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Abstract. We review the physics underlying thermal infrared emission, focusing on the proc-
esses that generate polarization. We also discuss a number of features of the theory that are
not widely discussed in the literature, including the Straubel theorem for absorbing media, the
mixed Poynting vector, and the emission of nonisothermal media. Using a model for emission
from nonisothermal media, we present a quantitative discussion of the conditions under which
Kirchhoff’s law is valid. Using this model, we show how it is possible for many blackbody sim-
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1 Introduction

Although research in infrared polarization has been pursued at least since Millikan’s studies on
emission polarization in 1895,1,2 infrared polarimetry has never reached widespread use. As a
result, there are many polarimetric features specific to infrared wavelengths that are not widely
known, despite their fascinating physics. This review aims to survey the physics underlying
infrared polarimetry and to explore a few of the less common features of the theory.

In the infrared polarization literature, writers often refer to the thermal emission of surfaces, so
it is easy to slip into thinking of infrared light emission as a surface phenomenon rather than
a volumetric one. A search through the literature encounters “surface emissivity” as a common
phrase, and Planck’s blackbody law, after all, is generally expressed in terms of surfaces and
surface temperatures, rather than volumes and volumetric temperature distributions. Nevertheless,
emission is a volumetric property, much like absorption but played out in reverse. For opaque
materials, in which absorption completely attenuates incident light after passing only microns
deep inside the material, this volumetric behavior is not obvious. For semitransparent (dia-
thermous) materials, however, understanding the volumetric behavior is essential to accurately
modeling their emission properties.3,4

In Sec. 2, we model the thermal light emission that constantly occurs inside every material
and show that the surface emission that we see is simply the portion of that internal light that
reaches the surface, transmits, and refracts into the air.3,5 This model holds even for highly reflec-
tive materials such as metals, and we find that the apparent skin-like quality of emission derives
from the fact that so many materials in the infrared have strong absorption, so only the layers
close to the surface are able to participate in generating the emitted light that we see. In Sec. 6, we
also show that emitted light is polarized by the same Fresnel reflection and transmission effects
that generate polarization from smooth visible-light surfaces. Because emission polarization is
actually antagonistic to reflection polarization, the combination of emitted and reflected light
often causes most of the polarimetric signature to cancel, producing the characteristically low
degree of polarization values that are typically seen in this regime.6 In outdoor environments,
this cancellation can become small for imaging quite hot surfaces and blue sky (very cold)
backgrounds.

The advantage of going carefully through the steps of deriving emission polarization from
first principles shows that Kirchhoff’s law, which is often presented as an empirical formula, can
be derived from basic physics. It also allows us to quantify the range inside which Kirchhoff’s
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law is valid (Sec. 7) and to demonstrate that, although thermal emission may be a totally inco-
herent process, interference effects still play a role in determining emission properties when thin
films (with thicknesses on the order of a wavelength) are present or when using high-resolution
spatial/spectral detection.

In addition to improving understanding of the theory, some motivations for pursuing this
work are to resolve some questions that are not easily clarified by a casual read through the
literature. These questions include the following:

1. If a surface gets wet, with a very thin layer of water, how is its emissivity effected?
How thick does the water coating have to be to dominate the surface underneath?

2. Anodized aluminum parts are ubiquitous in optical systems, but if we anodize an alumi-
num surface, how does the process change its emissivity?

3. How should we model the emissivity of a thin (partially transparent) plastic film?
4. If we paint a surface, how thick should the paint be to obscure the underlying surface?

For that matter, why do painted shutters work so well as simulated blackbodies?

In the discussion below, we survey the theoretical tools needed to resolve these questions,
though the discussion of anodize layers, and many of the details on paint layers are postponed
until Part II of the review. To the extent possible, we aim to provide quantitative answers to these
questions and bring together into one place the various work scattered through the literature on
these topics. Part II of the review uses these tools to guide analysis of infrared imaging polari-
zation measurements.

2 Calculating Emitted Surface Radiance with the Emission Density, j�λ�
The first widely known attempt to apply the tools of radiance transfer to the problem of volu-
metric emission from solids is that of McMahon in 1950.3 This work was later generalized by
Gardon in 1956 to be applied to non-normal angles of emission.4 Despite its beautiful physics,
the resulting model is not well known in the infrared imaging community even though it is
widely used in the heat-transfer literature. In the discussion below, we modify the conventional
derivation by centering the calculations around radiance rather than optical power. This has the
advantage of simplifying expressions while also modernizing the units, so that they are more
familiar to the modern reader.

The calculation of the emissivity of an object can be quite involved if presented all at once, so
we start with a simple setup and add complexity to the model in stages. At the first stage of the
calculation, we aim to calculate the normal-angle emittance of a material with known refractive
index nðλÞ and absorption index kðλÞ, i.e., a complex refractive index of ~nðλÞ ¼ nðλÞ þ ikðλÞ.
The electric field of a plane wave propagating along z is then written as

EQ-TARGET;temp:intralink-;e001;116;275E ¼ A expð−i2πñðλÞz∕λÞ expðiωtÞ; (1)

or

EQ-TARGET;temp:intralink-;e002;116;232E ¼ Ae−i2πnðλÞz∕λe−αðλÞz∕2eiωt; (2)

where λ is the wavelength in vacuum and αðλÞ ¼ 4πkðλÞ∕λ is the intensity absorption coefficient.
In the discussion below, most variables will have a wavelength dependence. Writing an

explicit wavelength dependence, such as αðλÞ, for each variable quickly becomes tedious and
makes the equations more difficult to read. As a result, we generally drop the wavelength
dependence from intermediate results and include the explicit dependence when it helps to
clarify context. In addition, rather than “emitting medium,” we generally refer to the region from
which we are calculating the emission as “the solid.” This simplifies the nomenclature, but read-
ers should note that it can refer to liquids and gases as well, without difficulty.

We start by postulating that the medium is uniform in temperature and composition and has
negligible scattering and that each point within the solid can be characterized as emitting iso-
tropic thermal radiation. For highly opaque materials, radiation emitted from within the volume
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is quickly absorbed by the surrounding matter and does not reach the surface. For semitrans-
parent materials, however, this volumetric emission j can reach the surface, so calculating the
light emitted by the entire solid requires integrating j over the object’s volume. The setup for
this calculation is illustrated in Fig. 1.

Figure 1 shows the radiation emitted from an element of volume dV in the interior of the solid
that reaches a small area element dA of the surface, as originally constructed by Gardon.4 From
this geometry, Gardon develops an integral over dV and the differential solid angle dω, taking
advantage of the conical symmetry of the problem to define dV as a differential sector of a
conical annulus. In this way, any region of the solid lying inside the region bounded by the
blue lines [with differential angles dθ and dϕ, as indicated in Fig. 1(b)], produces radiation
propagating within the same element of the solid angle. The development of the integral is shown
in Sec. 10, the end result of which is a simple one-dimensional (1D) integral along the ray
between dV and dA.

The quantity jðλ; TÞ is the material’s spectral emission density, at a given temperature T,
expressed in units of Wm−3 sr−1 μm−1—spectral radiance per unit length. Thus, we can expect
that integrating jðλ; TÞ over a length will lead to the familiar spectral radiance LðλÞ given by
the Planck blackbody equation, viz.,

EQ-TARGET;temp:intralink-;e003;116;348LbbðλÞ ¼
2hc2

n2λ5
1

ehc∕ðnλkBTÞ − 1
; ½Wm−3 sr−1 μm−1�; (3)

for Planck constant h, Boltzmann constant kB, and the refractive index of the medium n.
The “bb” subscript on L indicates that the radiance corresponds to a blackbody.

