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Abstract. Chirality extends the class of negatively refracting metamaterials by endowing a
richer palette of electromagnetic properties. Chiral metamaterials can support negative refrac-
tion, which must be assessed in light of the closely related phenomenons of negative phase
velocity and counterposition. Two categories of chiral metamaterials are being examined these
days: (a) homogeneous and homogenizable chiral materials, as exemplified by isotropic chi-
ral materials, Faraday chiral materials, and materials with simultaneous mirror-conjugated and
racemic chirality characteristics; and (b) structurally chiral materials, as exemplified by heli-
coidal bianisotropic materials and ambichiral materials. The planewave response of a half-space
occupied by a chiral metamaterial is complex, and important distinctions between negative
refraction, negative phase velocity, and counterposition emerge. C© 2010 Society of Photo-Optical
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1 Introduction

Probably the first engineered composite materials were bronze alloys made by smelting copper
and tin together more than 5000 years ago. Research on mechanical properties of composite
materials has a very rich history, the earliest parts of which are shrouded in the mists of time.
Glass too was perhaps created in the Bronze Age, and colored glasses fabricated by mixing some
particulate material in silica date back to more than two millenniums ago. Systematic research
on optical properties of composite materials began two centuries back, with the publication
of the Arago-Biot formula [1]. Since then, theoretical and experimental research continues
unabated [2–5].

A composite material must have at least two constituent materials. Each constituent material
is chemically inert with respect to the others in its immediate proximity within the composite
material. This restriction excludes molecularly pure materials containing two or more types of
atoms from being classified as composite materials.

Metamaterials are also composite materials, but with a difference. A metamaterial ex-
hibits response characteristics that either (i) are not observed in or (ii) are enhanced relative
to the individual responses of its constituent materials [6]. This characterization of metama-
terials captures the notion originally proposed by Walser who envisaged them as being ar-
tificial materials fabricated by first downscaling macroscopic material architectures to the
submicron and the nanometer length scales and then combining different downscaled archi-
tectures into macroscopic materials that would exceed their conventional counterparts in per-
formance [7]. Possessing a cellular morphology, nanoengineered metamaterials may satisfy
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Fig. 1 Left-handed and right-handed enantiomers of a generic amino acid. (Courtesy of NASA.)

complex multifunctional requirements by a judicious juxtaposition of sufficiently small cells of
different materials, shapes, and sizes [8].

Our focus in this review is on negatively refracting metamaterials. Millions of research dollars
have been spent during the last decade on this topic, following experimental reports of negative
refraction in certain metamaterials under microwave illumination [9,10]. Research activity has
been greatly fuelled by the possibility of fabricating planar lenses with very high resolving
power [11]. Within the past couple of years, metamaterials that exhibit negative refraction
at optical frequencies have been developed [12–15], and current efforts are directed toward
reducing the considerable dissipative losses associated with optical negative refraction [16,17].
Parenthetically, we note that negative refraction is not exclusive to artificial metamaterials:
certain biological structures [18] and naturally occurring minerals [19] also exhibit negative
refraction.

The simplest materials that exhibit negative refraction are isotropic dielectric-magnetic
materials [20], but the scope for exotic behavior such as negative refraction is considerably
increased if chirality is introduced [21–24], especially in combination with anisotropy [25,26]
or nonhomogeneity [27,28]. We confine ourselves in this review to chiral and certain related
metamaterials—that too of the linear, passive kind.

An object is said to be chiral if it cannot be made to coincide with its mirror image by
translations and/or rotations. A remarkable property of chiral materials is that they can discrimi-
nate between left-handed and right-handed electromagnetic waves [29]. In order to achieve this
discrimination, handedness is necessarily intrinsic to chiral materials. Handedness is manifest
in the microstructure of homogeneous and homogenizable chiral materials. For example, an
isotropic chiral material comprises a random dispersion of handed molecules or inclusions [29].
An illustration of handed molecules is provided in Fig. 1. In contrast, handedness is manifest at
the macroscopic level in structurally chiral materials. For example, the molecules of cholesteric
liquid crystals are randomly positioned but macroscopically they exhibit a helicoidal orienta-
tional order [30,31], as represented in Fig. 2. Other examples of structurally chiral materials
can be fabricated either as stacks of uniaxial laminas [32] or using thin-film technology [33].
Remarkably, artificial examples of both types of chiral materials were produced by Bose more
than 11 decades ago [34].

