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Abstract. We present an interferometric form measurement system that is capable of measuring
the form of optical surfaces from flats to moderately curved freeforms. A Fizeau interferometer
is scanned over the specimen measuring its topography and the distance to the surface in sub-
aperture measurements. The angle between the interferometer and the specimen is adjusted for
each position and additionally relevant stage angle errors are measured with two tiltmeters. An
optical surface with a spherical form (50 mm diameter, 10 m radius of curvature) is measured,
and an uncertainty budget yields an uncertainty of 69 nm ðk ¼ 2Þ for its topography. The deter-
mined radius of curvature agrees well with the nominal specifications and a measurement with a
coordinate measurement machine. Furthermore, a form measurement of a car’s side window is
presented. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
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1 Introduction

Stitching interferometry1 enables the form measurement of optical surfaces that are too large or
too strongly curved for a single measurement. Surfaces can be reconstructed by combining
several subaperture measurements, which are again within the specifications of the respective
interferometer. In modern instruments, wavelength-swept interferometry is used with Fizeau- or
Michelson-type interferometers. An overview of state-of-the-art wavelength-swept interferom-
etry can be found in Ref. 2.

For freeform optics,3 stitching interferometry offers a flexible measurement capability. There
are many types of reference wavefronts, measurement methods, and stitching algorithms. Some
of these are listed in the following paragraphs.

One of the first setups for stitching interferometry was presented in Ref. 4. It combines a
high-precision motion system with an interferometer to measure the form of near-spherical spec-
imens. For subaperture stitching, parameters are introduced to correct global errors (reference
wave, pixel scale and distortion) and local errors (angular and positional misplacement) of the
subapertures.

A stitching interferometry setup for specimens up to about half an inch with large slopes
was demonstrated in Ref. 5. A reference flat is used, and the specimen is positioned and tilted
by a hexapod. The length gauges of its linear actuators give the angular and positional relation
between the subaperture measurements. Another stitching interferometry method with a spheri-
cal reference wavefront is presented in Ref. 6 measuring a specimen with 100 mm in diameter
and up to 1300 μm of freeform departure from the best-fit sphere. Reference 7 presents an
approach with a combination of subaperture stitching and white-light interferometry. Instead
of tilting the specimen or the interferometer for larger slopes, a higher magnification is used
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to resolve the interferograms. Therefore, the measurement time increases along with an increas-
ing slope.

For aspheres, a Fizeau interferometer with a spherical reference wavefront can be used to
scan the specimen along the optical axis to measure annular subapertures, e.g., in Ref. 8.

Apart from stitching interferometry, there are other methods for the measurement of optical
surfaces with large curvatures. One example is computer-generated holograms,9 which have to
be created for each specific specimen form. They are used for repeated measurements of spec-
imens with the same design. Another example is the tilted wave interferometer,10,11 which uses
spatially distributed light sources (instead of a positioning system) to determine a surface topog-
raphy from several interferograms. The surface form is reconstructed by recreating the observed
interference patterns with a numerical simulation of the system, thus solving an inverse problem.

For slightly curved but large specimens, e.g., synchrotron mirrors, other measurement setups
are employed. For the form measurement of synchrotron x-ray mirrors, several stitching methods
at the European Synchrotron Radiation Facility are reviewed in Ref. 12. One of those was for a
specimen with a radius of curvature of 120 m. Here, the reproducibility of the radius of curvature
remains an issue. In Ref. 13, stitching interferometry is used with a fixed Fizeau interferometer
and a specimen on a linear scanning stage moving relative to the interferometer. Two tiltmeters
are used to correct guideway errors of the linear stage. A method with self-referencing stitching
interferometry on a two-dimensional (2D) profile, called traceable multiple sensor, was dem-
onstrated for nearly flat surfaces.14 Here, the angular position of the specimen is measured with
an autocollimator.

Non-interferometric methods for high-accurate form measurement include deflectometry.
Two examples are the software configurable optical test system (SCOTS)15 and slope-measuring
portable optical test system (SPOTS)16 methods developed at the University of Arizona. SCOTS
relies on a screen displaying a pattern and a camera as detection, whereas the SPOTS method
uses an additional optic in the detection path. Another method17 uses an autocollimator as a
measuring head on a scanning stage to measure the slope of the surface under test with high
accuracy. The measurement is limited to 2D profiles, but multiple profiles can be combined to
get a three-dimensional (3D) topography.

A further option for measuring free-form surfaces is scanning profilometry, which is readily
available with commercial setups. Examples include the NANOMEFOS18 [developed by TNO
(Netherlands Organisation for Applied Scientific Research) and Dutch United Instruments] and
the LUPHOScan19 (by Taylor Hobson), both of which employ optical probes, and the UA3P20

(by Panasonic), which uses a tactile probe.
Our proposed method aims to measure specimens from optical flats to moderately curved

surfaces, which can have arbitrary surface forms like freeforms or symmetrical forms. The maxi-
mum slope is limited by the interferometer. In Sec. 7, we show a measurement of a specimen
with local radii of curvature down to ∼2 m.