In the plane parallel medium shown in Fig. 1, the radiance j is generated in dV, lying at a
depth of z below the surface. As it propagates, the emitted light is attenuated by absorption, so
only the fraction expð−αz∕ cos θÞ arrives at the surface. Therefore, the element of radiance dL
arriving at the surface from this layer at depth z is

EQ-TARGET;temp:intralink-;e004;116;232dL ¼ je−αz∕ cos θdz: (4)

By integrating this over the thickness of the slab, from z ¼ 0 to z ¼ b, we obtain the total spec-
tral radiance arriving at the surface as

EQ-TARGET;temp:intralink-;e005;116;176L ¼ j
Z

b

0

e−αz∕ cos θdz ¼ ð1 − e−αb∕ cos θÞ j
α

cos θ: (5)

We simplify this as

EQ-TARGET;temp:intralink-;e006;116;121Lðλ; θÞ ¼ jðλÞ
αðλÞ ½1 − βðλ; θÞ� cos θ; (6)

where we define

(a) (b) (c)

Fig. 1 A plane-parallel slab of partially transparent emitting medium: “the solid.” (a) Radiation is
emitted from volume dV toward surface element dA, along the ray at angle θ to the surface nor-
mal. (b) Geometry of the emission solid angle. (c) Each ray splits into transmitted and reflected
components at the top and bottom surfaces. Summing over these secondary rays gives the total
light exiting the surface. (c) The red rays are emitted from dV in an initially upward direction,
whereas the blue rays are emitted in an initially downward direction.
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EQ-TARGET;temp:intralink-;e007;116;735β ¼ expð−αb∕ cos θÞ; (7)

as the bulk internal transmission of the entire slab, and we have assumed that the emission
density is uniform throughout the volume. For inhomogeneous materials, or for materials with
a temperature that varies throughout the volume, the depth dependence of j prevents it from
being pulled out of the integral as a constant.

So far we have ignored any secondary reflections inside the volume: the portion of light that
is not transmitted through the upper surface is instead reflected downward, and this radiance is
ρð1 − βÞðj∕αÞ cos θ. After traversing the volume of the slab (and attenuating due to absorption),
it reaches the far side of the slab, where it reflects again. Traversing the slab one more time brings
it back to the upper surface, where again a portion of the radiation transmits through the surface.
This second component is therefore

EQ-TARGET;temp:intralink-;e008;116;594ρ2β2τð1 − βÞ j
α

cos θ; (8)

where ρ2 is the two internal reflections, β2 is the attenuation along that doubled path, and τ is the
transmission through the surface. This process continues to occur, giving another contribution of

EQ-TARGET;temp:intralink-;e009;116;528ρ4β4τð1 − βÞ j
α

cos θ; (9)

and other higher-order terms. Summing all of these together gives the total upwelling radiance
reaching the inside of the surface as

EQ-TARGET;temp:intralink-;e010;116;462L↑ ¼ ð1 − βÞ j
α

cos θ
X∞
n¼0

ρ2nβ2n: (10)

So far, we have only considered upwelling emission from the layers inside the slab. Because
any thermal emitted radiance is isotropic, there is an equal amount emitted in the downward
direction. For this portion, light reaching the upper surface of the slab must first undergo one
reflection and suffer attenuation from traversing the volume of the medium, so the first portion of
radiance reaching the upper surface is

EQ-TARGET;temp:intralink-;e011;116;353ρβτð1 − βÞ j
α

cos θ: (11)

Likewise summing all contributions from multiple reflections, we obtain the total downwelling
radiance reaching the inside of the top surface as

EQ-TARGET;temp:intralink-;e012;116;288L↓ ¼ ð1 − βÞ j
α

cos θ
X∞
n¼0

ρ2nþ1β2nþ1: (12)

The total radiance reaching the underside of the surface is the sum of the upwelling and
downwelling terms

EQ-TARGET;temp:intralink-;e013;116;215L ¼ L↑ þ L↓ ¼ ð1 − βÞ j
α

cos θ
X∞
n¼0

ρnβn ¼ j
α

�
1 − β

1 − ρβ

�
cos θ: (13)

If the surface transmittance is τðλÞ, the spectral radiance L 0ðλÞ that passes through the surface is

EQ-TARGET;temp:intralink-;e014;116;154L 0 ¼ τ
j
α

�ð1 − βÞ
1 − ρβ

�
cos θ: (14)

Having reached this point, we do not yet know how this emitted radiance L 0 relates to the
standard method of representing surface-emitted radiance, viz.,

EQ-TARGET;temp:intralink-;e015;116;84Lobject ¼ ϵLbb: (15)

Hagen: Review of thermal infrared polarimetry, I: theory

Optical Engineering 070902-4 July 2022 • Vol. 61(7)



If we consider a material that is highly opaque (large k), then we know that the bulk transmission
of the material is approximately zero (β ¼ 0). In this situation, Kirchhoff’s law is unambiguous,
giving ϵ ¼ 1 − ρ. In our model of emission from the solid Eq. (14), we use Kirchhoff’s law to
express the surface transmittance as τ ¼ 1 − ρ. Thus, if we equate our calculated emitted radi-
ance L 0 Eq. (14) with the familiar form of the object radiance Eq. (15), we have

EQ-TARGET;temp:intralink-;e016;116;675ð1 − ρÞ j
α

cos θ ¼ ð1 − ρÞLbb: (16)

At normal incidence, we conclude that

EQ-TARGET;temp:intralink-;e017;116;622

jðλÞ
αðλÞ ¼ LbbðλÞ: (17)

This means that the emission density divided by the absorption coefficient is equal to the black-
body radiance for the same conditions of wavelength and temperature.

3 Straubel Theorem for Radiance Scaling Across an Interface

So far we have obtained the expression for the emitted radiance L2 in terms of the internal angle
θ1 but not yet in terms of the external angle θ2. (Subscript 1 refers to quantities inside the solid,
and subscript 2 refers to quantities in the external medium—usually air.) For this, we need to
apply the angle-dependent refraction effects at the surface, making use of a well-known theorem
in radiometry governing the scaling of the solid angle Ω across an interface [shown in (Fig. 2)],
apparently first discovered by Straubel in 1902.7,8 To start, from Snell’s law we know that
n1 sin θ1 ¼ n2 sin θ2. Taking the derivative of both sides with respect to θ2, this becomes

EQ-TARGET;temp:intralink-;e018;116;427n1 cos θ1
dθ1
dθ2

¼ n2 cos θ2; (18)

which leads to

EQ-TARGET;temp:intralink-;e019;116;371

dθ1
dθ2

¼ n2 cos θ2
n1 cos θ1

: (19)

Using the definition of the differential solid angle, dΩ1 ¼ sin θ1dθ1dϕ, we also write

EQ-TARGET;temp:intralink-;e020;116;316dΩ1 ¼ sin θ1dθ1dϕ ¼ n2
n1

sin θ2dθ1dϕ; (20)

so that

Fig. 2 Refraction of a cone of light, illustrating the geometry of Straubel’s theorem.
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EQ-TARGET;temp:intralink-;e021;116;735

dΩ1

dΩ2

¼
n2
n1

sin θ2dθ1dϕ

sin θ2dθ2dϕ
¼ n2

n1

dθ1
dθ2

: (21)

Substituting Eq. (19) into this, we obtain

EQ-TARGET;temp:intralink-;e022;116;686

dΩ1

dΩ2

¼ n22 cos θ2
n21 cos θ1

; (22)

which is known as Straubel’s theorem.
If we ignore for a moment the reflection losses on passing through a smooth interface, then

the power entering through an element of solid angle dΩ1 is equal to the power exiting the
interface through dΩ2:

EQ-TARGET;temp:intralink-;e023;116;593L2AdΩ2 ¼ L1AdΩ1: (23)

Substituting Eq. (22) into this and incorporate surface transmission loss τ, we have

EQ-TARGET;temp:intralink-;e024;116;550L2 ¼
n22
n21

�
τð1 − βÞ
1 − ρβ

�
Lbb cos θ2: (24)

This result, in which the emitted spectral radiance is proportional to the cosine of the exitance
angle θ2, is commonly described as Lambert’s cosine law.

As we will see in Sec. 4 below, since the derivation of Straubel’s theorem assumes dielectric-
only media, the theorem cannot hold in general for absorbing-material interfaces, yet how the
theorem should be expressed in the more general case of absorbing media has apparently not
been discussed in the literature. The silence on the subject is likely because media with signifi-
cant k are generally opaque, so they have little transmitted light to measure, making this a case of
limited utility for most situations. Likewise, media with small k transmit sufficient light for
measurement, but the small value of k minimizes the effect on the refraction angle.

