular cases: (a) If the surface has rotational symmetry, at any off-axis point, the principal
curvatures are one in the direction of maximum slope (gradient) and one in the direction of zero
slope. In these surfaces, these are the radial and the angular directions. (b) A second interesting
case is a surface with symmetry about a straight line in the x–y plane, e.g., a horizontal cylinder.
In this case, the principal curvatures are also one in the direction of maximum slope (gradient)
and one in the direction of no slope.

The local curvatures at the point in the surface being considered can be easily calculated in
these two special directions, i.e., the direction of maximum slope and the direction of zero slope.
For the direction of the maximum slope, there is no slope in the perpendicular direction, and
hence the theory in Sec. 2 and the result in Eq. (5) can be applied if the x-direction is selected
in the direction of maximum slope. Next, we will calculate the local curvature in the direction of
zero slope.
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Figure 3 illustrates a single-valued function fðx; yÞ, describing a surface on top of a sphere
and a cylinder. Let us assume that on this surface we can find two points P1 and P2, with the
following characteristics. At the point P1, the local curvatures on this point in the surface fðx; yÞ
are the same in all directions and thus, we can place an osculating sphere at this point. At the
point P2 in the surface fðx; yÞ the curvature along the x coordinate is zero, hence the axis of the
cylinder is contained in a plane perpendicular to the y axis. Thus, we can place an osculating
cylinder located at this point P2. The unit normal vectors N are at the points where the local
curvatures are to be measured. The unit vectors rM, also at the points P1 and P2, are parallel to the
z-axis. Thus, the angle between these two vectorsN and rM is equal to the angle αg formed by the
maximum slope (gradient) on the surface.

With a simple geometrical analysis, it is relatively simple to show that in general, for the
osculating sphere as well as for the osculating cylinder, the curvature in the direction of no slope,
which is the perpendicular direction of maximum slope (called here direction h), at a point
located along a curve in the plane containing the normal to the surface would be given by the
second derivative in this direction, multiplied by cos αg. Thus, if the slope along the curve in the
direction h is zero, but different from zero in the perpendicular direction g, the curvature ch is

EQ-TARGET;temp:intralink-;e006;116;327ch ¼
∂2f
∂h2

cos αg: (6)

This result is known as the theorem of Meusnier (Truesdell),20 to honor a mathematical genius
that died just before his 39th birthday in Napoleon’s army in 1793, after writing his monumental
work in differential geometry. Writing cos αg in terms of tan αg, which is the first derivative of f
respect to g

EQ-TARGET;temp:intralink-;e007;116;235ch ¼
∂2f
∂h2�

1þ
�
∂f
∂g

�
2
�
1∕2 : (7)

In conclusion, we can find the exact local curvatures values in the directions of maximum slope
and of no slope, using Eqs. (5) and (7), respectively.

4 Curvatures in Different Directions at a Point on a Surface

We have calculated the local curvature at a point in a surface, in two particular mutually
perpendicular directions, the direction of maximum slope and the direction of no slope. In any
other direction the problem is mathematically more complicated, but the problem has been
solved by differential geometry methods, by the development of the first fundamental and the

Fig. 3 A surface f ðx; yÞ with an osculating sphere at the point P1 and an osculating cylinder at the
point P2. The curvature at the two points P1 and P2, along the direction of h with no slope is to be
measured and the maximum slope is in the direction of g.
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second fundamental form of surfaces. However, the expressions for cx and ch [Eqs. (5) and (7)]
are enough to obtain a highly accurate and intuitive method for calculating and understanding the
local curvatures as described below.

Let us consider a point in a surface fðx; yÞ and an infinite number of possible directions for
the curvature, passing through a point, as illustrated in Fig. 4.

For this point in this surface, the slopes in the x and y directions are given as

EQ-TARGET;temp:intralink-;e008;116;413

∂fðx; yÞ
∂x

and
∂fðx; yÞ

∂y
: (8)

The gradient of the function fðx; yÞ is a vector in the direction of maximum slope, in the direc-
tion of the gradient g, as illustrated in Fig. 4, whose magnitude is given as

EQ-TARGET;temp:intralink-;e009;116;345j∇fðx; yÞj ¼ ∂fðx; yÞ
∂g

¼
��

∂fðx; yÞ
∂x

�
2

þ
�
∂fðx; yÞ

∂y

�
2
�
1∕2

; (9)

and the angle with respect to the x axis for the direction of the gradient g is given as

EQ-TARGET;temp:intralink-;e010;116;288 tan ϕ ¼
�
∂fðx;yÞ

∂y

�
�
∂fðx;yÞ

∂x

� : (10)

Sometimes, it is necessary to find the values of cos 2ϕ and sin 2ϕ, for the gradient direction,
which can be shown as

EQ-TARGET;temp:intralink-;e011;116;205 cos 2ϕ ¼
�
∂f
∂x

�
2
−
�
∂f
∂y

�
2

�
∂f
∂x

�
2 þ

�
∂f
∂y

�
2
; sin 2ϕ ¼ 2

�
∂f
∂x

��
∂f
∂y

�
�
∂f
∂x

�
2 þ

�
∂f
∂y

�
2
: (11)

The local curvature measured at a point over a surface fðx; yÞ, along the direction of the gradient
with the maximum surface slope tan βg will be represented by cg and it is given as

EQ-TARGET;temp:intralink-;e012;116;120cg ¼
∂2fðx; yÞ

∂g2
cos3 βg: (12)

The first derivative of fðx; yÞ with respect to g is

Fig. 4 Different orientations for the zero slope, maximum slope (gradient), the sagittal curvature,
the tangential curvature, and the minimum curvature and the maximum curvature (principal cur-
vatures) at a point in a surface.
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EQ-TARGET;temp:intralink-;e013;116;735 tan βg ¼
∂fðx; yÞ

∂g
: (13)

Then, writing cos βg in terms of the tan βg, we obtain

EQ-TARGET;temp:intralink-;e014;116;687cg ¼
∂2fðx;yÞ

∂g2�
1þ

�
∂fðx;yÞ

∂g

�
2
�
3∕2 : (14)

Thus, formally probing the use of Eq. (5) to find the local curvature along the gradient.

5 Curvatures in a Surface f �x ;y� in Any Direction α

Now, to calculate the local curvatures at any point in any desired direction α (see Figs. 4 and 5)
we need to know the first and second derivatives at the desired location. Let us assume that we
need to calculate the first and second derivatives at the point ðx; yÞ but in the direction α of the
rotated coordinates u and v, as illustrated in Fig. 5.

The function representing the surface is fðx; yÞ. The first derivative with respect to the
coordinate u, in the α direction as

EQ-TARGET;temp:intralink-;e015;116;503

∂fðx; yÞ
∂u

¼ ∂f
∂x

cos αþ ∂f
∂y

sin α; (15)

and the first derivative with respect to the coordinate v in the αþ 90 deg direction as

EQ-TARGET;temp:intralink-;e016;116;447

∂fðx; yÞ
∂v

¼ −
∂f
∂x

sin αþ ∂f
∂y

cos α: (16)

The second derivative of fðx; yÞ with respect to the coordinate u is given as

Fig. 5 Translation and rotation of coordinates to evaluate the local curvatures at the point ðx; yÞ
along the rotated axis u in the direction α.
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EQ-TARGET;temp:intralink-;e017;116;735

∂2fðx; yÞ
∂u2

¼ ∂
∂u

�
cos α

∂f
∂x

þ sin α
∂f
∂y

�

¼
�
cos α

∂
∂x

þ sin α
∂
∂y

��
cos α

∂f
∂x

þ sin α
∂f
∂y

�

¼ ∂2f
∂x2

cos2 αþ ∂2f
∂y2

sin2 αþ 2
∂2f
∂x∂y

sin α cos α

¼ 1

2

�
∂2f
∂x2

þ ∂2f
∂y2

�
þ 1

2

�
∂2f
∂x2

−
∂2f
∂y2

�
cos 2αþ ∂2f

∂x∂y
sin 2α: (17)

This second derivative along the u axis, in the direction given by this expression is equal to the
curvature cθ only when the slopes at the point in the surface where this curvature is to be evalu-
ated are zero.