We use a five-axis positioning system with three linear stages and two rotation stages to scan
a specimen with a Fizeau interferometer. Two tiltmeters measure the guideway errors of two
horizontal linear stages for the lateral positioning. An autocollimator measures the angle of the
vertical linear stage and the two rotation stages carrying the interferometer. Alternatively, the
rotation encoders of the rotation stages can be used. This determines the complete angle between
the specimen and the interferometer. Furthermore, the distance between the surface and the inter-
ferometer is measured.

From this information, the subtopographies can be arranged in a global coordinate system.
The lateral positions of the subtopographies are approximately accurate, but height differences
between them still remain. This allows the stitching algorithm to be formulated in terms of a
linear least squares problem limited to the vertical direction. The linearity is beneficial for the
traceability of the form measurement.

One of the main advantages of the presented method is that it provides a very accurate mea-
surement of the absolute form and curvature. The reason for this is that the inclinations of the
subapertures are not adjusted during stitching since they are known from the angle measurement.
Therefore, unknown systematic form errors of the interferometer’s reference surface can only be
accumulated as linear errors over the stitched topography but not as quadratic or higher order
errors. Additionally, no calibration object is required, as is often used for scanning profilometry.
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Another advantage of this method is that it can measure arbitrary surface forms (and shapes)
as long as the maximum local gradients are still measurable. This means that the samples are not
limited to spherical and aspherical forms with moderate free-form components.

It was developed from the traceable multiple sensor method,14 from which the relative angle
measurement between the interferometer and the specimen was adapted. The rotations of the
interferometer extend the maximum slope of the specimens. The self-referencing of the reference
surface was omitted for the time being since it plays a minor role compared to other errors. In
addition, the transition from two-dimensional measurements of profiles to 3D measurements was
made. The use of the tiltmeters to measure the angular errors of the linear stages is realized as
in Ref. 13. A self-calibration of the systematic form errors of the reference flat as in Ref. 4 or
Ref. 14 can also be implemented in this method.

2 Methods

2.1 Setup

A schematic drawing of the setup is shown in Fig. 1, and an image of the actual setup is shown in
Fig. 2. The optical measurement head is a Fizeau interferometer (model: VI-direct 10 by Möller-
Wedel GmbH & Co. KG) with an aperture of 10 mm, an image sensor with 1600 × 1200 pixels

and a reference flat. The frequency of the laser (model: LaSy 633 by TEM Messtechnik GmbH)
for the Fizeau interferometer can be swept in the range of 300 GHz (corresponding to a wave-
length range of 0.4 nm) around the central wavelength of 633 nm. The specimen is placed on the
lower linear y-stage (custom built). The x-stage (manufacturer: PI Micos GmbH) bears a tower
with a rotation stage and a goniometer (manufacturer: Newport Corporation) to carry the Fizeau
interferometer. They share a common pivot point and can tilt the interferometer to align it to the
specimen gradient in its field of view. The Fizeau interferometer can also be adjusted in height
with a linear z-stage (manufacturer: Newport Corporation) to be focused on the surface because
it has a fixed focal length. The mechanical stability of the structure carrying the interferometer
was verified with an autocollimator. The measurement area given by the travel range of the
x- and y-stage is 1000 mm × 200 mm.

The tiltmeters measure the angular guideway errors of the linear x- and y-stages. The auto-
collimator measures the angular position of the Fizeau interferometer relative to the x-stage. For
larger rotations, the angular position is also known from the rotation encoders; however, this is
less accurate. Thus, the complete angular relation of the specimen and the interferometer is
known. The relative position is known from the length gauges of the linear stages.

Fig. 1 Schematic drawing of the measurement setup.
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The vertical distance from the pivot point to the reference flat dRF−PP must be known for the
stitching and can be geometrically determined. A reflective specimen with a marker is placed
under the Fizeau interferometer. The distance d from the reference flat to the specimen is mea-
sured with wavelength-swept interferometry (see Sec. 2.2). Then the Fizeau interferometer is
rotated by a certain angle γ with one of the rotation stages. The distance dRF−PP can be calculated
from the lateral displacement dlat of the marker, the angle γ and the distance d:

EQ-TARGET;temp:intralink-;e001;116;350dlat ¼ ðdRF−PP þ dÞ tanðγÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;307 ⇔ dRF−PP ¼
dlat

tanðγÞ − d: (2)

The lateral position of the pivot point is not critical, as long as the tilt angles of the interferometer
are small.

2.2 Wavelength-Swept Interferometry

The Fizeau interferometer utilizes the tunable laser with a wavelength range of 0.4 nm. The
electromagnetic waves reflected from the specimen and the reference flat interfere with each
other. During the wavelength sweep, the intensity is measured (see Fig. 3). From the Fourier
spectrum, the wrapped phase ϕwrappedðx; yÞ and the frequency of the interference signal can be
calculated for every pixel (see Fig. 4).