For intermediate cases, we need to use an expression giving the dependence of the refraction
angle on the solid’s absorption index [given in Eq. (26)].

4 Generalized Snell’s Law

When working with absorbing materials, Snell’s law is used directly with the complex index
~n ¼ n − ik:

EQ-TARGET;temp:intralink-;e025;116;305 sin θ̃2 ¼
ñ1
ñ2

sin θ̃1; (25)

where we have explicitly labeled each of the complex variables with a tilde. The meaning of a

complex-valued angle ~θ2 may be unclear, but it is convenient for the purposes of calculating the
Fresnel reflection coefficients ρ. However, to get the correct result for emitted light from the solid
refracting into an ambient lossless medium (such as air), we can get a better feel for how the
complex variables affect the refraction angles by working entirely in terms of real-valued geom-
etry. For an interface between an absorbing emitter (the solid) and a nonabsorbing medium
(the ambient air), we have ~n2 ¼ n2 and ~n1 ¼ n1 − ik1. For this case, the expression relating
the real-valued angle inside the solid to the transmission angle in the ambient is given as

EQ-TARGET;temp:intralink-;e026;116;164 sin θ2 ¼
�
n1
n2

sin θ1

�
F−1∕2; (26)

where the Snell’s law correction factor F is given by Bell et al. as9

EQ-TARGET;temp:intralink-;e027;116;107F ¼ 1

2

−aþ ða2 þ 4½n21k21 − n22ðn21 − k21Þsin2 θ2�Þ1∕2
k21 − n22½1 − ðk21∕n21Þ�sin2 θ2

; (27)
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where a ¼ n21 − k21 þ n22 sin
2 θ2 and is limited to cases in which the ambient medium is non-

absorbing (k2 ¼ 0).
In Fig. 3, a set of curves show the refraction angles given by Eq. (26), drawn together with a

second set of dashed curves that are obtained by taking the real parts of ~n1 and ~n2 and calculated
using the standard Snell’s law. We can see that, for angles close to normal (small θ1; θ2), the
standard Snell’s law actually provides a good approximation to the generalized angle calculation.
We can also see this mathematically, by taking the approximation n2 sin θ2 ≪ fn1; k1g in
Eq. (27), from which we obtain F ≈ 1 (where fn; kg means “both of n and k”). The approxi-
mation is not valid when k1 is comparable to or larger than n1.

If we want to know the incident angle θ1 from within the solid for a given emission angle θ2,
we use Eq. (26) in reverse. Although this produces a transcendental function, this representation
of the Snell correction factor is easy to apply due to the smooth monotonic relationship between
θ1 and θ2 [see Fig. 3(b)]. Unfortunately, however, Eq. (27) does not provide us with the complex

form of the angle inside the solid, ~θ1, which we need in Sec. 5. The easiest way to get the

complex ~θ1 is to work out Snell’s law Eq. (25) backward, either using a nonlinear solver or
by interpolation.

5 Polarization and the Complex Fresnel Equations

So far, all of our expressions for the emitted radiance and emissivity of the solid have been
written in terms of the Fresnel intensity coefficients for surface transmittance τ and reflectivity
ρ. The Fresnel coefficients are more often written in terms of complex amplitudes t and r, from
which the intensity coefficients are derived as ρ ¼ rr� and a similar expression for the trans-
mission. (The � superscript indicates a complex conjugate.) The most general form of the com-
plex-valued Fresnel reflection and transmission, written for p-polarized light (electric field
vibration in the plane of incidence at the surface) and for s-polarized light (electric field vibration
perpendicular to the plane of incidence), are written as16,17

EQ-TARGET;temp:intralink-;e028;116;195r̃p ¼
ñ2 cos θ̃1 − ñ1 cos θ̃2
ñ2 cos θ̃1 þ ñ1 cos θ̃2

; r̃s ¼
ñ1 cos θ̃1 − ñ2 cos θ̃2
ñ1 cos θ̃1 þ ñ2 cos θ̃2

; (28)

and the corresponding surface transmission amplitude coefficients are,17

EQ-TARGET;temp:intralink-;e029;116;137̃tp ¼
2ñ1 cos θ̃1

ñ2 cos θ̃1 þ ñ1 cos θ̃2
; t̃s ¼

2ñ1 cos θ̃1
ñ1 cos θ̃1 þ ñ2 cos θ̃2

: (29)

Taking the magnitude squared of r and t, respectively, we obtain the intensity reflectivity and
transmittance as18–21

(a) (b)

Fig. 3 (a) Curves for θ2 versus θ1 refraction going from air ðn2; k2Þ ¼ ð1;0Þ into an absorbing
medium ðn1; k1Þ. (b) Curves for θ1 versus θ2 going from an absorbing medium ðn1; k1Þ into air.
For both plots, the solid lines give the generalized Snell’s law Eq. (26), and the dashed lines show
the standard Snell’s law using the real-valued refractive indices alone. Note that the material
constants are taken for λ ¼ 10 μm, except for the alumina curve indicated at 12.2 μm. Refractive
indices for each material are obtained from the following references: Al2O3,

10 H2O,11 SiO2,
12

graphite,13 copper,13 paint,14 and aluminum.15
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EQ-TARGET;temp:intralink-;e030;116;735ρp ¼ r̃pr̃�p; ρs ¼ r̃sr̃�s ; (30)

and

EQ-TARGET;temp:intralink-;e031;116;701τp ¼ ðt̃p t̃�pÞ
Refñ2 cos θ̃�2g
Refñ1 cos θ̃�1g

; τs ¼ ðt̃s t̃�s Þ
Refñ2 cos θ̃2g
Refñ1 cos θ̃1g

: (31)

The fraction at the rightside of τp and τs in Eq. (31) expresses the change in the beam cross-
sectional area upon refraction.

For unpolarized light, it is common to define an unpolarized average reflectivity ρa given as

EQ-TARGET;temp:intralink-;e032;116;617ρa ¼
1

2
ðρp þ ρsÞ: (32)

Because thermally emitted light from thick media is typically incoherent, the phase relationship
between s and p reflected light can be considered random, that is, emitted radiance is generally
partially linearly polarized, but not elliptically polarized, for thick media.

An example set of reflectivity curves is shown in Fig. 4, at λ ¼ 10 μm, for the cases of light
incident from air and reflecting from an absorbing medium. Thus, in this case, ñ1 ¼ n1 and
~θ1 ¼ θ1. Note that, although the water reflectivity curve looks like a curve for a nonabsorbing
interface, it does not have a true Brewster angle.22 Instead, it has a pseudo-Brewster angle
(for λ ¼ 10 μm) at an external angle of incidence of θ2 ¼ 50.6 deg, where ρp ¼ 4.2 × 10−4.

A difficulty with using the complex Fresnel equations in our situation is that the radiance
transfer approach allows us to know θ1 inside the solid, but it does not tell us the corresponding

value for ~θ1. If we naively attempt to use θ1 in place of ~θ1 in Eqs. (28) and (29), we will obtain
unphysical reflection and transmission coefficient values. Thus, if we invert Eq. (27) for the
generalized Snell’s law, we can calculate the correct angle of emission from the solid. Instead,

we must invert Eq. (25) to obtain the corresponding complex angle ~θ1 for use in the Fresnel
equations.