Now, let us now assume that this surface normal is not perpendicular to the x–y plane. We
assume there is a slope tan βu along the curve where the curvature is measured, given by the first
derivative with respect to the coordinate u, in the direction as

EQ-TARGET;temp:intralink-;e018;116;540 tan βu ¼
∂f
∂u

¼ ∂f
∂x

cos αþ ∂f
∂y

sin α: (18)

If besides this inclination of the surface normal in the direction of the measurement, there is also
a slope of the surface or inclination αv of the surface normal in the perpendicular direction, we
might intuitively try to generalize our two curvature expressions [Eqs. (7) and (14)] by writing

EQ-TARGET;temp:intralink-;e019;116;460cα ¼
∂2fðx; yÞ

∂u2
cos3 βu cos βv; (19)

where the directions u and v are mutually perpendicular. Then, by writing the cos βu and cos βv
in terms of the slopes we can find

EQ-TARGET;temp:intralink-;e020;116;393cα ¼
1
2

�
∂2f
∂x2 þ ∂2f

∂y2

�
þ 1

2

�
∂2f
∂x2 −

∂2f
∂y2

�
cos 2αþ ∂2f

∂x∂y sin 2αh
1þ

�
∂f
∂x cos αþ ∂f

∂y sin α
�
2
i
3∕2

h
1þ

�
∂f
∂x sin α − ∂f

∂y cos α
�
2
i
1∕2 : (20)

This expression was derived here in an intuitive manner, and it is exact only in the directions of
the gradient α ¼ ϕ (and α ¼ ϕþ 180 deg) and perpendicular to the gradient α ¼ ϕþ 90 deg

(and α ¼ ϕþ 270 deg). Although it is only approximate, it is highly accurate in all other direc-
tions and exact if its slopes are zero.

The exact formula derived in a rigorous manner from the fundamental forms of the differ-
ential geometry. From the book by Stoker9 after converting to Cartesian coordinates by a Monge
parametrization, the exact curvature expression is quite similar, as follows:

EQ-TARGET;temp:intralink-;e021;116;250cα ¼
1
2

�
∂2f
∂x2 þ ∂2f

∂y2

�
þ 1

2

�
∂2f
∂x2 −

∂2f
∂y2

�
cos 2αþ ∂2f

∂x∂y sin 2αh
1þ

�
∂f
∂x cos αþ ∂f

∂y sin α
�
2
��

1þ
�
∂f
∂x

�
2 þ

�
∂f
∂y

�
2
i
1∕2 : (21)

Its derivation is made with curvilinear coordinates, obtaining the first and second fundamental
forms of surfaces in three-dimensional space. The Monge parametrization can be made when the
surface does not deviate much from a plane, but it deviates enough to make the first derivatives
sufficiently large to make the denominator factors in this expression significant. Observing this
expression, we may notice that the whole denominator becomes equal to one if the first deriv-
atives are extremely small or zero. Then, the curvature is just the numerator, which is equal to the
second derivative in the direction of the measured curvature.

If the expression is converted from Cartesian to polar coordinates, the exact expression for the
local curvatures at the point ðρ; θÞ becomes
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EQ-TARGET;temp:intralink-;e022;116;735cα ¼
1
2

�
∂2f
∂ρ2 þ 1

ρ
∂f
∂ρ þ 1

ρ2
∂2f
∂θ2

�
þ 1

2

�
∂2f
∂ρ2 −

1
ρ
∂f
∂ρ −

1
ρ2

∂2f
∂θ2

�
cos 2ðθ − αÞ − 1

ρ

�
∂2f
∂ρ∂θ −

1
ρ
∂f
∂θ

�
sin 2ðθ − αÞ�

1þ
�
∂f
∂ρ cosðθ − αÞ − 1

ρ
∂f
∂θ sinðθ − αÞ

�
2
��

1þ
�
∂f
∂ρ

�
2 þ 1

ρ2

�
∂f
∂θ

�
2
�
1∕2 :

(22)

Observing Eq. (21), if we define an angle ψ as

EQ-TARGET;temp:intralink-;e023;116;660B cos 2ψ ¼ 1

2

�
∂2f
∂x2

þ ∂2f
∂y2

�
and B sin 2ψ ¼

�
∂2f
∂x∂y

�
2

: (23)

Calculating B from these expressions and after some algebraic manipulation, this Eq. (21) can be
transformed into

EQ-TARGET;temp:intralink-;e024;116;590cα ¼
1
2

�
∂2f
∂x2 þ ∂2f

∂y2

�
þ
h
1
4

�
∂2f
∂x2 −

∂2f
∂y2

�
2 þ

�
∂2f
∂x∂y

�
2
i
1∕2

cos 2ðα − ψÞ�
1þ

�
∂f
∂x cos αþ ∂f

∂y sin α
�
2
��

1þ
�
∂f
∂x

�
2 þ

�
∂f
∂y

�
2
�
1∕2 ; (24)

which is quite similar to the Euler relation described later in Sec. 7 and where ψ is the orientation
of the cylindrical axis, given as

EQ-TARGET;temp:intralink-;e025;116;507 tan ψ ¼
2 ∂2f
∂x∂y

∂2f
∂x2 −

∂2f
∂y2

: (25)

6 Accuracy of the Approximate Formula to Determine Curvatures
in any Direction

The determination of the local curvatures in a wavefront in an optical system is of great impor-
tance. It was shown by Kneisly21 that they can, in principle, be determined by studying the
propagation of light beams in an optical system by means of ray tracing. Following our treat-
ment, we have pointed out that the expression 20 provides only an approximate value for the
curvatures in directions different from those of the gradient direction and perpendicularly to the
gradient.

Exact results can be obtained only using the results from the fundamental forms of surfaces,
as studied in differential geometry, in Eqs. (20) or (21). However, the result is quite accurate. An
expression for the curvature error can be calculated by taking the difference between the approxi-
mate expression obtained here and the exact expression as follows:
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and thus, the error divided by the curvature as

EQ-TARGET;temp:intralink-;e027;116;169
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D2
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�

N
D1

� ¼
�
D2 −D1

D2

�
; (27)

where N is the numerator in Eq. (26), D1 is the first factor of the denominator and D2 is the
second factor. Hence, we may find after some algebraic manipulation, and using Eq. (10) for the
orientation of the gradient:
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and using an expression for the magnitude of the gradient

EQ-TARGET;temp:intralink-;e029;116;432
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: (29)

We can see that the maximum error is a function only of the magnitude of the gradient, that is,
of the maximum slope at the point where the curvature is evaluated. If we add this value ofΔcθ to
the approximate expression, the small remaining error is compensated, thus obtaining an exact
result. As we can observe, the error amplitude depends only on the magnitude of the gradient, or
maximum slope of the tangent plane at the point where the curvature is evaluated. We might
observe that the error is zero in the directions of maximum and minimum slope (gradient direc-
tion) and in the direction of zero slope (perpendicularly to the gradient). The maximum error is
�45 deg with respect to the gradient direction.

Figure 6 shows three polar representations of the approximate and the exact curvatures in all
directions for a point in a spherical surface and a radius of curvature equal to 7.722 mm, the
average radius of the human cornea.

7 Euler Curvature Formula

A point in a surface contains an infinite number of normal planes in all possible directions. These
normal planes at a point in a surface in most surfaces and points have different values for differ-
ent directions, except at points with perfectly spherical or flat shapes.

The expression for the curvature in any direction θ can be expressed in the following form,
known as the Euler’s curvature formula,12,13 graphically represented by a closed figure fre-
quently resembling an ellipse, but sometimes it is more like a nut.

The Euler formula representing the polar distribution of the curvature for different angular
directions is illustrated in Fig. 7, with an axis orientation ψ ¼ 0 deg and different values of the
ratio of the cylindrical curvature to the spherical curvature.

In any kind of surface, except in a sphere, the curvature at any point is not necessarily con-
stant, but variable with the direction, in a nearly ellipsoidal manner. In other words, a plot of the

Fig. 6 (a)–(c) Three polar representations of the local curvatures in all directions at three-point in
a sphere with different distances from the axis. At these points the gradient or maximum slope is
different. Each figure has three different polar plots, one of them, with blue dots, is a perfect circle,
calculated with the exact expression for the curvatures (local curvature equal to 0.13 mm−1).
Another, with red dots, is calculated with the approximate expression. It is quite close to the circle
and touches over the line along the gradient and along a line perpendicular to the gradient. The
third polar plot is for the local curvatures with green dots, calculated just with the numerator of the
expression for the curvatures. All three polar plots become identical to a circle (zero error) when
the maximum slope is zero (at the optical axis).
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curvature as a function of the angle describes a closed path, as in Fig. 8, with an inclination ψ
of the cylinder axis, given by Eq. (24).