The phase map is unwrapped with a 2D unwrapping algorithm21 to obtain the continuous
phase map ϕðx; yÞ. The topography of the specimen is then given as

EQ-TARGET;temp:intralink-;e003;116;138zðx; yÞ ¼ λ

2

ϕðx; yÞ
2π

; (3)

where λ is the central wavelength of the laser. The cavity length, i.e., the absolute distance from
the reference flat to the surface, is given by [see e.g., Eqs. (1) and (2) in Ref. 22]

Fig. 2 Photo of the measurement setup.
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EQ-TARGET;temp:intralink-;e004;116;373d ¼ λ2

Δλ
Δϕ
4π

: (4)

This formula can be rearranged as

EQ-TARGET;temp:intralink-;e005;116;328d ¼ 1

2
λ2ν; (5)

where ν is the dominant frequency obtained from the Fourier spectrum, which describes how the
phase of the interference signal changes by Δϕ for a wavelength sweep Δλ:

EQ-TARGET;temp:intralink-;e006;116;2642πν ¼ Δϕ
Δλ

: (6)

2.3 Subaperture Measurements

A specimen that has a larger aperture diameter than the interferometer has to be measured in
many subaperture measurements that overlap with each other in the xy-plane. The positioning
system moves the interferometer from position to position on a raster path (see Fig. 5). In the
measurement presented later, the step size is 5 mm, and the effective aperture size is 8 mm. A
single subaperture measurement is done in the following way: First, a single image from the
interferometer is taken to check if the specimen is within the field of view at this position.
Then an interferometric measurement is performed. The relative angle between the specimen
and the interferometer is determined from the obtained topography, and compensated for with
the two rotation stages. The correct focal distance is set with the vertical z-stage using the mea-
sured absolute distance. After the adjustment, the interferometric measurement is repeated, and
the new values of topography and distance are stored. The measurement values of the tiltmeters
and the autocollimator are also stored. The geometry of a subaperture measurement is shown in

Fig. 4 This plot shows the absolute value of the Fourier transform of the signal in Fig. 3. The peak
with the highest amplitude corresponds to the cavity formed between the reference flat and the
specimen. The phase of this oscillation gives the topography.

Fig. 3 This figure shows part of the intensity signal during the wavelength sweep at one pixel of
the interferometer. The dominant frequency and its phase can be determined by Fourier analysis
(see Fig. 4).
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Fig. 6. All stages approach all positions unidirectionally to achieve the maximal position
repeatability.

2.4 Subaperture Stitching with Absolute Distance Measurement

The complete surface form has to be reconstructed from the subaperture measurements. The
distance from the interferometer to the specimen has been measured with each subaperture meas-
urement. The best achievable uncertainty of the absolute distance measurement amounts to
∼30 μm, and therefore, is magnitudes of orders worse than that of the topography measurement,
which is only relative. Therefore, adjacent subtopographies may have a height difference. When
the Fizeau interferometer is tilted with the rotation stages, its optical axis is not parallel to the
z-stage anymore. Therefore, the uncertainty of the distance measurement may also cause a lateral
displacement of adjacent subtopographies. However, the tilt angles θx;i and θy;i are small so that
this lateral displacement is neglected. With an uncertainty of 30 μm for the distance measure-
ment, the resulting uncertainty of the lateral position would be 2.6 μm at an angle of 5 deg. The
height differences of overlapping subtopographies can be corrected by means of a linear equation
system, minimizing the sum of the quadratic height differences.

The quantities used for the stitching are shown in Fig. 7. First, all pairs of subtopographies
that are close to each other in the xy-plane are searched for. The point coordinates of a first
subtopography that lie within the convex hull enclosing the coordinates of a second are identified
to find the area of overlap. The points of the two different measurements are generally not on
the same grid. Therefore, the height values of the second topography are linearly interpolated
at the lateral coordinates of the first. Then the mean height of the points of each subtopography
in the area of overlap is calculated.

Subsequently, the linear equation system can be set up with the following equation for each
overlap of two subtopographies i and j:

Fig. 5 The large circle is a specimen from the top view. The Fizeau interferometer is moved along
the raster path. In equidistant steps, an interferometric measurement is performed. The first 11
measurement areas starting from the bottom left are depicted by the dashed circles.

Fig. 6 The Fizeau interferometer measures the subtopography of the specimen at the i ’th position.
Due to the several measurement uncertainties, the subtopography’s position in space is not
exactly known. The resulting offset oi is fitted in the vertical direction, approximating a fit along
di . The position x i is measured with a linear encoder.
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EQ-TARGET;temp:intralink-;e007;116;542½zi;ðijÞ þ oi� − ½zj;ðijÞ þ oj� ¼ 0; (7)

where zi;ðijÞ are the mean height values of the i’th subtopography (indicated by the first part of
the index i) in the region of overlap with the j’th measurement [indicated by ðijÞ], and vice versa
for zj;ðijÞ. oi and oj are the height offsets to be determined. Since there are more overlaps than
subapertures, it is an overdetermined system and a linear least-squares solution can be found.
The complete topography is obtained by adding the determined offsets oi to the subtopographies.

Figure 8 shows how flat subtopographies with a symmetrical systematic error are stitched
together.