Another phenomenon that may be unfamiliar to many is that, for absorbing incident media,
interference between the incident wave and reflected wave causes nodes in the intensity distri-
bution near the material interface, and this alters the behavior at the interface.23,24 As a result, the
energy conservation requires the expression

EQ-TARGET;temp:intralink-;e033;116;340τ þ ρþ μ ¼ 1; (33)

where μ can be positive or negative. This extra μ term, which has been termed the “mixed
Poynting vector,” becomes negative when a maximum node (intensity peak) occurs near the

Fig. 4 Fresnel surface reflectivity Eq. (30) as a function of angle of incidence, for light incident from
air onto five different polished materials, at 10 μmwavelength. Solid curves: s-pol, dashed curves:
p-pol. Refractive indices for each material are obtained from the following references: Al2O3,

10

H2O,11 SiO2,
12 graphite,13 and copper.13
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interface itself and positive when a minimum node (intensity valley) occurs near the interface,
causing a small increase or decrease in the amount of transmitted light depending on whether the
node at the interface is a valley or a peak. This extra term is written as25,26

EQ-TARGET;temp:intralink-;e034;116;699μp ¼ ðr̃�p − r̃pÞ
ñ�1 cos θ̃1 − ñ1 cos θ̃�1
ñ�1 cos θ̃1 þ ñ1 cos θ̃�1

; μs ¼ ðr̃�s − r̃sÞ
ñ� cos θ̃�1 − ñ1 cos θ̃1
ñ�1 cos θ̃�1 þ ñ1 cos θ̃1

; (34)

which at normal incidence simplifies to27

EQ-TARGET;temp:intralink-;e035;116;640μθ1¼0 ¼
4k1ðn1k2 − n2k1Þ
n1jñ1 þ ñ2j2

: (35)

Researchers who discuss the mixed Poynting vector almost universally assert that μ is
“small” and therefore can be neglected.28–31 However, if one proceeds to substitute n; k values
for example materials into Eq. (34), one quickly finds that μ can be surprisingly large in the
thermal infrared domain for a wide class of materials. It is quite common for metals to have
n < 1, and in this regime, it is not unusual to have jμj > 1 (i.e., transmission >200%) at higher
angles of incidence, as shown in Fig. 5. Thus, what is missing from the literature is a description
of the correct context for calling μ “small.”

Figure 5 shows example curves of μðθÞ for light transmitted across an interface from an
absorbing medium (in this case, silica and alumina) into air. For silica, we see that μ is small
(jμj < 0.019), but it seems careless to refer to even a 2% change as negligible, especially as it
occurs at normal incidence and not just at large angles of incidence. For alumina, the larger
ratio between the absorption and refractive indices means that μ plays a larger role. Although
μ ¼ −0.011 at normal incidence, it reaches μp ¼ −1.14 and μs ¼ −2.62 at an angle of incidence
θ 0 ¼ 79 deg. This does not violate Eq. (33) because we also find that τp ¼ 1.75 and τs ¼ 3.08

there.
From these results, we can conclude that the nonlinear interaction between the incident wave

and reflectivewave at the interior boundary of the solid causes an enhancement (or in other cases,
diminishment) of the internally reflected wave intensity. Because the absorption coefficient of
these materials is large, this enhancement will be small in comparison with the absorption expe-
rienced by the wave as it propagates back toward the interior of the solid. For all but the thinnest
of films, this likely makes the effect difficult to observe using the standard experimental
approach of taking the ratio between the incident light and the transmitted light. However,
semitransparent (and thus extremely thin) metal coatings on mylar films may provide the right
combination of circumstances to observe this effect.

However, as we see in Eq. (36), the surface transmittance is proportional to the object’s
emittance. This means that any impact that the mixed Poynting vector has on the surface trans-
mittance should be observable as a change in emittance. Either this impact has not been observed
before, due to the limited range of wavelengths and angles over which it generally occurs,

(a) (b)

Fig. 5 Fresnel intensity reflection ρðθÞ, transmission τðθÞ, and modulation μðθÞ terms, calculated
for light emitted into air from within (a) silica and (b) alumina, using Eqs. (30), (31), and (34).
The refractive indices used here are the same as in Fig. 4.
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or the impact is negligible, for reasons that are not considered in the existing literature. Either
case provides tasks for future work.

6 Emissivity

The emissivity is defined as the emitted radiance of a body in proportion to the emitted radiance
of an equivalent (same temperature and same angle) blackbody emitter, so with Eq. (24) our
radiative model gives the spectral emissivity as

EQ-TARGET;temp:intralink-;e036;116;637ϵmðλ; θ2Þ ¼
L2;mðλ; θ1Þ
Lbbðλ; θ1Þ

¼ L2;mðλ; θ1Þ
LbbðλÞ cos θ2

¼ τmðλ; θ2Þ½1 − βðλ; θ2Þ�: (36)

Here, “m” is used to index the polarization state as either p or s. When the solid is optically thick,
so that as β → 0, we can see that this equation simplifies to ϵm ¼ τm—the emissivity of the
object is equal to the object surface transmittance. This is from the perspective of light generated
from inside the solid, refracting through the surface. On the other hand, we can look from the
perspective of light in air incident on the surface of the solid. For an opaque solid, all light
transmitted through the surface is absorbed, so this is also equivalent to ϵm ¼ αm, which is the
basic expression of the Kirchhoff law. Figure 6 shows curves obtained from Eq. (36) for water,
Al2O3 (alumina), SiO2 (silica), graphite, and copper.

At normal angles, when the ambient medium is air (n2 ¼ 1, k2 ¼ 0), the emissivity Eq. (36)
simplifies to

EQ-TARGET;temp:intralink-;e037;116;472ϵ ¼ 4n1
ðn1 þ 1Þ2 þ k21

; (37)

which is shown in Fig. 7. The curve for k1 ¼ 0 may appear to be nonphysical because a non-
absorbing medium cannot be an emitter, but this result can be taken as an asymptotic limit of a
medium in which k1 is brought closer to zero, whereas the medium itself becomes semi-infinite
in extent. If the limit is taken in this way, k1 can be brought arbitrarily close to zero, if not quite
all of the way to zero.

From Eq. (27), we can calculate the incident angle θ1 from the emission angle θ2, and by

inverting Eq. (25) we can calculate the complex angle ~θ1 that is needed for the general Fresnel
equations Eq. (31). Because β ¼ expð−αb∕ cos θ1Þ is a function of the material thickness b, we
find that, for small values of thickness, ε increases approximately linearly with b, but that as b
becomes large, β approaches zero, and the emissivity approaches an asymptotic value. Following
Edalatpour, we can define a “critical thickness” bc at which the emissivity reaches 99% of its
asymptotic value.33 Taking the logarithm of Eq. (7)

Fig. 6 Fresnel emissivity Eq. (36) as a function of angle of emission, for light emitted into air, from
air onto five different polished materials, at 10 μm wavelength. Each material is assumed to be
thick enough that β ≈ 0. Solid curves: s-pol, dashed curves: p-pol. The refractive indices used here
are the same as in Fig. 4.
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EQ-TARGET;temp:intralink-;e038;116;545bcðλÞ ¼ 4.6
λ cos θ1
4πk1ðλÞ

; (38)

for 4.6 ≈ lnð0.01Þ. In the thermal infrared (3 to 15 μm), typical values for k1 in metals are 30 to
90,34 giving critical thicknesses of 24 to 360 nm (i.e., less than a micron). Many nonmetal
absorbing materials have 0.05 < k1 < 5,35 giving bc ¼ 0.44 to 220 μm (i.e., well under 1 mm).

In the outdoors, the surfaces exposed to water tend to be hydrophilic, so water tends to com-
pletely wet the surface as a film rather than drawing together into beads. This includes most
glasses and ceramics and the most common metals (aluminum, steel, copper, etc.).36 After being
saturated with rainwater and allowed to drain, many surfaces tend to retain a thin water film
of roughly 3 μm thickness.37 Because water at λ ¼ 4 μm and 10 μm has absorption indices
of k1 ¼ 0.0046 and 0.051, the critical thicknesses at which the water completely obscures the
emission and reflection of the underlying surface is about bc ¼ 0.8 mm. This thickness is only
achieved as a layer fully covering a surface when the water cannot fully drain, so we expect that
most wet surfaces are not fully obscured by their overlying water films.