There is a maximum value of the curvature κ1 in one direction and a minimum value κ2 in
an orthogonal direction. These are the two principal curvatures. The principal curvatures are the
maximum and minimum local curvatures, which are always perpendicular to each other. If the
principal curvatures at a point in an optical surface are κ1 at an angle α ¼ ψ � π and κ2 at an

Fig. 7 Polar plots of the Euler formula for an axis orientation ψ equal to 0 deg and different values
of the ratio of the cylindrical curvature to the spherical curvature. The color indicates the magnitude
of the curvature.

Fig. 8 Variation in the value of the normal curvature cα for all possible directions. The maximum
and minimum curvatures, also called principal curvatures κ1 and κ2 are orthogonal to each other.
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angle α ¼ ψ � π þ π∕2 the curvature along a direction θ can also be written in terms of the
principal curvatures, as illustrated in Fig. 8.

Analytically, this curvature can be represented by the Euler curvature formula which is illus-
trated in Fig. 9(a) as

EQ-TARGET;temp:intralink-;e030;116;687

cα ¼
�
κ1 þ κ2

2

�
þ
�
κ1 − κ2

2

�
cos 2ðα − ψÞ

¼ ðcsphÞa þ ðccylÞa cos 2ðα − ψÞ: (30)

At the normal plane at an angle ψ the curvature has its maximum value κ1. In a sphero-cylindrical
or toroidal lens the curvature changes in the same manner for planes with different orientations
containing the optical axis. If the Euler expression for curvatures is used, κ1 and κ2 are the maxi-
mum and minimum curvatures, respectively.

The Euler expression for local curvatures can be written in several other different equivalent
manners, e.g.

EQ-TARGET;temp:intralink-;e031;116;554

cα ¼ κ2 þ ðκ1 − κ2Þcos2ðα − ψÞ
¼ ðcsphÞb þ ðccylÞb cos2ðα − ψÞ; (31)

Fig. 9 Curvature variation with the angle at a point in a surface. The total curvature can be
expressed as a sum of a spherical and an astigmatic curvature. The spherical component can
have: (a) a curvature equal to the average curvature, (b) a curvature equal to its minimum value,
and (c) a curvature equal to its maximum value.
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as illustrated in Fig. 9(b) and as in Fig. 9(c)
EQ-TARGET;temp:intralink-;e032;116;723

cα ¼ κ1 − ðκ1 − κ2Þcos2ðα − ψ � 90 degÞ
¼ ðcsphÞc þ ðccylÞc cos2ðα − ψ � 90 degÞ; (32)

where csph is the spherical curvature and ccyl is the cylindrical curvature. Equations (31)
22 and

(32) [Figs. 9(b) and 9(c)] are said to be transposed one from the other. A simple method to go
from one of them to the other is by means of three simple steps:

1. The new first coefficient (also called the sphere) is obtained by summing the old sphere
with the old second coefficient (also called the cylinder). This is the new sphere value.

2. The new cylinder is obtained by changing the sign of the old cylinder.
3. The axis orientation ψ is rotated �90 deg.

This can be written as

EQ-TARGET;temp:intralink-;e033;116;557ðcsphÞc ¼ ðcsphÞb þ ðccylÞb ðccylÞc ¼ −ðccylÞb ψc ¼ ψb þ 90 deg; (33)

or

EQ-TARGET;temp:intralink-;e034;116;513ðcsphÞb ¼ ðcsphÞc þ ðccylÞc; ðccylÞb ¼ −ðccylÞc; ψb ¼ ψc þ 90 deg . (34)

Another possible representation of the Euler curvature formula is

EQ-TARGET;temp:intralink-;e035;116;469cα ¼ κ1 cos
2ðα − ψÞ þ κ2 sin

2ðα − ψÞ: (35)

8 Mean, Gaussian, and Cylindrical Curvatures

Efforts had been made to find parameters that define as simple and as clear as possible the shape
of a surface in a small region.23 Besides the previously described curvatures, in differential
geometry, the mean curvature cmean and the Gaussian curvature cgauss have been defined as the
arithmetic average and the product, respectively, of the two principal curvatures, as follows:

EQ-TARGET;temp:intralink-;e036;116;353cmean ¼
κ1 þ κ2

2
and cgauss ¼ κ1κ2: (36)

These two curvatures, mainly the mean curvature, had been used to detect some important shape
characteristics in the cornea of the human eye, e.g., the presence of keratoconus, a deformation
and thinning near the center, producing a cone-like bulking of the cornea as described by Nasrin
et al.,24 who also made measurements of the curvature in the internal surface of the cornea in a
process called pachimetry.

Using Euler [Eq. (31)], we may find the mean curvature as the arithmetic average of the two
principal curvatures or in a more general manner as the arithmetic average of any two curvatures
in orthogonal directions, as follows:

EQ-TARGET;temp:intralink-;e037;116;217cmean ¼
cα þ cαþ90 deg

2
¼ κ1 þ κ2

2
¼ cg þ ch

2
: (37)

Using here Eq. (21), we can obtain the mean curvature, as follows:
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which, for surface with symmetry of revolution, becomes
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If the tangent plane is horizontal, i.e., if the slopes in any direction are zero, the mean curvature
can be written as half the Laplacian, as follows:

EQ-TARGET;temp:intralink-;e040;116;658cmean ¼
1
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∇2f ¼ 1

2

�
∂2f
∂x2

þ ∂2f
∂y2

�
: (40)

However, if the slopes (first derivatives) are not zero, this expression is not accurate and may
have a significant error.24

Individually, these two curvatures hide any information about the difference between the two
principal curvatures, frequently called astigmatism, and just specify the arithmetic and the geo-
metric average of the two principal curvatures, representing the curvatures of two intermediate
reference spheres, tangent at the point under consideration. The mean curvature is represented by
the radius of a circle in Fig. 10.

The Gaussian curvature is the square of the geometric average of the two principal curvatures
and has units of 1∕mm2 instead of 1/mm as the other curvatures. It is the area of the rectangle in
the upper part of Fig. 10. A sphere has a constant curvature over the whole surface. Some other
surfaces may have a constant Gaussian curvature over the whole surface, e.g., Fig. 11 illustrates
three surfaces with different constant Gaussian curvatures, inside and outside of the surface.

Fig. 10 Polar representation of the Gaussian and mean curvatures.

Fig. 11 Three surfaces with different values of the Gaussian curvature. The three surfaces have
the same constant value of the Gaussian curvature at all points, inside and outside of the surface.
(a) Negative, (b) zero, and (c) positive.
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The first surface has negative value, the second one zero values and the third one positive values.
The measurement of the Gaussian curvature by optical means has been mathematically studied
by Roitman.25

If both principal curvatures have the same sign, the Gaussian curvature is positive and that
point at the surface is said to be an elliptic point. If both principal curvatures are equal, that point
at the surface is said to be an umbilical point and it is locally spherical. The name comes from the
Latin umbilicus, meaning navel. If the two principal curvatures have different signs, the Gaussian
curvature is negative and that point at the surface is said to be a hyperbolic or saddle point. If one
of the principal curvatures is zero, the Gaussian curvature is zero and that point at the surface is
said to be a parabolic point. This concept of Gaussian curvature has been used in optical design
studies.25,26

In general, a surface has different values of the mean and the Gaussian curvatures at different
points.

The local powers in diopters Ds and Dt are just the curvatures cs and ct, multiplied by the
index of refraction n ¼ 1.3375 − 1ðn − 1Þ as follows:

EQ-TARGET;temp:intralink-;e041;116;556Ds ¼ 0.3375cs and Dt ¼ 0.3375ct: (41)

It is important to point out that these dioptric powers are valid for a collimated and narrow beam
of light entering perpendicularly to the optical surface at the point where the curvatures are
considered. If a wide collimated beam of light enters the cornea of the eye, illuminating the
whole pupil, the light will not enter perpendicularly to the surface at all points inside the pupil.
Dioptric powers with different definitions may appear in this case.27 For this reason, frequently,
these local powers are said to be paraxial approximations.

The cylindrical curvature, from Eqs. (29) and (38), is given as
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After the mean and the cylindrical local curvatures are calculated with Eqs. (38) and (42), the
principal curvatures can easily be obtained.