Parenthetically, a third type of “chiral” medium has recently entered scientific literature
[35,36]. Such a material is made by depositing spirals (and similar objects) on some flat surface.
Spirals, being essentially two-dimensional objects, cannot be chiral, and “planar chirality”
[37,38] is an infelicitous term that ought to be replaced by a meaningful term.
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Fig. 2 A representation of a cholesteric liquid crystal (also known as a chiral nematic liquid crystal)
that is structurally chiral. Adjacent liquid crystal molecules are twisted relative to their neighbors.
(Courtesy of Kevin G. Yager, National Institute of Standards and Technology, Gaithersburg, MD,
USA.)

In the following sections, we highlight the propensity of chiral metamaterials—of the ho-
mogeneous and homogenizable type and of the structurally chiral type—to exhibit negative
refraction. Let us remark that, in addition to negative refraction, isotropic [39,40] and bian-
isotropic [41] chiral materials can support the allied phenomenon of negative reflection under
certain conditions.

As regards notational matters: vectors are denoted by boldface with unit vectors being
identified by an additional caret. Sans serif boldface indicates either a 3×3 dyadic or a 4×4
matrix, and the 3×3 identity dyadic is written as I. The real and imaginary parts of complex-
valued quantities are written as Re (·) and Im(·); the superscript ∗ denotes the complex conjugate;
and i = √−1. The permittivity and permeability of free space (i.e., vacuum) are written as ε0

and μ0, respectively, and c0 = 1/
√

ε0μ0. An exp(−iωt) dependence on time is implicit, where
ω is the angular frequency and t is time.

2 Homogeneous and Homogenizable Chiral Materials

2.1 Preliminaries

The characterization of negative refraction by chiral materials is considerably more compli-
cated than of negative refraction by isotropic dielectric-magnetic materials, as more than one
refraction wavevector needs to be considered as well as magnetoelectric coupling and possibly
directionality [42]. Negative phase velocity (NPV) has been widely adopted as a convenient
indicator of negative refraction [43,44]. While NPV and negative refraction go hand-in-hand for
uniform planewave propagation in isotropic dielectric-magnetic materials, this is not generally
true for nonuniform plane waves, especially in anisotropic materials. The possibility of NPV
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propagation in chiral materials was evident some years ago [45], but only nowadays is it being
considered carefully [46–54].

Distinctions that can arise between negative refraction and NPV, as well as the closely related
phenomenon of counterposition, in chiral metamaterials are highlighted in Sec. 2.5. Here we
consider NPV propagation of uniform plane waves in certain well-known chiral materials and
metamaterials.∗

Let us consider electromagnetic field phasors

E(r) = E0 exp(ik k̂ • r)

H(r) = H0 exp(ik k̂ • r)

}
, (1)

with complex-valued wavenumber k and wavevector k = kk̂ (|k̂| = 1), in various types of
homogeneous (or homogenizable) chiral materials. These materials are all included in the most
general linear category of materials, namely bianisotropic materials, which are characterized by
the frequency-domain constitutive relations [55]

D(r) = ε • E(r) + ξ • H(r)

B(r) = ζ • E(r) + μ • H(r)

}
. (2)

Combining Eqs. (1) and (2) with the source-free Maxwell curl postulates leads to the algebraic
equation

L(k) • E(r) = 0, (3)

where the 3×3 dyadic

L(k) = (k × I + ωξ ) • μ−1 • (k × I − ωζ ) + ω2ε. (4)

Solution of the dispersion relation

det [ L(k) ] = 0 (5)

delivers the permissible wavenumbers. Since Eq. (5) represents a quartic polynomial, there are
generally four wavenumbers, but the symmetries of the constitutive dyadics ε, ξ, ζ and μ may
result in the number of independent wavenumbers being less than four.