The stitching already works in this simple version, but it can be improved with a parameter
for the adjustment of the autocollimator measuring θx;i and θy;i. The parameter describes the
rotation α of the autocollimator around its optical axis due to an imperfect adjustment. The auto-
collimator ideally measures the two angles θx and θy of the mirror attached to the Fizeau inter-
ferometer. If it is not perfectly aligned, the measured angles (marked with a single quotation
mark) contain part of the perpendicular angle:

EQ-TARGET;temp:intralink-;e008;116;359θ 0
x ¼ θx cosðαÞ þ θy sinðαÞ; (8)

EQ-TARGET;temp:intralink-;e009;116;315θ 0
y ¼ θy cosðαÞ − θx sinðαÞ: (9)

The cosine terms are approximately equal to 1 because the adjustment error is small. These
angles are already considered when placing the subtopographies in space. The sine terms can
be simplified to sinðαÞ ≈ α in the small angle approximation.

The linear equation system from Eq. (7) is extended with the height differences resulting
from the angle product αθx;i multiplied by Δxi;ðijÞ (see Fig. 7) and the corresponding terms for
the other subapertures in the x- and y-direction.

Fig. 7 The two subapertures i and j overlap in the xy -plane. The dots are the centers of each
topography. The long dashed line is the center of the overlapping region in the x-direction. The y -
direction is treated equivalently. zi;ði jÞ and zj;ði jÞ are the mean heights in the overlapping region.
Δx i;ði jÞ and Δx j;ði jÞ are the x-distances from the center of the topographies to the center of the
overlapping area. The dashed arrows show how the offset parameters oi and oj shift the
subapertures.

Fig. 8 A 2D view from the side showing how three actually flat subtopographies with a spherical
form error of the reference flat are stitched. The symmetrical systematic errors only cause local
errors in the stitched topography because the tilts are fixed.
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EQ-TARGET;temp:intralink-;e010;116;735½zi;ðijÞ þ oi þ αθx;iΔxi;ðijÞ − αθy;iΔyi;ðijÞ�− ½zj;ðijÞ þ oj þ αθx;jΔxj;ðijÞ − αθy;jΔyj;ðijÞ� ¼ 0; (10)

where Δxi;ðijÞ is the x-distance from the center of the subaperture measurement of the subaper-
ture i to the center of the xy-overlap of the topographies i and j. θx;i is the measured angle in the
x-direction for the i’th subaperture. The linear equation system can be simplified to

EQ-TARGET;temp:intralink-;e011;116;675½zi;ðijÞ þ oi� − ½zj;ðijÞ þ oj� þ αcij ¼ 0: (11)

The parameter cij summarizes the effects of a rotation of the autocollimator on the mean height
difference in the overlapping region:

EQ-TARGET;temp:intralink-;e012;116;617cij ¼ ½θx;iΔxi;ðijÞ − θy;iΔyi;ðijÞ� − ½θx;jΔxj;ðijÞ − θy;jΔyj;ðijÞ�: (12)

To obtain the complete topography, the offsets oi and the tilts caused by the autocollimator
adjustment parameter are added to the subtopographies.

3 Experimental Results

A spherical specimen was measured as a proof of principle. It had a diameter of 50.8 mm, was
made of BK7, and was also uncoated (manufacturer: Eksma Optics). The radius of curvature was
specified with 10 m� 0.1 m. The whole specimen was measured with 99 subapertures and a
lateral step size of 5 mm in x and y. The inner 8 mm of the 10 mm aperture of the interferometer
was used because there are faint interference fringes at the edge of the aperture caused by the
device itself. The data from the image sensor was subsampled to an effective pixel pitch of
17.3 μm to reduce the computation time without significantly reducing the accuracy of the meas-
urement. This corresponds to about 167,000 pixels in a subaperture. The measurement took
about two hours.

A total of 170 overlapping areas were found that contained at least 100 valid pixels. The
subtopographies were stitched with the equation system from Eq. (11) in Sec. 2.4. The auto-
collimator adjustment parameter was determined to α ¼ 0.158 deg. The estimated standard
error of the regression (i.e., the root of the residual variance) for the height offsets oi of the
subtopographies was SER ¼ 2.8 nm. The stitched topography was described by a point cloud
with unevenly spaced points due to the higher points density in the overlapping regions. The
point cloud was linearly interpolated on a grid with 250 × 250 points with a resulting lateral
distance of 191.61 μm. The global tilt of the whole topography was fitted and subtracted.
The reconstructed topography is shown in Fig. 9.

A spherical function was fitted to the topography with a nonlinear least-squares fit to com-
pare the result with the nominal radius of curvature. Only the inner 48 mm of the topography
were used because the topography deviated from the spherical form close to the edge. The fit
yielded a radius of curvature of 9.9936 m. The respective standard deviation calculated from the
covariance matrix of the fit was 0.5 mm. This value lies well within the nominal radius of

Fig. 9 The figure shows the inner 48 mm of the topography. The spherical form is clearly visible. It
has a PV height of hPV ¼ 28.74 μm.
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10 m� 0.1 m. The best-fit sphere was subtracted from the topography for further evaluation.
The fit residual is shown in Fig. 10(a). Its form resembles the spherical aberration term of
the Zernike polynomials. The RMS height of the fit residual is 57 nm. There are also slight
circular artifacts in the residuum because the subtopographies do not perfectly match in the
stitching.