9 Calculating Astigmatic Parameters with Three Measurements

The curvatures along the gradient and perpendicularly to it do not provide all the information
about the curvature variation with normal plane orientation. A third parameter is needed to obtain
the Euler equation and thus the curvatures in all directions. This information also allows us to
retrieve the cylinder orientation ψ .

In general, to calculate axis orientation, ψ we take a minimum of three measurements of the
curvature in three different directions, as in phase-shifting techniques used in optical testing.23 If
we set θ1 ¼ ϕ, θ2 ¼ ϕþ 45 deg, and θ3 ¼ ϕþ 90 deg and two of these three measurements
will be the curvatures along the gradient and along the perpendicular to the gradient. The third
measurement is at 45 deg between them. Thus, using the Euler equation we have
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2

�
cos 2ðϕ − ψÞ: (45)

Now, from Eqs. (44) and (45)
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Then, the cylindrical component (difference between the two principal curvatures), as
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but using Eqs. (46) and (47)
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The principal curvatures can be obtained from Eqs. (44) and (46)
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10 Local Curvatures in Optical Surfaces

In lens design and evaluation programs, the optical surface shape28 (sagittal distribution) is
defined as

EQ-TARGET;temp:intralink-;e050;116;423zðρ; θÞ ¼ cρ2

1þ ½1 − ðK þ 1Þc2ρ2�1∕2 þ
X4
j¼1

Anρ
2ðnþ1Þ; (50)

where the first term is a conic surface (sphere, ellipsoid, or hyperboloid), K is the conic constant,
ρ2 ¼ x2 þ y2, c is the vertex curvature of the reference sphere, An is the deformation coefficients
for rotationally symmetric aspheric surfaces. It is important to point out that the contributions
to the sagitta of the aspheric deformations are all in the direction of the optical axis and not
perpendicular the reference sphere.

For an optical surface with a circular boundary or a wavefront from an optical system with
a circular optical pupil, two curvatures are frequently important. One is in the radial direction,
the tangential or radial curvature also called instantaneous curvature. The other curvature in a
perpendicular direction, the sagittal or azimuthal curvature cs, is also called axial curvature by
optometrists and ophthalmologists (see Fig. 12).

Using the general expression in polar coordinates, Eq. (22) for local curvatures, the tangential
(also called radial or instantaneous) curvatures can be found by setting α ¼ θ, obtaining
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and using the same general expression, the sagitta (also called axial or azimuthal) can be
obtained by setting α ¼ θ þ 90 deg
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These two expressions are valid for optical surfaces or wavefronts without any aberrations,
including those with extreme asymmetries. However, many ophthalmic or optometric surfaces,
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e.g., most human eye corneas, are nearly rotational symmetric, if the aberrations are not very
large. In this case, the tangential and sagittal expressions for the local curvatures can be sim-
plified by setting the first and second derivatives of f respect to θ equal to zero, as follows:
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and
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2
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These expressions are exact for aspheric surfaces with rotational symmetry, as represented
by Eq. (50).

Let us now study with more detail these curvatures for surfaces with nearly rotational sym-
metry. For these surfaces, both curvatures, tangential and sagittal, are constant for all values of θ
and a given value of ρ. In other words, the sagittal and the rotational maps are rotationally invari-
ant. Now, by observing Fig. 13, we see that the axial (or sagittal) curvature cs ¼ 1∕rs is the
curvature at a point on the intersection of the optical surface with a plane passing through the
local center of curvature, which is perpendicular to the plane containing the optical axis (a tan-
gential plane). Thus, when the optical surface has rotational symmetry, the sagittal (or axial)

Fig. 12 Tangential or instantaneous and sagittal or axial curvatures in a circular pupil.

Fig. 13 An optical surface with rotational symmetry, showing the osculating sphere and also a
sphere touching the aspherical surface along a ring passing through the point P.
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radius of curvature can be calculated by tracing a ray passing through the point P and measuring
its distance to the intersection with the optical axis. This is the reason for the name “axial cur-
vature.” If the optical surface does not have rotational symmetry, the ray passing through point P
does not cross the optical axis. This effect is called skew ray error in the optometric literature.29

When the surface has rotational symmetry about the optical axis, these tangential and sagittal
curvatures can be calculated with simpler formulas. In Fig. 13, we have a sphere tangent to a
surface with rotational symmetry about the optical axis. The point of tangency is at the point P
and along a circle containing the point P, concentric with the optical surface. Since the sphere
and the surface are tangent along this circle, a line being perpendicular to the optical surface is
also a radius for the sphere with the axial curvature 1∕rs

EQ-TARGET;temp:intralink-;e055;116;616cS ¼
1

rs
¼ sin β

ρ
¼ tan β

ρ½1þ ðtan βÞ2�1∕2 ; (55)

and using the theorem of Meusnier in Eq. (6)
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ρ½1þ ðtan αÞ2�1∕2 : (56)

These expressions are exact only for rotationally (axially) symmetric optical surfaces, without
any nonrotationally symmetric aberrations.29

Barbero30 has described the concepts of geodesic curvature and geodesic torsion as a metric
of the difference between a rotationally symmetric and a nonrotationally symmetric surface.
When nonrotational symmetric aberrations are present and this expression is used, important
errors appear, mainly at the periphery of the corneal surface.

In the case of surfaces with symmetry of revolution, these are the tangential and the sagittal
curvatures. For surfaces without symmetry of revolution, like the sphero-cylindrical surfaces or
astigmatic corneas, in general, the principal curvatures are not in the tangential and sagittal direc-
tions. Thus, these principal curvatures are not the same as the averages of the tangential and
sagittal curvatures, unless the surface or wavefront deformations are rotationally symmetric.

In surfaces without rotational symmetry, the two curvatures, sagittal and tangential, are com-
pletely independent of each other. Under these conditions, it is not possible to derive one type of
curvature from the other. There is a lot of confusion in the literature about this topic. However,
for surfaces with rotational symmetry, these two curvatures are related to each other as described
by Klein and Mandell,31 Tang et al.,32 and Schwiegerling,5 page 45)
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0

ctðρ 0Þdρ 0: (57)

These expressions are also valid for aberrated surfaces as long as the aberrations are rotationally
symmetric, or the nonrotationally symmetric aberrations are extremely small compared with the
rotationally symmetric component. The local astigmatism axis has its axis is along with the
tangential or sagittal directions only if the surface is rotationally symmetric.

When the surfaces do not have rotational symmetry, the two principal curvatures are not the
same as the tangential and sagittal curvatures, at any point in the optical surface, which is the case
when: (a) the surface has a cylindrical or sphero-cylindrical shape, (b) when the aberration sur-
face has nonrotationally symmetric deformations.

In general, the principal curvatures cannot be calculated from the sagittal and tangential cur-
vatures only. An extra parameter must be determined at all points in the optical surface, e.g., the
orientation of the principal curvatures (cylinder axis) of the difference of their magnitudes (cyl-
inder magnitude), or a curvature in another direction. This means that the sagittal and tangential
maps do not provide the whole information about the shape of the surface deformations nor
about the curvatures.

Examples of maps for tangential and sagittal curvatures, obtained by computer generation for
an astigmatic (sphero-cylindrical) wavefront are in Fig. 14.
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10.1 Sagittal and Tangential Curvatures for Conic Surfaces

Conic surfaces are a particular case of surfaces with rotational symmetry. For conic surfaces, the
sagittal, azimuthal, or axial curvature is given by33

EQ-TARGET;temp:intralink-;e058;116;493cs ¼
c

½1 − Kc2S2�1∕2 ; (58)

and the tangential, radial, or instantaneous curvature is given as

EQ-TARGET;temp:intralink-;e059;116;439ct ¼
c

½1 − Kc2S2�3∕2 : (59)

As in any rotationally symmetric surface, the two curvatures, sagittal and tangential, are related
to each other. In this case, they are related as

EQ-TARGET;temp:intralink-;e060;116;373c3s ¼ c2ct; (60)

where c is the vertex curvature, i.e., the curvature at the intersection of the optical surface with its
optical axis. The local radius of curvature is equal to the radius of curvature r plus the aberration
of the normal, represented by Δr, as illustrated in Fig. 15. Since the slope of the line going from
the point P to the local center of curvature is equal to the first derivative or slope of the aspherical
surface, the aberration of the normal can be obtained as

EQ-TARGET;temp:intralink-;e061;116;281Δr ¼ S�
dz
dS

	 þ z − r; (61)

which, for conic surfaces becomes

Fig. 14 An example of tangential map of curvatures (a) and a sagittal map of curvatures (b) for a
sphero-cylindrical optical surface or wavefront. The color indicates the sign, red for positive values
and green for negative values.