The phase velocity of the plane wave is classified as negative or positive, depending upon
whether the scalar product Re ( k) • P(r) is negative or positive, where

P(r) = 1

2
Re [E(r) × H∗(r) ] (6)

is the time-averaged Poynting vector. As discussed in Sec. 2.5, the phase velocity can also
be orthogonal to the time-averaged Poynting vector; i.e., Re (k) • P(r) = 0. The ratio of k to
k0 = ω/c0 may be called a refractive index.

2.2 Isotropic Chiral Materials

The simplest chiral materials to consider are the isotropic chiral materials (ICMs). An everyday
example of a homogeneous ICM is represented by an aqueous solution of dextrose at optical
frequencies [56,57]. As another example, consider a random assembly of right-handed springs,
each ∼2 mm long and ∼1 mm in diameter. While this assembly is nonhomogeneous at optical
frequencies, it represents a homogenizable chiral material whose chirality is manifest under

∗In Sec. 2.5 both uniform and nonuniform plane waves are considered.
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Fig. 3 An isotropic chiral material fabricated for microwave applications. Miniature springs are
randomly dispersed in epoxy. (Courtesy of Álvaro Gómez, Universidad de Cantabria, Spain.)

microwave illumination [58–60]. Notice that the latter example represents a chiral metamaterial
whereas the former does not. An illustration of an ICM fabricated for microwave applications
is provided in Fig. 3.

Mathematically, ICMs are described by their frequency-domain constitutive relations [29]

D(r) = εE(r) + iξH(r)

B(r) = −iξE(r) + μH(r)

}
, (7)

where ξ is the chirality parameter. Equation (5) delivers four possible wavenumbers, k =
k

(1)
ICM, k

(2)
ICM, k

(3)
ICM , and k

(4)
ICM , where

k
(1)
ICM = −ω

(√
εμ + ξ

)
k

(2)
ICM = ω

(√
εμ − ξ

)
k

(3)
ICM = −k

(2)
ICM

k
(4)
ICM = −k

(1)
ICM

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (8)
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If the inequalities

Re
(√

εμ + ξ
) × Re

⎛
⎝
√

ε∗

μ∗

⎞
⎠ < 0 for k = k

(1),(4)
ICM

Re
(√

εμ − ξ
) × Re

⎛
⎝
√

ε∗

μ∗

⎞
⎠ < 0 for k = k

(2),(3)
ICM

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9)

are satisfied, then NPV propagation is supported [24]. For a nondissipative isotropic chiral
material (i.e., ε, ξ, μ ∈ R) with k

(1),(2),(3),(4)
ICM ∈ R, the NPV conditions [Eqs. (9)] reduce to

√
εμ < −ξ for k = k

(1),(4)
ICM

√
εμ < ξ for k = k

(2),(3)
ICM

}
. (10)

Thus, we observe that NPV propagation arises only when the magnitude of the chirality
parameter ξ is sufficiently large relative to the magnitude of

√
εμ [24,61]. Furthermore, the

phase velocity can be positive for the plane waves with wavenumbers k
(1),(4)
ICM but negative for

the plane waves with wavenumbers k
(2),(3)
ICM , or vice versa [62]. The boundary between positive

and negative phase velocity is characterized by infinite phase velocity [63].
The NPV conditions in Eqs. (9) and (10) highlight a key difference between ICMs and

isotropic dielectric-magnetic materials. For the latter (which are described by the constitutive
relations in Eq. (7) but with ξ = 0), NPV arises when the inequality

Re (ε)

Im (ε)
+ Re (μ)

Im (μ)
< 0 (11)

is satisfied [44]. For passive isotropic dielectric-magnetic materials, a sufficient set of conditions
for NPV is therefore Re (ε) < 0 and Re (μ) < 0. In practice, Re (ε) < 0 may be achieved
using metallic materials and Re (μ) < 0 may be achieved using a microstructure based on
split-ring resonators (SRRs), but it proves to be tricky to satisfy both of these conditions at
the same frequency [20]. The introduction of chirality enables NPV to achieved without it
being necessary for Eq. (11) (or Re (ε) < 0 and Re (μ) < 0) to be met. Furthermore, relatively
strong chiral effects may be realized provided that the magnitude of