To demonstrate the effects of the adjustment parameter for the autocollimator, the stitching
was repeated without this parameter, i.e., according to Eq. (7). In Fig. 10(b), the artifacts due to
the tilt errors can be seen, especially at the edges of the subtopographies.

To make the effect of the adjustment parameter for the autocollimator more obvious, the first
36 Zernike polynomials were fitted and subtracted from the topographies. The results can be
seen in Figs. 11(a) and 11(b).

4 Uncertainty Budget

To complete the measurement in Sec. 3, an uncertainty budget was set up. The aim was to quan-
tify the most relevant uncertainty contributions, but not to develop an all-encompassing uncer-
tainty budget. Several contributions were dependent on the specimen topography, meaning that
their values were specific for this specimen.

(a) (b)

Fig. 10 (a) This figure shows the topography after subtracting the best-fit sphere. The residual of
the fit has a rotationally symmetric form, which is a typical artifact from the manufacturing process.
The circular artifacts are mainly caused by small tilt errors of the subapertures. (b) Without the
adjustment parameter for the autocollimator, the artifacts are visible at the edges of the subtopog-
raphies due to an additional tilt error of the individual subapertures [compare to (a)]. The artifacts
have PV heights of up to 30 nm.

(a) (b)

Fig. 11 Fit residuals after removal of the first 36 Zernike polynomials. (a) With the adjustment
parameter, the RMS value of the residual is 8.7 nm. (b) Without the adjustment parameter, the
RMS value amounts to 9.9 nm. It can be seen that the subapertures have a more pronounced tilt
error in tangential direction than in (a).
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4.1 Uncertainty of the Topography Measurement

To estimate the uncertainty of the topography measurement for an arbitrary specimen, two of
the most distant points with the largest curvature between are chosen. The combined uncertainty
for their relative height contains the uncertainty components of their respective subaperture
measurement and of the direct path connecting them. For the spherical specimen, the longest
direct path is along the diameter in any direction and consists of 10 subapertures so that there
are Npath ¼ 9 overlaps of subtopographies between the outer two subtopographies.

A model equation for the determination of the measurement uncertainty of the measured
topography zðx; yÞ can be described as

EQ-TARGET;temp:intralink-;e013;116;620zðx; yÞ ¼ zkðx; yÞ − zrðxr; yrÞ þ
XNpath

s¼1

Δzs: (13)

The first term zkðx; yÞ describes the first point of the topography that belongs to the subtopog-
raphy k. The second term describes the second point chosen as reference point zrðxr; yrÞ in a
subtopography r. The heights of both points are relative to their respective subtopography. The
third term describes the sum of the height differences Δzs that occur for each stitched sub-
topography s on the path between zkðx; yÞ and zrðxr; yrÞ. zrðxr; yrÞ is subtracted from the other
two terms to get the topography zðx; yÞ relative to this reference point.

From the model equation, the uncertainty can be calculated as follows:

EQ-TARGET;temp:intralink-;e014;116;484uðzÞ2 ¼ uðzkÞ2 þ uðzrÞ2 þ u

 XNpath

s¼1

Δzs

!
2

: (14)

The terms uðzkÞ and uðzrÞ are equal because they describe the uncertainty for a single sub-
aperture measurement. The equation can be shortened to

EQ-TARGET;temp:intralink-;e015;116;408uðzÞ2 ¼ 2 · uðzkÞ2 þ u

 XNpath

s¼1

Δzs

!
2

: (15)

The uncertainty component uðzkÞ for the single subaperture measurement can be split up into a
lateral and a height uncertainty component

EQ-TARGET;temp:intralink-;e016;116;332uðzkÞ2 ¼ ulateralðzkÞ2 þ uheightðzkÞ2: (16)

In principle, interactions of several input quantities may occur. However, they are typically small
and can be neglected.

In the following sections, several important input quantities are discussed and summarized
in Table 1.

Table 1 Uncertainty budget of uzðx; yÞ with the most important contributions to the measurement
of the spherical specimen. The estimates of all quantities are zero.

Quantity Uncertainty Distribution Sensitivity coefficient Uncertainty contribution

Reference flata 21 nm Rectangular 1 6.1 nm

Distortiona 8.64 μm Normal Rsubaperture∕r C 4 nm

Lateral positiona 8.2 μm Normal θmax 20.5 nm

Anglea 2.1 μrad Normal Rsubaperture 8.4 nm

Stitching 2.8 nm Normal
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Noverlap

p
8.4 nm

Combined uncertainty — — — 34.1 nm ðk ¼ 1Þ
aThe components for are counted twice to account for the factor in Eq. (15).
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4.1.1 Lateral uncertainty component u lateralðzk Þ of the single subtopography

First, the lateral positioning of the subtopographies is considered. For simplicity, the equation is
set up for one dimension, but it is valid for the whole specimen because of its symmetry. The
uncertainty uðxÞ of the x-coordinate is given as

EQ-TARGET;temp:intralink-;e017;116;680uðxÞ2 ¼ uy-stageðxÞ2 þ uz-stageðxÞ2 þ udðxÞ2 þ uθxðxÞ2: (17)

1. The straightness of the y-stage in the x-direction is given by 20 μm (peak-to-valley). The
corresponding uncertainty is uy−stageðxÞ ¼ 20 μm∕

ffiffiffiffiffi
12

p
.