Fig. 15 A conic surface with its osculating sphere, illustrating the transverse aberration.
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EQ-TARGET;temp:intralink-;e062;116;735Δr ¼ −Kz: (62)

The anterior surface of the cornea is frequently assumed to be ellipsoidal, with or without rota-
tional symmetry.34,35 With this fact in mind, Harris,36 and later Bektas,37 studied the curvature of
general ellipsoids using the fundamental form of surfaces. A detailed study of the shape of the
cornea and its local curvatures has also been reported by Griffits et al.38,39

10.2 Curvatures in Convex or Concave Optical Surfaces

A particular case of special interest is the measurement of local curvatures in a strong spherical
convex or concave with relatively small aberrations. It is also important to consider what happens
when an unaberrated convergent or divergent wavefront is reflected or refracted in an aberrated
optical sphere to measure this optical surface. In the case or reflection, the reflected wavefront
will have the same aberrations as the incident wavefront, multiplied by two, and in the case of
refraction, the refracted wavefront also will have the same aberrations but multiplied by (n − 1)
which is close to 0.5. A consequence is that the local curvatures at all points over the wavefront
the local curvatures after reflection or refraction are scaled by the same factor 2 or (n − 1).

It is important to notice that if a spherical or conic optical surface is aberrated, those aberra-
tions could be defined and measured in a direction parallel to the optical axis or perpendicularly
to a close reference sphere. Thus, we define the absolute aberrations as those in a direction
parallel to the optical axis and the relative aberrations as those measured perpendicularly to the
close reference sphere. Figure 16 illustrates these concepts of the absolute distance za and the
relative distance zr. They are related as

EQ-TARGET;temp:intralink-;e063;116;461zr ¼ za cos θ; (63)

where θ is the angle between their normal to the sphere and the normal to the aberrated sphere.
If the aberrated wavefront is almost flat, the reference sphere is a plane and θ is zero.

The importance of this distinction can be clearly seen when we change the curvature of the
reference sphere of a convex (divergent) wavefront by means of a collimating lens. By use of the
Fermat principle, we can see that if the relative sagitta in the incident nearly spherical wavefront
becomes equal to the absolute sagitta in the collimated wavefront. In Fig. 17, zr1 is the relative
aberration in the divergent wavefront and it is equal to the absolute aberration za2 in the colli-
mated wavefront.

An interesting conclusion is that if we measure or evaluate the local curvatures in the convex
or concave optical surface in Fig. 16 or the convergent wavefront in Fig. 17, the slope is large and
thus we must use the exact Eq. (21) to calculate the local curvatures. On the other hand, if we
need to calculate the relative local curvatures of the curvatures in the collimated wavefront in
Fig. 17, we can use the simplified formula, in Eq. (20), or if the aberrations are not extremely
large, even just the numerator in this expression, which can be written as

EQ-TARGET;temp:intralink-;e064;116;262cα ¼
1

2

�
∂2f
∂x2

þ ∂2f
∂y2

�
þ
�
1

4

�
∂2f
∂x2

−
∂2f
∂y2

�
2

þ
�
∂2f
∂x∂y

�
2
�
1∕2

cos 2ðα − ψÞ; (64)

Fig. 16 Illustration of the absolute distance, measured with respect to the reference sphere, in a
direction parallel to the optical axis and the relative distance, measured with respect to the refer-
ence sphere and in a direction towards the center of the sphere.
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which is valid for any almost flat (collimated) wavefront. Then, the local curvature along the x
and y axes are given as

EQ-TARGET;temp:intralink-;e065;116;525cx ¼
∂2f
∂x2

and cy ¼
∂2f
∂y2

: (65)

The principal curvatures κ1 and κ2 can be obtained from Eqs. (21) and (23), as follows:

EQ-TARGET;temp:intralink-;e066;116;468κ1; κ2 ¼
�
∂2f
∂x2

þ ∂2f
∂y2

�
�
��

∂2f
∂x2

−
∂2f
∂y2

�
2

þ 4

�
∂2f
∂x∂y

�
2
�
1∕2

; (66)

with an axis orientation given by Eq. (24).

11 Wavefront Sensing

All preceding treatment of local curvatures assumes that the analytic representation of the surface
is known, otherwise, the surface must be measured and mathematically represented to calculate
its local curvatures. Optical surfaces can be directly measured optically or mechanically in many
ways, typically by profilometry, as described by Schmit et al.40 In a more common method,
optical surfaces and general optical components are evaluated by measuring the wavefront defor-
mations in the reflected and/or refracted light beam in these systems. This procedure is normally
called wavefront sensing, traditionally employed to test all types of optical systems28 and also
used to examine the eye,41,42 mainly since the advent of adaptive optics. In many of these meth-
ods, it should be taken into account that nearly always a perfectly nonaberrated wavefront when
reflected or refracted in even a perfect optical surface or system becomes aberrated, as described
in optical design books.43

11.1 Wavefront Sensing Devices

Wavefront sensing devices retrieve the shape of wavefront Wðx; yÞ by measuring

1. Direct sensing of the wavefront phase, also known as the wavefront sagitta.
2. By measuring the wavefront slopes, or the transverse aberrations, which are related as

EQ-TARGET;temp:intralink-;e067;116;152

∂Wðx; yÞ
∂x

¼ −
TAx

rw
;

∂Wðx; yÞ
∂y

¼ −
TAy

rw
; (67)

where rw is the distance from the observation plane to the screen with the cells or the array
of virtual images and TAx and TAy are the distances from the actual ray and the reference
ray when they cross the observation plane.28

3. By measuring the local curvatures at the wavefront surface.

Fig. 17 Flattening of the curved, aberrated wavefront by means of a collimator.
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11.2 Interferometric Wavefront Sensing

The devices that can measure directly the wavefront deformations are the interferometers, which
produce interferograms, representing curves of equal level, that can be processed to retrieve the
slope and the local curvatures.44 Two typical examples are the Fizeau45 the Twyman–Green46,47

interferometers (see Fig. 18).
Interferometers have an extremely large sensitivity to small deformations. As a result, the

atmospheric turbulence, vibrations, and small movements make the system quite unstable.
Interferometers that cancel out these vibrations and rapid movements had been designed,48 mak-
ing them more appropriate for ophthalmologic and optometric studies. This Twyman–Green
interferometer uses the phase-shifting technique with four-phase steps taken simultaneously.
To achieve this simultaneity, every pixel of the CCD image detector where the interferograms
are imaged is formed by four pixels. Each cell has a polarizing layer on top, with different ori-
entations for the linear polarization in each of them, as shown in Fig. 19. Since the light beam
arriving in this image detector is circularly polarized, we have four different phase shifts. In all
interferometer setups, the cornea or the retina under examination should be conjugate to the
observation plane with the light detector.

11.3 Foucault or Schlieren Wavefront Sensing

In the Foucault test,49 also known as Schlieren, when used to detect the flow of fluids or air
turbulence, illustrated in Fig. 20, a knife edge is inserted perpendicularly to the point of

Fig. 18 Twyman–Green interferometer.

Fig. 19 Image detector for a vibration and turbulence stabilized Twyman–Green. The light beam
arriving at this image detector is circularly polarized to have four different phase shifts.
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convergence of the light coming back from a concave mirror, to block the ray lights that have a
transverse aberration larger than the distance from center of the image to the edge of the knife
edge. An imaging lens or an observing eye is located after the knife, to form an image of the
mirror at an observing plane. The image in the observing plane has darker zones where the light
rays are blocked. An image that subjectively illustrates the surface with the irregularities is
clearly shown. This test measures the transverse aberrations, which are the same, except for
a constant, to the surface slopes in a direction perpendicular to the knife edge. This test can
be made quantitative.

The imaging lens in contact with the knife, should form at the observation plane an image of
exit pupil of the system or the optical surface under test.

11.4 Pyramidal Prism Wavefront Sensing

An important modification of the Foucault test is obtained by substituting the knife edge with a
pyramidal prism to simultaneously produce four Foucault images, with the edges of the four
prisms forming the pyramid, as if four knives were introduced instead of just one.50–55 This
makes the test bidimensional, measuring the transverse aberration in the x- and y-direction.
Also, the pyramidal prism has oscillations in both directions to measure the transverse aberra-
tions over the whole aperture.