6.1 Emission from Films and Coatings

Although Eq. (36) allows us to calculate the emissivity at any angle of incidence, for a homo-
geneous material, many materials naturally form a surface oxide layer upon exposure to air. Pure
aluminum, for example, produces a natural amorphous oxide layer that is typically 2 to 4 nm
thick.38 Naturally, the question arises about how these surface layers modify the appearance of
these materials in the infrared. For nontransparent coatings, the object will take on the optical
properties of the coating material if the layer is very thick. Conversely, it will maintain the optical
properties of the substrate if the coating is quite thin. To define “thick” and “thin” for this usage,
we once again make use of the critical thickness bc of the coating material to make a good
approximation.

References 39 to 41 develop a model for going beyond the approximate answer that we
suggest here, for the case of transparent surface layers. For many coating layers, the coherence
length of blackbody spectra exceeds the coating thicknesses. As a result, even though the emis-
sion of the substrate is incoherent, interference effects produced by multiple reflections within
the surface layer will modify the coating optical properties. Modeling this requires the use of a
coherent-light model that tracks the phase of a light wave passing through the coating, closely
resembling the approach typically found in thin film optical models at shorter wavelengths. The
resulting model accurately reproduces the modulations seen when monitoring the emissivity of
a film as it is being grown on top of a substrate (as in Fig. 8).

A general approach that allows for the thickness of the film to be of the same order as the
coherence length of the emitted light requires use of a partial coherence theory of thin film
optics.42,43 Such a partial coherence theory allows one to go smoothly between the coherent and
incoherent extremes. We can also note that, although thermal emission is incoherent (has a very

Fig. 7 Normal-angle emissivity of light emitted into air, for various ðn; kÞ. (Adapted from Ref. 32.)
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short coherence length), the appropriate coherence length to use when modeling a measurement
is also determined by the angular size of the detection aperture and the spectral bandwidth of
detection, rather than solely by the size and spectrum of the source alone. For small solid angles
and narrow spectral bandwidths, even thermal light becomes coherent.

Although a model of a transparent coating on an absorbing substrate is quite useful, trans-
parent coatings are somewhat rare among materials in the thermal infrared. Most coatings, such
as the natural oxide coatings that form on many metals upon exposure to air, are partially trans-
parent and partially absorbing/emitting. To model this more general case, it is necessary to
augment the coating model to include not only interference of partial reflections but also
absorption and incoherent emission within the film. This is the approach taken in Ref. 33, which
models the effect of growing a thin metal film or an absorbing dielectric film on top of an
absorbing substrate. As we should expect, the model shows a continuous transition from the
optical properties of the substrate to those of the film as the film increases in thickness. The
change is most rapid when the film is at its thinnest and asymptotically approaches its final
value when the film thickness exceeds bc (see Fig. 8). As with the transparent film, we also
find oscillations in the emissivity curve as a function of thickness or wavelength.

7 Refining Kirchhoff’s Law

The basic form of Kirchhoff’s law expresses the equivalence of emission and absorption:
ϵmðθ;ϕ; λÞ ¼ βmðθ;ϕ; λÞ for polarization state m. In most of the literature, the conservation
of energy for the interaction of light with media is invoked to say that probabilities of reflection,
transmission, and absorption sum to 1: ρ∘m þ τ∘m þ β∘m ¼ 1. Using the equivalence property of
emission and absorption, this leads to the form of Kirchhoff’s law most commonly used in
thermal imaging:

EQ-TARGET;temp:intralink-;e039;116;232ϵ∘m ¼ 1 − ρ∘m − τ∘m: (39)

The superscript ∘ is used to indicate that these are properties of the object (apparent properties)
and not just a single surface (surface properties). For opaque media, τ∘ ¼ 0, in which case
Eq. (39) provides a simple method for obtaining the emissivity from the reflectivity ρ∘.

In the literature, Kirchhoff’s law is more often written as ϵm ¼ 1 − ρm − τm, i.e., with the
Fresnel coefficients ρ and τ rather than the apparent object reflectivity and transmittance. Doing
so, however, ignores the effect of internal reflections within the object and internal scattering, so
it is strictly only true for either opaque τ∘ ¼ 0 or diaphanous ρ∘ media. In addition, there is also a
common assumption that, because the interface is an infinitesimally thin region, no absorption is
possible at the surface. If true, this would allow the surface transmittance to be calculated
from the complement of the reflectivity when the emissivity is negligible, τ ¼ 1 − ρ. However,
for absorbing media in which the waves are incident from within an absorbing medium,

Fig. 8 Oscillations in the normal-angle emittance of a surface film as a function of the film thick-
ness, shown for a diamond film on a silicon substrate, measured for λ ¼ 2.3 μm at a temperature
of 1073 K. (Data obtained from Ref. 33).
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we have seen that there can also exist a small amount of (positive or negative) “apparent surface
absorption” μ.

Aweakness of using the Kirchhoff law for deriving ϵ from ρ is that its validity can be unclear
for inhomogeneous media and particularly for nonisothermal media. The direct approach of
modeling the emissivity from the spectral emission density jðλÞ provides better insight into the
physical behavior.

Using the incoherent sums of partial waves within the solid, McMahon derived expressions
for the normal-angle emissivity, reflectivity, and transmittance as3

EQ-TARGET;temp:intralink-;e040;116;640

ϵmðλ; θ1Þ ¼ τmð1−βÞ
1−ρmβ

ρ∘mðλ; θ1Þ ¼ ρm
h
1þ β2ð1−ρmÞ2

1−ρm2β2

i

τ∘mðλ; θ1Þ ¼ βρm
h
ð1−ρmÞ2
1−ρm2β2

i

9>>>>=
>>>>;
; (40)

where ρ∘ and τ∘ are the apparent spectral reflectivity and spectral transmittance of the object,
respectively, and ρ and τ retain their meaning as the Fresnel intensity reflectivity and transmit-
tance of the interface between the solid and the ambient medium, respectively. The wavelength
and angle dependence of ρ and β were suppressed for clarity. Adding all three together, with
some algebra we obtain the Kirchhoff law

EQ-TARGET;temp:intralink-;e041;116;498ϵmðλ; θ1Þ þ ρ∘mðλ; θ1Þ þ τ∘mðλ; θ1Þ ¼ 1: (41)

Thus, for a homogeneous and isothermal medium, we have been able to derive Kirchhoff’s
law as a consequence of the Fresnel equations, for all angles and all polarization states. One
difference in Eq. (40) from McMahon’s results is that the expression for ϵm uses τm in place
of McMahon’s ð1 − ρmÞ. These are usually asserted to be equivalent, but we have seen from
Eq. (33) that, although they are typically close, they are not exactly equivalent due to the pres-
ence of the mixed Poynting vector term μ. Thus, it seems that the mixed Poynting vector may
point to a deviation from Kirchhoff’s law, for situations in which μ is significant.

7.1 Nonisothermal Media

Treatments of Kirchhoff’s law generally state that the law is valid when the emitting object is in
local thermodynamic equilibrium (LTE) and may further add that this is not satisfied when an
object is not isothermal. Because LTE is never exactly satisfied in practice, it is even more impor-
tant to be able to say quantitatively to what degree a given situation permits the law to provide
accurate results, that is, rather than evaluating a situation as valid or invalid for applying the law,
we should instead express how closely we can expect the law to hold. First, we start with a
heuristic analysis to gain insight into the shape of the problem before going on to developing
the path integral for the nonisothermal case.

We can start with an example of a painted metal plate that is exposed to the open air and is
cooled by air convection currents and radiative losses. The paint coating has an absorption index
of k1 ¼ 0.47 at wavelength λ ¼ 10 μm. In this case, the skin depth of the coating is α−1 ¼
λ

4πk1
¼ 1.7 μm. Regardless of the status of Kirchhoff’s law, we can expect that most of the emis-

sion from the solid will take place within this narrow region just below the surface. If the paint
layer is nonisothermal, then any thermal gradient will have to be significant within this skin
depth. Because most paint coatings are 5 to 200 μm thick, this narrow region is the outermost
surface of the paint. If the temperature difference between the warm plate (the “substrate” of the
coating) and the surface of the coating is 5°C and the coating is 100 μm thick, then the temper-
ature delta across the skin depth is only 5 K × ð0.7 μm∕100 μmÞ ¼ 35 mK. This gives the
maximum possible effect that the thermal gradient within this coating can have on the emissivity,
making the surface appear as if it were 35 mK warmer than it really is. In practice, the emission
by deeper layers is attenuated by absorption before reaching the surface, so the change in emis-
sion is even smaller than this and therefore below the noise level of most thermal infrared
imagers. With this result in mind, we can say that painted metal surfaces used as blackbody
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simulators will likely have an apparent radiative temperature that differs by less than ∼35 mK
from the temperature of the underlying metal substrate as long as the high-emissivity coating
layer is kept to thicknesses near 10 μm.