2. The second term uz−stageðxÞ ¼ 20 μm∕
ffiffiffiffiffi
12

p
is the equivalent of the z-stage.

3. udðxÞ ¼ uðdÞ sinðθmaxÞ is the uncertainty component for the absolute distance measure-
ment. With uðdÞ ¼ 100 μm and a maximum rotation of the interferometer θmax ¼ 0.3 deg,
it follows that udðxÞ ¼ 0.6 μm.

4. uθxðxÞ is the combined uncertainty for the angle measurement of the two tiltmeters
with uTMðθxÞ ¼ 0.25 arcsec each and the autocollimator with uACðθxÞ ¼ 0.25 arcsec.
It amounts to uθxðxÞ ¼ 0.45 arcsec ¼ 2.1 μrad. With an approximate distance from the
pivot point to the specimen of 200 mm, it amounts to uθxðxÞ ¼ 0.5 μm.

The dominating uncertainties are the straightness of the linear stages by about one order of
magnitude. The maximum resulting topography uncertainty can be estimated by a multiplication

with the maximum gradient of the specimen ðdzdxÞmax ¼ Rspecimen

rC
¼ 50.8 mm∕2

10 m
:

EQ-TARGET;temp:intralink-;e018;116;474ulateralðzÞ ¼ uðxÞ ·
�
dz
dx

�
max

: (18)

This yields a contribution of ulateralðzÞ ¼ 20.5 nm for uðxÞ ¼ 8.2 μm. The maximum gradient
was obtained by using the parabolic approximation to a spherical surface with zðxÞ ¼ x2

2rC
.

Contributions of the eccentricity and wobble of the rotation stages and the position of the pivot
point are neglected because they are small due to the small angle range. The Abbe error for the
distance from the Fizeau interferometer and the specimen to the respective linear encoder is also
one order of magnitude smaller than the straightness and therefore neglected.

In addition, the uncertainty contribution from the distortion of the imaging optics is
considered. The distortion of the Fizeau interferometer was determined to be <1 pixel or
8.64 μm for the total aperture of 10 mm. The maximum gradient within the 4 mm radius is

ðdzdxÞmax ¼ Rsubaperture

rC
¼ 4 mm

10 m
. The maximum height uncertainty contribution to ulateralðzÞ according

to Eq. (18) is 4 nm.

4.1.2 Height uncertainty component uheightðzk Þ of the single subtopography

Here, input quantities that directly influence the height values are discussed.

1. The reference flat of the Fizeau interferometer has a flatness deviation of λ
30
≈ 21 nm.

This is a manufacturer’s specification, which was confirmed with a measurement relative
to a flat with a nominal flatness error of λ

100
. The quadratic component is about 1 nm

peak-to-valley. This value divided by
ffiffiffiffiffi
12

p
is taken as the corresponding uncertainty

component uRFðzÞ.
2. The uncertainty of the angle measurement uðθÞ causes a tilt uncertainty of a subtopog-

raphy that results in a local height uncertainty of uθðzkÞ ¼ uðθÞ · Rsubaperture ¼ 8.4 nm.

This leads to

EQ-TARGET;temp:intralink-;e019;116;127uheightðzkÞ2 ¼ uRFðzkÞ2 þ uθðzkÞ2 ≈ 10.4 nm: (19)

Uncertainty components that are small and not included here are the repeatability of the sub-
aperture measurement, the retrace error, camera noise and the laser wavelength. Effects of the
retrace error in stitching were studied in Ref. 23, however, for a different stitching algorithm.
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4.1.3 Uncertainty component u
�PNpath

s¼1 Δzs

�
for the stitching

The least-squares solution to the linear stitching problem has an estimated standard error of the
regression of SER ¼ 2.8 nm. All residuals are smaller than 8 nm. There areNoverlap ¼ 9 overlaps
along one direction. The total uncertainty is estimated to be

EQ-TARGET;temp:intralink-;e020;116;680u

 XNoverlap

s¼1

Δzs

!
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Noverlap

p
· SER ¼ 8.4 nm; (20)

for a profile through the center. The standard error of regression also contains any errors that
cause the subtopographies to not fit perfectly in the overlapping region.

4.1.4 Combined uncertainty UðzÞ
Table 1 shows the measurement uncertainty budget for the standard measurement uncertainty
according to Eq. (15). This results in an expanded measurement uncertainty of UðzÞ ¼ 69 nm

ðk ¼ 2Þ. The value of the measurand then normally lies within the attributed coverage interval
with a probability of ∼95%.

4.2 Uncertainty of the Radius of Curvature

In the next step, a brief Monte Carlo simulation was performed to evaluate the propagation of the
topography uncertainty into the radius of curvature uncertainty.