After obtaining the maps for the transverse aberrations TAx and TAy, the wavefront devia-
tions are obtained. With this information, the local curvatures can also be retrieved. Let us
assume that the illumination (irradiance) values on the images A, B, C, and D are IAðx; yÞ,
IBðx; yÞ, ICðx; yÞ, IDðx; yÞ. The total amount of light on each of these images is directly propor-
tional to the light passing through the corresponding quadrant in the pyramidal prism. Then, it is
easy to show that the irradiance of these images can be added in pairs, obtaining four Foucault
images, as if they were produced by four different knife orientations. If we add all four Foucault
images, a uniformly illuminated image is obtained (see Fig. 21).

For any position of the pyramidal prism oscillation, we can measure two signals, Sxðx; yÞ and
Syðx; yÞ, defined as

EQ-TARGET;temp:intralink-;e068;116;155

Sxðx; yÞ ¼
ðIBðx; yÞ þ IDðx; yÞÞ − ðIAðx; yÞ þ ICðx; yÞÞ
IAðx; yÞ þ IBðx; yÞ þ ICðx; yÞ þ IDðx; yÞ

;

Syðx; yÞ ¼
ðICðx; yÞ þ IDðx; yÞÞ − ðIAðx; yÞ þ IBðx; yÞÞ
IAðx; yÞ þ IBðx; yÞ þ ICðx; yÞ þ IDðx; yÞ

; (67)

where each of these irradiance values for every image pixel, are between zero and one. Then, the
values of these signals are directly proportional to the difference between the two complementary

Fig. 20 Foucault test of a concave mirror.
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irradiance values for two knife orientations in opposite directions, producing values between
−1 and þ1, being zero when the two complementary irradiances are equal.

These signals are directly proportional to the slopes in the wavefront. If we represent by δVx

and δVy the amplitudes of the oscillations of the pyramidal prism in the x- and y-directions,
respectively, the wavefront slopes, from Eq. (67), can be shown to be

EQ-TARGET;temp:intralink-;e069;116;396

∂Wðx; yÞ
∂x

¼ rw
δVx

Sxðx; yÞ;
∂Wðx; yÞ

∂y
¼ rw

δVy
Syðx; yÞ; (69)

where rw is the distance from the wavefront pupil to the pyramidal prism. The next step is to use
Eq. (62) to find the transverse aberration values.

The imaging lens in contact with the pyramidal prism should form at the observation plane an
image of exit pupil of the system, the pupil of the observed eye or the optical surface under test.

11.5 Ronchi Wavefront Sensor

Another wavefront sensor that measures the transverse aberrations (slopes) in one direction is
the Ronchi test,56 as in Fig. 22. It can be considered as a Foucault test, where the knife edge is
substituted by a linear array of edges, implemented by a relatively coarse ruling with about 80 to
100 lines per inch.

This test was originally designed to evaluate concave mirrors, but it can be used to measure
any kind of image forming optical devices, including the human eye. The exit pupil of the optical
system must be conjugate to the observation plane.

11.6 Interferometric Lateral Shearing Wavefront Sensing

Other sensors that measure the slopes in one direction are the lateral shear interferometers, with
many possible configurations, where the two interfering wavefronts are laterally displaced one
respect to the other,57 as in Fig. 23. The interferograms measure the wavefront slopes in the
direction of the shear. Both wavefronts have exactly the same deformations.

Figure 23 illustrates a lateral shear interferometer with high fringe stability that requires a
He–Ne laser as the illuminating light source. The exit pupil of the optical system of the human

Fig. 21 Pyramidal prism wavefront sensor.
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eye under examination must be in a plane conjugate to the observation plane. The necessary
optical components to achieve that condition must be used.

Another example of this type of interferometer can be constructed with a Mach–Zehnder
interferometer58 with one of its mirrors slightly rotated to laterally displace one of its two inter-
fering images. In these interferometers, the interference fringes represent the wavefront slopes in
the direction of the lateral shear. It is interesting to know that a Ronchi test could be considered
as a relatively low sensitivity lateral shearing interferometer where the lateral shear depends on
the frequency of the ruling.

11.7 Inverse Ronchi and Deflectometry Wavefront Sensing

The Ronchi test was invented to test convergent wavefronts. However, it can be adapted to test
convex surfaces, e.g., the cornea of the human eye. It could be named the inverse Ronchi test,
with a configuration as in Fig. 24. There are several differences with the classic Ronchi test:
(1) convex instead of concave surfaces are evaluated, (2) all the system is on-axis, and (3) a
linear array of light sources is used instead of a point light source. This system is seldom used;
an inverse Hartmann test is generally preferred to have a two-dimensional analysis and measure
the wavefront slopes in two dimensions. Ideally, the array of light strips should be concave, as in
the inverse Hartmann configuration in Fig. 27.

The sensitivity and accuracy of this test can be increased by measuring the Ronchi fringes
with respect to a reference ideal Ronchi pattern with straight, equidistant, and parallel fringes
with approximately the same period, forming a pattern of moiré fringes. This arrangement is
frequently known as deflectometry. The reference ruling can be a pattern of circular fringes,

Fig. 22 Ronchi test.

Fig. 23 Lateral shear interferometer.
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like in a defocused fringe pattern. A study with this method to measure the curvature of a small
convex spherical mirror has been reported by Hong et al.59

All of these methods that measure transverse aberrations have a strong similarity with lateral
shearing interferometry and all devices that produce fringes representing the slope of the wave-
front (or transverse aberration) in the direction perpendicular to the fringes. All slope-measuring
devices, like these ones, require a minimum of two measurements in two different directions to
obtain the slopes in all directions. It is simple to show from Eq. (67) that if two contiguous
Ronchi fringes are separated by Δx and ΔTAx the separation between two lines on the ruling,
then we can write the curvature along the perpendicular to the fringes as

EQ-TARGET;temp:intralink-;e070;116;304cx ¼
∂2Wðx; yÞ

∂x2
¼ −

1

rw

ΔTAx
Δx

; (70)

where rw is the distance from the exit pupil to the Ronchi ruling. In other words, the curvature
along the perpendicular to the fringes is inversely proportional to the period (separation of the
fringes.

11.8 Tscherning and Hartmann Wavefront Sensing

Tscherning60 in 1894 published his results on the measurement of the human eye aberrations.
He placed a small light source in front of the patient at several meters distance, with a 2.00
diopters lens in front of his eye to defocus its image. Close to the lens a grid of lines or holes
was located. The pattern of lines or dots observed by the patient was an indication of the aber-
rations of the eye. In recent years Mrochen et al.61 designed an aberrometer based on Tscherning
principles using modern tools.

Another aberrometer based on a similar method, using laser ray tracing was devised by
Navarro and Losada62 where a thin laser beam is projected onto the retina in a sequential manner
and the direction of the ray coming out from the eye is measured.

Fig. 24 Inverse Ronchi test.
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A few years later than Tscherning, Hartmann in 1900 published his proposal for another test
based on a similar method.63 Several different optical arrangements based on the Hartmann test
have appeared64,65 as illustrated in Fig. 25.66

11.9 Inverse Hartmann Wavefront Sensing

If the surface under test is convex instead of concave, the light from a point source cannot con-
verge to implement the Hartmann test. Instead, the optical arrangement in Fig. 26 can be used,
which can be considered as an inverse Hartmann test where the Hartmann plate with many bright
spots is replaced by an array of light sources and the point light source by a small aperture optical
system. This system works on-axis, instead of slightly off-axis as in the Hartmann test.

The optical system illustrated in Fig. 27 is used mostly to measure the convex cornea of the
human eye. In this system, the virtual images of the light sources are formed on a slightly curved
surface behind the corneal surface. If the ovoidal surface containing the light sources is

Fig. 25 Hartmann test.

Fig. 26 Inverse Hartmann test.
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appropriately elongated, the images are in a plane.66 Frequently, a compromise is taken so that
the ovoidal surface is not too elongated and the virtual image surface is not too curved, by mak-
ing the support for the light sources or Placido rings concave, almost paraboloidal. The camera
forms at its focal plane a real image of the light sources to measure the transverse aberrations.