To make this more quantitative, we develop a model for the emission of a nonisothermal
solid. The spectral emission density j becomes a function of z due to the linear depth-dependence
of temperature within the solid: T ¼ Ts þ γz for surface temperature Ts and temperature gradient
γ (in units of K∕μm), so

EQ-TARGET;temp:intralink-;e042;116;651jðλÞ ¼ 2hc2

λ5
αðλÞ

exp½hc∕λkBðTs þ γzÞ� − 1
: (42)

Inserting this into Eq. (4) gives the element of radiance dL emitted from within a layer of
thickness dz (see Fig. 1). Integrating this over the thickness of the solid, from z ¼ 0 to
z ¼ h, we obtain the spectral radiance arriving at the surface as

EQ-TARGET;temp:intralink-;e043;116;570L ¼ 2hc2α
λ5

Z
b

0

e−αz∕ cos θ

exp½hc∕λkBðTs þ γzÞ� − 1
dz: (43)

Although this is a complicated integral, the expression

EQ-TARGET;temp:intralink-;e044;116;513fðzÞ ¼ ðexp½hc∕λkBðTs þ γzÞ� − 1Þ−1 (44)

is close to linear when the gradient term is small in comparison with the surface temperature,
γz ≪ Ts. If we take the Taylor series expansion of this expression about the point γ ¼ 0, then we
obtain

EQ-TARGET;temp:intralink-;e045;116;445fðzÞ ¼
�

1

ea∕Ts − 1

�
þ
�

aγzea∕Ts

T2
s ðea∕Ts − 1Þ2

�
þ : : : (45)

for a ¼ hc∕λkB. Putting this expansion into Eq. (43), we obtain

EQ-TARGET;temp:intralink-;e046;116;387L ¼ Liso

�
1þ

�
γhc

αλkBT2
s

cos θ

1 − e−a∕Ts

��
1 −

αbβ
cos θð1 − βÞ

��
; (46)

where Liso is the radiance obtained for an isothermal solid at Ts. When the solid is semi-infinite
in extent (b → ∞), then this simplifies to

EQ-TARGET;temp:intralink-;e047;116;318L ¼ Liso½1þM�; (47)

where

EQ-TARGET;temp:intralink-;e048;116;275MðθÞ ¼
�

γhc
αλkBT2

s

�
cos θ

1 − e−hc∕ðλkBTsÞ (48)

is the nonisothermal modifier term. Although following a different derivation, this last result
agrees with that given by Ref. 44. We can note thatM ∝ 1∕α, so that materials with large absorp-
tion index k tend to have values closely agreeing with Liso unless the thermal gradient is extreme.

Figure 9 shows example curves of MðθÞ for different paint coating thicknesses from 2 to
200 μm and a temperature difference ΔT ¼ 4°C between the two sides of the coating (the upper
surface exposed to air and the lower surface touching the substrate). For very thin layers of paint
that still have a thermal delta of 4°C, we see that the nonisothermal effect on the emittance can
reach as high as 10%. However, for more ordinary thermal deltas, the value of M quickly goes
below our ability to measure.

Because there is a wide variety of base media and additives in paints, there is a corresponding
wide range of refractive and absorption indices. Oppenheim gives a representative measure-
ment of ðn1; k1Þ ¼ ð1.52; 0.46Þ, whereas Richmond gives ðn1; k1Þ ¼ ð1.4; 0.01Þ, and Tyo finds
ðn1; k1Þ ¼ ð1.6; 0.1Þ.6,14,45 These values fall within the range of our own experimental measure-
ments, in which the high-k paints generally contain a large number of pigment particles, making
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them appear black in the visible spectrum. The paint layers simulated in Fig. 9 assume inter-
mediate values of ðn1; k1Þ ¼ ð1.52; 0.1Þ.

In addition to the requirement that the emitting object be isothermal, one sometimes encoun-
ters the statement that the object must also be homogeneous for Kirchhoff’s law to hold.41

However, it is clear that inhomogeneous objects do not by themselves cause a violation of the
equilibrium condition for Kirchhoff’s law because Kirchhoff’s law has been applied successfully
to multilayer films and to composite materials such as concrete.

7.2 Nonisothermal Behavior in Paints and Glasses

Figure 9 shows that a 4°C temperature difference across any paint coating more than 5-μm thick
produces such a small change in emissivity that it will be difficult to measure. Although this
simulation assumes a temperature delta of 4°C, the author’s experience with thin paint coatings
in the lab indicate that deltas of 0.2°C to 0.5°C are more likely (using contact thermisters to
measure substrate and coating surface temperature). As a result, for blackbody simulator paint
coatings, we should be able to neglect the effect of deviating from isothermal sources.

If the thermal gradient becomes steeper and the absorption coefficient k becomes smaller
(so that deeper regions participate in emission), the change in emissivity can become significant.
For example, for a coating layer with k ¼ 0.009, a temperature delta of 2°C across a layer of
5 μm thickness (i.e., a gradient of γ ¼ 0.4 K∕μm) produces a 1.5% change in emissivity at
normal incidence, falling off to 1.2% near the grazing incidence.

We can see from Eq. (48) that M is proportional to the thermal gradient γ and inversely
proportional to the absorption index k. Thus, M increases linearly with the thermal change
ΔT across the emitter’s skin depth. If we scale M by k∕γ, then we can use the same curve for
all values of k, ΔT, and b, as shown in Fig. 10. The proportionality M ∝ γ∕k also shows why

Fig. 9 Emission modifier M , calculated from Eq. (48) for different thicknesses b of paint coatings,
assuming ðn1; k1Þ ¼ ð1.52; 0.1Þ, and a temperature difference of 4°C across the coating.

Fig. 10 If the refractive index is held constant, the scaled modifier Mk∕γ produces one curve for
all different absorption indices k and different thermal gradients γ (i.e., all of the curves of Fig. 9).
The curves shown here are calculated from Eq. (48), with the k -values included in the curve labels
for ease of reference.
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metals present no difficulty for Kirchhoff’s law—the large k value and low γ of most metals
make M negligible in almost all circumstances.

Using the curves shown in Fig. 10, we can interpret the results in the following way. The blue
curve shows that, if there is a 4°C temperature difference between the substrate and the surface of
the coating layer, for the coating layer thickness of 10 μm, then the deviation of emission from
the isothermal case will be about 5%. One can likely achieve these kinds of conditions by heating
the substrate to a high temperature (such as 100°C using the painted kitchen pot shown in Fig. 3
of Part II of this review) while cooling the surface with a fan blowing cool air. This illustrates the
conditions under which the nonisothermal effect becomes important.

In the case of silica (SiO2) and alumina (Al2O3) glasses, the emission skin depth at
λ ¼ 10 μm is 2.0 and 0.9 μm, respectively. For alumina, however, 10 μm happens to be close
to an absorption peak, so it is not necessarily representative of the material’s overall behavior in
the thermal infrared. In the midwave infrared (MWIR) (3 to 5 μm), for example, the absorption
coefficient for silica drops to k ¼ 0.00035—three orders of magnitude lower than the value at
10 μm. Similarly, the absorption index for alumina drops to 0.0018 and for paint (if we take
polymethyl methacrylate as representative of a plastic-based paint) to 0.00065. Thus, in the
MWIR at λ ¼ 4 μm, the skin depths of silica, alumina, and acrylic-base paint become 2.3,
0.5, and 1.2 mm, respectively. The lower absorption coefficients in the MWIR versus longwave
infrared (LWIR) mean that nonisothermal effects will be more likely in the midwave regime.