In Sec. 4, it was assumed that the topography errors between two points of the topography are
integrated over the lateral path between them. Therefore, modeling the topography error simply
as Gaussian noise added to the topography would contradict this assumption. Instead, a random
value from a normal distribution is drawn for each topography point. The random values are
cumulated along the path between the two remotest points. The sum of the previous random
values up to a certain position represents the topography error at this point. This process is equiv-
alent to a one-dimensional Gaussian random walk where the steps are the lateral positions and
the value for a step is the topography error at this position. The peak-to-valley (PV) height of the
random walk is drawn from the normal distribution of the topography uncertainty with uðzÞ ¼
34.1 nm from Sec. 4. One cycle of the Monte Carlo simulation is performed by adding a topog-
raphy error created by the random walk to the ideal topography along the x axis for y ¼ 0 and
determining the best-fit sphere for this profile. Five examples of outcomes of the random walk
can be seen in Fig. 12. All in all, 10,000 repetitions have been performed leading to the
distribution of radii shown in Fig. 13. The lateral resolution of the topography only marginally
influences the uncertainty of the radius of curvature when it is in a reasonable range. This can
be explained by the fact that the course of the random walk is not significantly influenced by
the lateral sampling. The 95% coverage interval for the radius of curvature is given by
½rC − 9 mm; rC þ 9 mm�.

Fig. 12 Five examples of the topography error in the Monte Carlo simulation. The offsets are
irrelevant because they are also fitted while determining the best-fit sphere.

Spichtinger et al.: Traceable stitching interferometry for form measurement of moderately curved freeform. . .

Optical Engineering 094102-12 September 2022 • Vol. 61(9)



5 Comparison with a Scanning Stage with a Chromatic Confocal
Sensor

In this section, the stitching interferometry measurement was compared to a measurement with
a chromatic confocal sensor (Precitec CHRocodile 2 S). The sensor was attached to the x-stage
of the positioning system from Sec. 2.1. It had a measurement range of 300 μm and a working
distance of 4.5 mm. The height resolution was 10 nm and the accuracy 100 nm. To find the center
of the specimen, a scan in the y-direction of the system was performed. The points with the first
and last valid measurement on the edges of the specimen were sought with a resolution of 50 μm.
The mean values of these y-coordinates gave the y-position, where an x-scan passed through
the center of the specimen. The x-scan was performed in steps of 100 μm. At each position,
10 chromatic confocal measurements were averaged. The scan took about 30 min. The resulting
2D profile was filtered with a Gaussian filter with σ ¼ 100 μm to suppress noise. Also, a refer-
ence measurement of a nearly flat surface was subtracted to correct for stage errors. The profile is
shown in Fig. 14.

The tilt was subtracted from the 2D topography, and a sphere was fitted to the data using
nonlinear least squares. The y-coordinate was assumed to be zero. The fit yielded a radius of
curvature of 9.983 m with a standard deviation of 4 mm calculated from the variance of the radius
in the covariance matrix. The Gaussian filter applied earlier changed the radius of curvature by
<1 mm. The residuum after the subtraction of the best-fit sphere (Fig. 15) had an RMS height of
66 nm. The small local maximum at the center of Fig. 10(a) can also be seen, but it is super-
imposed by the remaining height errors of the scanning stage. The straightness of the 1 m x-stage
is specified as 20 μm (peak-to-valley). For the diameter of the specimen, the uncertainty con-
tribution for the guideway (taking into account the reference measurement) is estimated to be
uðhÞ ¼ 100 nm. This may again be converted to an uncertainty of the radius of curvature with a
Monte Carlo simulation using the same method as in Sec. 4.2.

The 95% coverage interval for the radius of curvature is given by ½rC − 27 mm; rC þ
27 mm�. The coverage interval for the radius of curvature measured with the chromatic confocal

Fig. 13 Histogram showing the best-fit radii of curvature for 10,000 different random walks added
to the ideal profile at y ¼ 0.

Fig. 14 The topography of the specimen at y ¼ 0 measured with a chromatic confocal sensor
mounted to a linear stage.
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sensor is larger compared to the one determined for the interferometric measurement in Sec. 4.2
due to the straightness error of the linear stage.

A graphical comparison of the specified and measured values for the curvature can be found
in Fig. 16.

6 Traceability

In this section, we discuss how the result of the stitching interferometry measurement can be
traced back to SI units. A possible traceability chain is shown in Fig. 17. At the moment, not all
components of the setup have been calibrated yet.

The central wavelength of the interferometer laser with the iodine reference cell can be traced
to the wavelength of an unstabilized He–Ne laser using a wavelength meter, for example. The
He–Ne laser’s wavelength at about 633 nm is one possible realization of the meter according to
the recommendation of the Bureau International des Poids et Mesures.24 The reference flat can
be traced back to a three-flat test.25 The linear encoders can be calibrated with a laser interfer-
ometer based on a He–Ne laser as a primary standard as well.