The light sources can be distributed in arrays with different configurations, as in Fig. 31, but
the most common for this kind of instruments is with Placido rings. The only problem with the
rings is the presence of the skew ray error due to the low sensitivity of them to transverse errors in
a direction perpendicular to the diameters in the circular pupil. However, several different
approaches had been used to eliminate this error,29 e.g., Gómez-Tejada et al.,67 dividing the pupil
in hexagonal cells and using an iterative process.

11.10 Shack–Hartmann Wavefront Sensing

If the wavefront to be measured is small and nearly flat, the implementation of the Hartmann
test is not simple. Then, another important modification to the Hartmann test was invented by
Platt and Shack68 and known as the Shack–Hartmann test, as in Fig. 28. Convergent wavefronts
can also be measured if a small collimator is used in the convergent beam.

The range of curvature values that can be measured with them had been studied by
Campbell.69 The Shack–Hartmann sensor can be adapted to measure in a differential manner,
by measuring three times each square cell, as illustrated in Fig. 29. With these three measure-
ments, with three different positions for the Shack–Hartmann plate, the local principal curvatures
can be easily and accurately evaluated.70

The Shack–Hartmann is used to measure the wavefront aberrations in the human eye, as in
Fig. 30. Local wavefront curvatures can be measured with Shack–Hartmann wavefront sensors.
The planes at P1 and P2 are conjugates.

Fig. 27 Inverse Hartmann configuration with the array of light sources in a curved concave sur-
face, used to measure the cornea of the eye of the human eye.

Fig. 28 Shack–Hartmann test.
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11.11 Sampling Screens in Hartmann and Inverse Shack–Hartmann Devices

In the inverse Hartmann type configurations, the array of light sources can have several possible
array configurations, as illustrated in Fig. 31.

In astronomical optical surfaces testing the most common array is with square cells, as in
Fig. 31(a). In ophthalmic instruments, such as corneal topographers, the most common array of
light source is with Placido rings in Fig. 31(d). However, all these light arrays can be used with
any system. The simplest one for curvature measurements is the array of squares, with integra-
tion methods as described by Ghozeil and Simmons71 and by Southwell.72 Hexagonal patterns
had been integrated by Gantes-Nuñez et al.73 and Placido rings by Gómez-Tejada et al.67

11.12 Processing Hartmann and Shack–Hartmann Wavefront Sensors Data

In most optical Hartmann type arrangements, the reference surface used to find the reference
points for the measurement of the transverse aberrations is a perfectly spherical surface, close to
the aberrated real surface. Thus, the measured transverse aberrations are produced by the sep-
aration between the aberrated surface and the spherical reference surface, measured perpendicu-
larly to this reference surface.

The transverse aberrations are directly proportional to the slopes of the optical surface or
wavefront in a square cell, as shown in Fig. 32. These aberrations are the angular separation
between the actual reflected or refracted ray and the path for the ideal ray. This ideal path for
the reflected path is calculated for an ideal reference surface. If this reference surface is flat, the
angle between the actual ray and the ideal ray is twice the slope of the surface at the point where
the ray is reflected.

Origins

Fig. 29 Measuring a Shack–Hartmann square cell in two orthogonal directions and one without
displacement, to measure the principal curvatures.

Fig. 30 Optical configuration to measure the eye aberrations with the Shack–Hartmann test.
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12 Calculation of Local Curvatures by Measurements of the Transverse
Aberrations

From the exact expression in Eq. (21), we see that the local curvatures at any point in a surface
can be calculated if the two first derivatives, respect to x and respect to y, the two second deriv-
atives, respect to x and respect to y are known. So, the first step is to measure them.

The slopes or derivatives may be obtained by first obtaining the wavefront deformations in
each cell in a procedure called zonal method. The reference optical surface deformations zrðx; yÞ
over the square cell can be represented as

EQ-TARGET;temp:intralink-;e071;116;105zrðx; yÞ ¼ A1xþ A2yþ A3ðx2 þ y2Þ þ A4ðx2 − y2Þ þ 2A5xy; (71)

and transforming to polar coordinates with x ¼ ρ cos α and y ¼ ρ sin α

Fig. 31 Several possible arrays of light sources for Hartmann-type measuring systems.
(a) Square cells, (b) hexagonal cells, (c) circular array of points sources, and (d) Placido rings.

Fig. 32 Square cell with four points where the transverse aberrations are measured.
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EQ-TARGET;temp:intralink-;e072;116;735

zrðρ;αÞ ¼ A1ρ cos αþ A2ρ sin αþ A3ρ
2 þ A4ρ

2ðcos2 α − sin2 αÞ þ 2A5ρ
2 cos α sin α

¼ A1ρ cos αþ A2ρ sin αþ A3ρ
2 þ A4ρ

2 cos 2αþ A5ρ
2 sin 2α: (72)

If we define an angle ψ by B cos 2ψ ¼ A4 and B sin 2ψ ¼ A5 and, after some algebraic
manipulation we obtain

EQ-TARGET;temp:intralink-;e073;116;670zr ¼ A1ρ cos αþ A2ρ sin αþ A3ρ
2 þ Bρ2 cos 2ψ cos 2αþ Bρ2 sin 2ψ sin 2α;

¼ A1ρ cos αþ A2ρ sin αþ A3ρ
2 þ ðA2

4 þ A2
5Þ1∕2ρ2 cos 2ðα − ψÞ:

(73)

If the aberrations are small, the second derivative in the direction αwill give the local curvature in
that direction. The coefficients A1 and A2, have the same structure as Euler equation in Eq. (28).
The astigmatic axis orientation is given as

EQ-TARGET;temp:intralink-;e074;116;584 tan 2ψ ¼ A5

A4

: (74)

The surface deformations are measured on top of the reference sphere, with origin at the
center of the square cell. The first two terms are the relative tilts or slopes about the y and the
x axes, the third term is a relative spherical deformation, approximated by this parabolic term,
since the deformation is small, the fourth term is a cylindrical (astigmatic) relative deformation
with axis along the x or y axis and the last term is a cylindrical (astigmatic) relative deformation
with axis at �45 deg. Thus, the transverse aberrations are given as

EQ-TARGET;temp:intralink-;e075;116;467

−
2

rw
TAx ¼ A1 þ 2A3xþ 2A4xþ A5y;

−
2

rw
TAy ¼ A2 þ 2A3y − 2A4yþ A5x: (75)

It is possible to prove that if the eight transverse aberrations, two at each corner of the square
cell are measured, in principle eight coefficients can be determined. However, the eight mea-
surements are not all independent, but there is enough information to find an accurate solution
for tilts, defocus, and astigmatism, including its axis orientation,73 obtaining

EQ-TARGET;temp:intralink-;e076;116;348

A1 ¼ −
1

4rw
ðTAx1 þ TAx2 þ TAx3 þ TAx4Þ;

A2 ¼ −
1

4rw
ðTAy1 þ TAy2 þ TAy3 þ TAy4Þ;

A3 ¼ −
1

8srw
ðTAx1 þ TAy1 − TAx2 þ TAy2 − TAx3 − TAy3 þ TAx4 − TAy4Þ;

A4 ¼ −
1

8srw
ðTAx1 − TAy1 − TAx2 − TAy2 − TAx3 þ TAy3 þ TAx4 þ TAy4Þ;

A5 ¼ −
1

8srw
ðTAx1 þ TAy1 þ TAx2 − TAy2 − TAx3 − TAy3 − TAx4 þ TAy4Þ; (76)

where s is the length of one side of the square cell. Once the five coefficients are found, the first
two, A1 and A2, are ignored.

If the aberration deformations are large, the transverse aberrations are also large and the
difference between the reference surface slopes and the aberrated surface slopes may be so im-
portant that the denominator in Eqs. (20) or (21) may be quite different from one. Then, the
following derivatives at the center of the square cell (x ¼ 0; y ¼ 0) are important:

EQ-TARGET;temp:intralink-;e077;116;123

∂zr
∂x

¼ A1;
∂zr
∂y

¼ A2;
∂2zr
∂x2

¼ 2ðA3 þ A4Þ;
∂2zr
∂y2

¼ 2ðA3 − A4Þ;
∂2zr
∂x∂y

¼ 2A5: (77)

Then, these derivatives are used in Eq. (21), obtaining the relative local curvatures as
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EQ-TARGET;temp:intralink-;e078;116;735cα ¼
2ðA3 þ ðA2

4 þ A2
5Þ1∕2 cos 2ðα − ψÞÞ

ð1þ ðA1 cos αþ A2 sin αÞ2Þð1þ A2
1 þ A2

2Þ1∕2
: (78)

Another possible method that can be used in lenses is to directly measure the sagittal values at
many points over the aperture with a mechanical or optical profilometer40 and then to obtain an
analytical expression for the optical surface shape. Then, the absolute local curvatures may be
obtained with the exact expression in Eq. (21).