Although most natural materials, under normal circumstances, do no deviate significantly
from Kirchhoff’s law, one category of natural materials that consistently exhibits significant
departures from Kirchhoff’s law is layered fine particulate such as quartz sand powder.46

Reference 46 measured up to 6% deviations from Kirchhoff’s law for dry unpacked quartz dust.
The air gaps between particles reduce the thermal conductivity of the material while preventing
convective cooling; at the same time, this allows for sunlight to penetrate deeply and heat up the
underlying particle layers, producing a large thermal gradient. Another material having similar
behavior is lunar soil.47,48 One might expect fresh snow to have similar properties, due to having
a similar physical structure, but experimental measurements have shown that snow exhibits a
close correspondence to Kirchhoff’s law.49

One can of course envisage cases in which nonisothermal behavior has a predominant effect
on emission. For example, most “transparent” materials in the infrared actually have a small
amount of absorption present. We can imagine a thick slab of such a medium, in which the
slab thickness is larger than the material’s thermal penetration depth, but much shorter than the
optical absorption depth. Within such a thick slab, emission can take place over a large range of
distances, allowing the various emitting layers to have large differences in temperature.

7.3 Kirchhoff’s Law for Gases

When modeling gases in the thermal infrared, it is common to write Kirchhoff’s law simply as
absorption equals emission: ð1 − βÞ ¼ ϵ. Although one can interpret this as equivalent to
Eq. (41) when the reflectivity is zero and the transmission is ð1 − βÞ, equating absorption and
emission is actually the most fundamental form of Kirchhoff’s law.50 As a result, it is not neces-
sary to know the scattering (the diffuse reflection) by the gas cloud to calculate the emission.
Instead, one needs to know only the gas temperature Tgas and its absorbance χ along the relevant
line of sight. For a gas cloud of thickness l along the line of sight z, the absorbance is51

EQ-TARGET;temp:intralink-;e049;116;194χgasðλÞ ¼ 1 − exp

�
−
�
σðλÞ

Z
l

0

cðzÞdz
��

; (49)

for gas concentration (i.e., number density) c and absorption cross-section σ. Equating the
emissivity with the absorbance χ, the emitted radiance of a gas at uniform temperature is52

EQ-TARGET;temp:intralink-;e050;116;125LgasðλÞ ¼ χgasðλÞLbbðλ; TgasÞ: (50)

When the gas is nonuniform in temperature, however, one must divide the gas cloud into a
series of separate parcels, each with their own locally uniform temperature and their own local
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absorption value (for light passing from one side to the other side of the parcel along the line of
sight).53–55 Although this substantially increases the complexity of the calculation, it is a straight-
forward process to model. In the unlikely case of a linear thermal gradient along the line of sight
through the gas cloud, one reaches a result analogous to that of the linear gradient in a solid given
in Eq. (46). What is different from solids is that most gases are weak absorbers/emitters, so that
light can propagate through a large depth of gas before extinction. In addition, the lack of direct
thermal conduction means that large differences in temperature between parcels of gas are
possible. As a result, modeling a gas cloud as an isothermal body with uniform absorbance/
emissivity via Kirchhoff’s law is often subject to larger errors than in the case of solids.

8 Rough Surfaces and Scattering Media

So far we have considered only interfaces with smooth boundaries. When the boundaries are
rough, incident light from one angle is scattered into a range of transmission and reflection
angles, requiring a modification to the emissivity model that we have used so far. Jordan et al.
provide an approach for doing this by modeling the orientation angle of the interface as com-
prising a probability distribution over angles.18,56,57 In general, we can expect that, as the surface
roughness becomes large, multiple reflections among surface facets increase, causing a reduction
in reflectivity and a consequent increase in the emissivity.14 The effect on emission polarization
is more complex. Following Chang et al., we can model the emitting surface roughness as con-
sisting of triangular corrugations of a given angle ϕ (see Fig. 11). From the standpoint of the
viewer, the emission angle is θ 0, but the Fresnel equations for emission use the local surface
normal to calculate the polarization properties. Thus, if the corrugations are ordered and not
randomly oriented, this allows for polarized emission even at θ 0 ¼ 0, as shown in Fig. 11.
For emission angles above the local tilt ϕ, the surface emission is affected by shadowing, in
which part of the facet emits directly into the external medium, but emission from the remainder
of the facet is reflected from the opposite face, inducing a change in polarization on
reflection.58,59 Although this shadowing effect makes analytical analysis of the problem difficult,
numerical simulations have shown that the corrugation tends to increase overall emissivity, but
the shadowing effect tends to reduce the degree of polarization in the emitted light.18

Goldstein and Chenault show polarimetric measurements of reflection from various paints
for a range of angles of incidence.60,61 Although the measurements were taken in the visible and
near-infrared regions, they also contained very useful tables of the RMS surface roughness for
each paint type, showing that the RMS roughness ranges from 50 nm for glossy paints to as
much as 3 μm for matte paints.62

Fig. 11 Normalized linear polarization component of thermal emission from a corrugated surface
with tilt angles of 30 deg and 60 deg. The behavior shown here is for out-of-plane viewing angles,
at which the shadowing effect is irrelevant but reflection plays a role. (Inset) The emission geom-
etry for a corrugated surface with facet tilts of ϕ and indicating the shadowed region that occurs for
an emission angle of θ 0. Light emitted from the shadowed region of the surface experiences reflec-
tion from the opposing facet. (Data for the curves shown here were obtained from Ref. 18.).
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Germer considers the effect of surface microroughness—surface scattering features that are
small with respect to the light wavelength—and its effect on optical scattering and observed
polarization.63,64 Although Germer’s simulations provide only for the case of visible light, the
overall approach is equally applicable to infrared thermal emission and reflection and indicate
that, because microroughness and subsurface defects have a somewhat different angular depend-
ence of polarization, the two effects can be separated from one another with careful measure-
ments. When a material is itself inhomogeneous, so that light propagating through the medium
experiences a significant amount of scatter as it traverses the volume, the reflectivity and
emissivity values calculated using a homogeneous material model are no longer reliable. One
approach to take in this case is to form a Monte Carlo model of the rays propagating through the
media, but this does not provide much physical insight to apply across various different media.
When the scattering is large, however, we can take the diffuse light approximation, in which case
we can apply the Kubelka–Munk approach to calculating the reflectivity.65 In this approach, light
is assumed to be evenly distributed in angle, so the calculated reflectivity is angle independent.
This allows the problem to be simplified into a one-dimensional differential equation. Making
use of the Kirchhoff law, we are then able to infer the emissivity from ϵ ¼ 1 − ρ.

In the diffuse light approach, we imagine the light as being composed of two streams, an
upwelling flux I and a downwelling flux J (shown as red and blue, respectively, in Fig. 12). Each
stream is subjected to absorption and scattering effects, for which we use coefficients K and S.
If we examine the behavior of the two light streams as they traverse a layer of differential thick-
ness dz inside the medium, we see that upwelling flux I suffers from absorption loss (−IKdz)
and scattering loss (−ISdz) upon traversing the layer, but gains from backscattered downwelling
light (þJSdz). The downwelling flux J likewise suffers from absorption and scattering but gains
from backscattered upwelling light. As a result, the differential changes in fluxes across the layer,
defined as

EQ-TARGET;temp:intralink-;e051;116;227

dI
dz

¼ Iðzþ dzÞ − IðzÞ
dz

;
dJ
dz

¼ JðzÞ − Jðzþ dzÞ
dz

; (51)

are given by the pair of coupled differential equations

EQ-TARGET;temp:intralink-;e052;116;172

dI
dz

¼ −KI − SI þ SJ;
dJ
dz

¼ þKJ þ SJ − SI: (52)

The solutions for these equations are45

EQ-TARGET;temp:intralink-;e053;116;118

I ¼ I1ð1 − BÞeAz þ I2ð1þ BÞe−Az
J ¼ I1ð1þ BÞeAz þ I2ð1 − BÞe−Az

�
(53)

for

Fig. 12 Kubelka–Munk model of light propagation through a strongly scattering medium, showing
upwelling flux I and a downwelling flux J in red and blue, respectively. The three reflectivities ρe, ρi,
and ρs represent the hemispherical-average reflectivities for light reflecting at the boundary
between two media.
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EQ-TARGET;temp:intralink-;e054;116;735A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 2SÞ

p
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∕ðK þ 2SÞ

p
; (54)

and I1, I2 are constants to be determined by the boundary conditions of the problem.
Although the K and S coefficients are intended as experimentally determined parameters,

researchers have established that in many cases we can approximate the absorption coefficient
as K ≈ 2α and the backscattering coefficient as S ≈ ση, where we model the medium as
composed of discrete scatterers of scattering cross-section σ and number density η.66,67 A more
detailed calculation of K and S that takes into account specific material properties is presented in
Refs. 68 and 69.