The rotation encoders and the autocollimator can be calibrated with an angle comparator26 at
a national metrology institute. The tiltmeters measuring the angle errors of the x- and y-stage can
be calibrated with the autocollimator. A calibrated thermometer ensures that the temperature is
within the temperature range permitted by the calibration of the system components. Any change
of the refractive index of air due to environmental conditions is neglectable in this case. From
here on, the subtopographies along with their positions and orientations are traceable and yield
the complete topography. The choice of the stitching algorithm also influences the stitched
topography and determines how the uncertainty contributions propagate into the topography.

Fig. 15 The residuum of the topography after a best-fit sphere is subtracted.

Fig. 16 Comparison of the values for the radius of curvature of the spherical specimen. For the
nominal value, the error bar is the specified tolerance range. For the interferometric measurement
and the CMM measurement, the error bars indicate the expanded uncertainty (k ¼ 2).
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7 Measurement of a Car’s Side Window

Here, a measurement of a larger specimen in the form of a car’s side window is presented as an
example (see Fig. 18). The area of the side window is 500 × 230 mm2, of which 500 × 200 mm2

are measured (due to the limited measurement area). Its freeform topography is about 4 mm high,
and the radii of curvature are larger than 2 m. The measurement consists of 3100 subaperture
measurements. The subaperture measurements are stitched according to Eq. (7) minimizing the
mean height differences in the overlapping regions. The standard error of the regression is
SER ¼ 84 nm. The stitched topography is shown in Fig. 19.

As a comparison, the profile marked with a green line in Fig. 18 was measured with a
chromatic confocal sensor on a coordinate measurement machine (CMM). The resulting two-
dimensional profile was fitted to the 3D interferometric topography measurement. Therefore,
the lateral position and the orientation of the profile relative to the interferometrically measured
topography were sought after by minimizing their RMS difference with the Nelder–Mead
method. Due to the different grids of the two measurements, the 3D topography was interpolated
with cubic splines at the points of the profile. Also, the tilt and offset were removed from the
difference before calculating the RMS value. The best matching profiles of the CMM measure-
ment and the interferometric measurement are shown in Fig. 20. The difference of the profiles is
shown in Fig. 21. The RMS difference between the two measurements amounts to 370 nm,
whereas the PV difference amounts to �1 μm.

Fig. 17 One possible traceability chain for the form measurement presented.

Fig. 18 Photo of the specimen that was measured. The orange box roughly marks the area that
was measured. The green line gives the approximate position of a profile, which is later compared
with a CMM measurement.
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The uncertainty budget from Sec. 4 is transferred to this measurement. The specimen is not
rotationally symmetric so the number of subapertures N depends on the profile that is evaluated.
The profile that is compared with the CMM measurement consists of Nprofile ¼ 34 overlaps. For
this large specimen with many subapertures, it is assumed that all uncertainty contributions are
implicitly contained in the uncertainty contribution for the stitching. The uncertainty is given by

uprofileðzÞ ≈ uðPNoverlap

s¼1 ΔzsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Noverlap

p
· SER ≈ 483 nm. The comparison with the chromatic

confocal sensor shows that more than 99.9% of the difference profile lies within the expanded
measurement uncertainty of UðzÞ ¼ 966 nm ðk ¼ 2Þ.

To estimate the uncertainty of the whole topography, the longest edge length of 500 mm is
considered. It consists of Nlongest ¼ 99 overlaps. The uncertainty of the topography is given

by uðzÞ ≈ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Noverlap

p
· SER ≈ 836 nm ðk ¼ 1Þ.

8 Conclusion

The stitching interferometry setup with absolute distance and angle measurements for freeform
surfaces has been successfully tested. A spherical specimen of 50 mm in diameter and 10 m in

Fig. 19 Topography of the car’s side window stitched from 3100 subapertures.

Fig. 20 The profile of the comparison measured with the two different methods.

Fig. 21 Difference of the matched profiles measured with the stitching interferometry and the CMM.
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radius of curvature has been measured as a proof of principle. The interferometric measurement,
the scanning measurement with a chromatic confocal sensor and the manufacturers’ specifica-
tions agree well for the radius of curvature. An uncertainty budget has been set up for the sub-
aperture stitching interferometry measurement. The most important contributions to the
uncertainty budget are the lateral errors due to the stages’ straightness, the angle measurements
and the residuals from the stitching. The interferometry itself is less critical than the mechanical
components of the setup. The radius of curvature determined for the topography is very sensitive
to height errors, as the diameter of the spherical specimen is small compared to the radius of
curvature.

The measurement of the car’s side window showed good agreement with a profile measure-
ment taken using a chromatic confocal sensor with an RMS difference of 370 nm over 170 mm in
length. The topography uncertainty for this specimen is dominated by the residuals from the
stitching. The residuals mainly result from systematic angle and position errors. The accuracy
can be improved by calibrating the rotation encoders with an external high-accuracy angle mea-
surement device. For a larger specimen, the change of the direction of gravity for the tiltmeters
has to be corrected.

PTB is currently developing a new traceable form measurement system for large optics up to
1.5 m in diameter.27 Methods and experiences gained while working on this publication will be
used in the new system.
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