13 Direct Measurement of the Mean Curvature with the Irradiance
Transport Equation

A method to directly measure the local curvatures was described by Roddier74,75 and it is known
as the method of the transport of irradiance. If a wavefront is collimated, almost flat, with rel-
atively small aberrations, the local curvatures in the x and y directions are given just by the
second derivatives as

EQ-TARGET;temp:intralink-;e079;116;546cx ¼
∂2Wðx; yÞ

∂x2
and cy ¼

∂2Wðx; yÞ
∂y2

: (79)

Half the Laplacian, defined as the semi-sum of these curvatures in Eq. (39) is the mean cur-
vature. This expression is also known as the Poisson equation.

Now, let us consider a collimated and aberrated light beam propagating along an axis z, as in
Fig. 33. In the regions where the light rays are denser, the irradiance is higher. As the light beam
travels, the irradiance and the wavefront shape change continuously along the trajectory.
Omitting the mathematical details (Malacara et al.44), it can be shown that if an aperture much
larger than the wavelength is assumed, two equations are obtained, one for the change in the
shape of the wavefront and another for the change in irradiance along the trajectory. For our
purposes, the more important is the second, for the change in irradiance, given as

EQ-TARGET;temp:intralink-;e080;116;392

∂2Iðx; yÞ
∂z2

¼ −∇Iðx; yÞ • ∇Wðx; yÞ − I∇2Wðx; yÞ: (80)

This is the irradiance transport equation. According to Ichikawa et al.,76 the terms contained
in this equation represent the following. The gradient of the irradiance Iðx; yÞ represents the
direction in which the irradiance change with more speed. The gradient of Wðx; yÞ is the direc-
tion and magnitude of the local wavefront tilt. The scalar product of these two gradients rep-
resents the irradiance variation along the optical axis due to the local wavefront tilt. For this
reason, this is called a prism term. The last term in this equation is the irradiance along the
z axis due to the local mean curvature. This is the lens term.

Fig. 33 Transport of irradiance. The irradiance distribution is different at two planes, equidistant
from the aberrated wavefront.
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Roddier and Roddier77 used these results to obtain the mean curvature at all points ðx; yÞ in a
wavefront, assuming that the illumination is constant over the pupil, obtaining the irradiance at
two planes P1 and P2, symmetrically located respect to the pupil, as in Fig. 34 as

EQ-TARGET;temp:intralink-;e081;116;452I1ðx; y;ΔzÞ ¼ I0 þ
�
∂Iðx; y; zÞ

∂z

�
z¼0

Δz; (81)

and

EQ-TARGET;temp:intralink-;e082;116;395I2ðx; y;ΔzÞ ¼ I0 −
�
∂Iðx; y; zÞ

∂z

�
z¼0

Δz: (82)

It can be seen that when the wavefront is perfectly plane at the pupil, the Laplacian at all point
inside the pupil and the radial slope at the edge of the pupil are both zero, so that I1ðx; y;ΔzÞ is
equal to I2ðx; y;−ΔzÞ but in general this is not the case. Then, the so-called sensor signal is

EQ-TARGET;temp:intralink-;e083;116;312

I1ðx; y;ΔzÞ − I2ðx; y;−ΔzÞ
I1ðx; y;ΔzÞ þ I2ðx; y;−ΔzÞ

¼ 1

I0

�
∂Iðx; y; zÞ

∂z

�
z¼0

Δz: (83)

On the other hand, after some considerations in the irradiance transport equation, as Roddier
and Roddier77 points out, we can obtain

EQ-TARGET;temp:intralink-;e084;116;242

I1ðx; y;ΔzÞ − I2ðx; y;−ΔzÞ
I1ðx; y;ΔzÞ þ I2ðx; y;−ΔzÞ

¼
�
∂Wðx; y; zÞ

∂n
δc − Pðx; yÞ∇2Wðx; yÞ

�
Δz; (84)

where the first term inside the right hand parenthesis is the wavefront slope around the pupil edge
Pðx; yÞ is the pupil’s edge, and the last term is the Laplacian.

With this result, measuring the irradiance at these two planes symmetrically located with
respect to the aberrated wavefront, the shape of the pupil can be found. Ideally, the two sym-
metric planes where the irradiance distributions must be measured are at distances�Δz from the
pupil at a lens with focal length f. In Fig. 34 these two planes are P1 and P2. The only practical
problem is that the plane P1 is inaccessible. The solution is simple if an auxiliary lens with focal
length f∕2, is placed at the focus of the lens as illustrated in Fig. 34. Then, the conjugate of the
plane P1 is at P 0

1. Conjugate planes have the same irradiance distribution, except for a scale
factor equal to the lateral magnification at these planes. Then, the measurements are taken at two
planes P 0

1 and P 0
2, which can be shown to be at equal distances �l from the focus of the lens.

Fig. 34 (a) and (b) Location of the two planes P 0
1 and P 0

2, at equal distances �l from the focus of
the lens.
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It can be easily shown that l and Δz are related by

EQ-TARGET;temp:intralink-;e085;116;541Δz ¼ fðf − 1Þ
l

: (85)

Roddier and Roddier77 points out that the small lens with focal length f∕2 is not absolutely
necessary. Thus, with two defocused images, one inside of focus and the other outside of focus,
the wavefront mean curvatures can be obtained, i.e., the Laplacian. Roddier and Roddier77

reported a method using successive iterations of Fourier transforms to calculate the wavefront
shape from a knowledge of the Laplacian.

Another method to measure directly the curvature when the wavefront is nearly collimated
and without strong slopes, was proposed by Paterson and Dainty,78 using a quadrant detector.
With the four measurements, one on each quadrant, any asymmetries in the small image of a
point light source are used to calculate the mean curvature and two orthogonal slopes.

13.1 Curvature Maps

Curvature, vergence (degree of convergence or divergence) or power maps (in diopters), are an
important representation on optometry and ophthalmology of optical surfaces, as described by
Nam et al.,79 Corbet et al.,80 and Wang.16

Different manners to represent in a single map these parameters have been proposed, for
example, some local curvature maps are illustrated in Fig. 35 using a representation where the
three curvature parameters, i.e., spherical component, astigmatism and cylindrical axis orienta-
tion are shown in a single map, as described by Hernández-Delgado.81 The sampling points must
be uniformly distributed over the aperture, e.g., forming square or hexagonal cells. In these maps
they are located in concentric circles, each one with a number of sampling points equal to six
times the ring number. The red color represents positive local curvatures and blue color repre-
sents negative local curvatures.

14 Summary and Conclusions

Complete mathematical methods to calculate the local curvature as defined in the ophthalmology
field have been described and we also proposed some practical calculations. We have shown that
from a complete definition of local curvature (asymmetrical surfaces) a particular case (rotation-
ally symmetric surfaces) can be derived making the angle of rotation constant. Corneal evalu-
ation is usually made by calculating local curvatures. Calculations for particular cases such as the
principal curvatures and the tangential, sagittal, principal, mean, and Gaussian local curvatures
are derived in an intuitive and simple manner, obtaining highly accurate results, even for strongly
curved surfaces and wavefronts. The results are valid for any kind of surface with or without
rotational symmetry. The high importance of the concept of local curvatures in modern optics,

Fig. 35 Local curvature maps for an aberrated optical surface with some primary aberrations.
(a) astigmatism and defocus, (b) astigmatism, and (c) coma (from Hernández–Delgado et al.81).
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mainly in ophthalmology and optometry is described in detail, including some of the most
common measurements used in ophthalmologic and optometric optics. In summarizing, we have
made a complete review of the concepts and associated mathematics of local curvatures in an
optical surface or wavefront and its applications to ophthalmic and optometric systems.

In the second part of this review, we describe the classical and modern main methods and
devices for wavefront sensing, measuring elevations, slopes, or curvatures. We conclude with a
description of some methods to measure and calculate local curvatures from wavefront sensors
by measuring the wavefront elevations, the transverse aberrations (slopes), or directly the
curvatures.
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