The steps toward calculating I1 and I2 are given in detail in Ref. 45, so we skip to the
solution:

EQ-TARGET;temp:intralink-;e055;116;603ρ ¼ ρe þ ð1 − ρeÞð1 − ρiÞ
ð1 − BÞMeAh − ð1þ BÞOe−Ah

MNeAh −OPe−Ah
; (55)

where

EQ-TARGET;temp:intralink-;e056;116;548M ¼ ð1þ BÞ − ρsð1 − BÞ; (56)

EQ-TARGET;temp:intralink-;e057;116;505N ¼ ð1þ BÞ − ρið1 − BÞ; (57)

EQ-TARGET;temp:intralink-;e058;116;483O ¼ ð1 − BÞ − ρsð1þ BÞ; (58)

EQ-TARGET;temp:intralink-;e059;116;461P ¼ ð1 − BÞ − ρið1þ BÞ; (59)

and ρe is the “external” reflectivity for light incident from the ambient medium onto the surface
of the coating layer; ρi is the “internal” reflectivity for light incident on the surface of the coating
layer from inside the coating; and ρs is the “substrate” reflectivity for light incident from the
coating onto the substrate. The substrate itself is assumed to be fully opaque. Each of these three
reflectivities ρe, ρi, and ρs are hemispherical average reflectivities obtained from the Fresnel
equations. In the solution given in Eq. (55), the material reflectivity ρ is the diffuse reflectance,
so it is independent of angle or polarization.

For a direct model of scattering media that does not derive the emissivity from applying
Kirchhoff’s law to the reflectivity, it becomes necessary to account for the emission density
jðλ; TÞ within the medium itself. Xu and Shen show that this adds a new source term to each
of the equations in Eq. (53), requiring modification of the solution.70

9 Conclusion

One of the primary aims of this review was to gather together material illustrating how the ele-
ments in the theory of emission polarization can be derived from the Fresnel laws and volumetric
blackbody radiation inside absorbing materials. We also considered the generalization of the
Straubel theorem to absorbing materials, quantified the requirements for Kirchhoff’s law to hold,
and discussed the potential role of the mixed Poynting vector on emission. The physics of ther-
mal emission is likely one of the few places in which the mixed Poynting vector may play a
nontrivial role in practical measurement situations. Along the way through our survey, we also
provided some of the answers to the questions that originally motivated gathering together the
theory in one place. (Other answers await development until Part II of this review.) For example,
we found that a layer of water fully obscures its underlying substrate when 1 mm thick or more.
For hydrophilic surfaces in which water spreads widely without collecting into beads, water only
forms layers this thick when it cannot drain. Wet surfaces that can drain retain only very thin
layers of water, in which case the emission/reflection from the surface will be predominantly
from the substrate and not the water layer.

We also found that high-emissivity paints can be considered to fully obscure their substrates
when over about 10 μm thick, though this depends a lot on the type and density of colorants
used in the paint. Surprisingly, a fully obscuring paint at visible wavelengths is generally a good
guide that the paint will also be fully obscuring (or nearly so) in the thermal infrared as well.
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There is, however, some concern about the use of paints for blackbody simulators. If the heater
underneath the paint layer is pushed to a high temperature, so that the thermal gradient across
the paint becomes large, this gradient can cause measurable deviations from Kirchhoff’s law.

Finally, the McMahon–Gardon model of emission (Sec. 2) shows that the emission from a
thin (partially transparent) plastic film is not simple. Most plastics have a complex absorption
spectrum in the thermal infrared, particularly in the LWIR. Although some wavelengths are
highly transparent, others are significantly absorbing, making their spectral dependence a major
factor. In addition, any experimental measurements are prone to differences in composition and
any coloring agents (such as carbon particles) or impurities. For example, clear plastic bags
are more transparent in the infrared than black plastic bags because the latter contain a large
concentration of absorbing carbon particles.

10 Appendix A: Gardon’s Integral

In Sec. 2, we said that a 1D integral along the ray is sufficient to model the emissivity from a
solid slab. We can confirm this with a rigorous treatment of the differential solid angle elements
and the differential surface area element.

With the setup shown in Fig. 1, the volume element dV is part of an annular ring of radius r,
with radial thickness dr and axial thickness dz. From the center of the ring, the elemental volume
dV subtends an angle of dϕ. In cylindrical polar coordinates ðr;ϕ; zÞ, we write the elemental
volume as

EQ-TARGET;temp:intralink-;e060;116;477dV ¼ rdrdϕdz: (60)

However, a more convenient representation is to rewrite this in terms of θ and dθ rather than
r and dr. Using the triangle formed by r, z, and θ,

EQ-TARGET;temp:intralink-;e061;116;422r ¼ z tan θ: (61)

The geometry shown in Fig. 1 gives

EQ-TARGET;temp:intralink-;e062;116;379dθ ¼ ds∕l ¼ dr cos θ

z∕ cos θ
; (62)

so

EQ-TARGET;temp:intralink-;e063;116;323dr ¼ ðz cos2 θÞdθ; (63)

and

EQ-TARGET;temp:intralink-;e064;116;279rdr ¼ z2ðtan θ∕cos2 θÞdθ: (64)

Therefore, in terms of the more convenient coordinates ðz;ϕ; θÞ, the volume element is

EQ-TARGET;temp:intralink-;e065;116;236dV ¼ z2
sin θ

cos3 θ
dz dϕ dθ: (65)

Again making use of the geometrical relationships shown in Fig. 1, we write the solid angle
element dω, which is the solid angle subtended by surface area element dA from dV, as

EQ-TARGET;temp:intralink-;e066;116;169dω ¼ projected area

distance2
¼ dA cos θ

l2
¼ dA cos θ

z2∕cos2 θ
¼ dA

cos3 θ

z2
: (66)

Similarly, for the solid angle element dΩ defined within the blue lines drawn in Fig. 1(b)
representing the solid angle subtended by dV from dA, we have

EQ-TARGET;temp:intralink-;e067;116;100dΩ ¼ projected area

distance2
¼ cos θrdr dϕ

l2
¼ sin θdθ dϕ: (67)
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The element of volume dV emits power dP in the direction of dA:

EQ-TARGET;temp:intralink-;e068;116;723dP ¼ jdVdω: (68)

The power arriving at dA from dV is less than this because of absorption along the path.
Including path absorption, we have

EQ-TARGET;temp:intralink-;e069;116;668dP ¼ je−kz∕ cos θdVdω: (69)

The corresponding elemental radiance reaching the surface from inside the solid is given by
the power dP per units area dA per unit solid angle dΩ:

EQ-TARGET;temp:intralink-;e070;116;613dL ¼ dP∕ðdA dΩÞ: (70)

With this expression, we can solve for the radiance arriving at dA from within the solid by
integrating over all layers:

EQ-TARGET;temp:intralink-;e071;116;558L ¼
Z

z¼∞

z¼0

dP
dAdΩ

dz ¼
Z

∞

0

je−kz∕ cos θdV dω
dA½sin θdθ dϕ� dz ¼ j

Z
∞

0

e−kz∕ cos θdz: (71)
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