√
εμ is close to zero. A

recent example is represented by the chiral metamaterial developed by Wang et al. [54], which
exhibits a negative refractive index in the gigahertz frequency range. As shown in Fig. 4, their
metamaterial is constructed from SRRs that are arranged on a cubic Bravais lattice. Theoretical
and experimental studies confirm that the real part of the refractive index for one wavenumber
is negative-valued, as illustrated in Fig. 5.

The prospects of |√εμ| being close to zero, and thereby satisfying the conditions for NPV,
may be enhanced through exploiting materials with either |ε| ≈ 0 or |μ| ≈ 0 [64]. Such “epsilon-
near-zero” metamaterials have recently been considered for antenna [65], imaging [66], and
tunneling [67] applications, whereas “mu-near-zero” metamaterials have been considered for
cloaking applications [68]. The canonical case of “epsilon-near-zero” and “mu-near-zero” for
achiral materials is represented by nihility [69], wherein ε = μ = 0. By restricting the notion of
nihility to a particular frequency regime, and incorporating a nonzero chirality parameter ξ , the
notion of chiral nihility emerges [21].

2.3 Faraday Chiral Materials

Suppose we have a random mixture of (i) an isotropic chiral material [29], as described by
the frequency-domain constitutive relations in Eqs. (7), and (ii) either a magnetically biased
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Fig. 4 The chiral metamaterial of Wang et al. [54]. Four split-ring resonators (a) are locked
together to form the unit cell (b); and these unit cells are then arranged on a cubic lattice (c).
(Reprinted with permission from Ref. 54. Copyright 2009 by the American Institute of Physics.)
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Fig. 5 Theoretical and experimental values of refractive indexes for the chiral metamaterial of
Wang et al. [54] at gigahertz frequencies. Here, κ = c0ξ and n = c0

√
εμ, with n± = n ± κ being

the refractive indexes for left- and right-handed waves. According to both theory and experiment,
the real part of the index n+ is negative at 7.7 GHz. (Reprinted with permission from Ref. 54.
Copyright 2009 by the American Institute of Physics.)

plasma [70], as described by the frequency-domain constitutive relations

D(r) = ε gyro • E(r)

B(r) = μ0 H(r)

}
, (12)

or a magnetically-biased ferrite [71], as described by the frequency-domain constitutive relations

D(r) = ε0 E(r)

B(r) = μ gyro • H(r)

}
, (13)
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wherein the 3×3 constitutive dyadics have the gyrotropic form

τ gyro = τ I − iτgû × I + (τu − τ ) ûû, (τ = ε, μ) . (14)

The unit vector û identifies the direction of the biasing magnetic field. The mixture may be
regarded as effectively homogeneous provided that wavelengths are much longer than the non-
homogeneities of the mixture. The resulting homogenized composite material (HCM)—which
is known as a Faraday chiral material—combines natural optical activity, as exhibited by the
isotropic chiral constituent material, with Faraday rotation, as exhibited by the gyrotropic con-
stituent material [72].

Provided that the constituent materials are envisioned as electrically small spherical particles,
the Faraday chiral material is described by the frequency-domain constitutive relations [73]

D(r) = εHCM • E(r) + iξHCM • H(r)

B(r) = −iξHCM • E(r) + μHCM • H(r)

}
, (15)

where the three 3×3 constitutive dyadics have the common form

τHCM = τHCM I − iτHCM
g û × I + (

τHCM
u − τHCM

)
ûû, (τ = ε, ξ, μ) . (16)

More general Faraday chiral materials can arise through the homogenization of composite
materials comprising nonspherical particles [74,75].

The constitutive properties of such HCMs can be estimated using a homogenization formal-
ism. While many different formalisms have been developed [3], the strong-property-fluctuation
theory [76,77] provides the basis for a particularly sophisticated homogenization formalism
that has been developed for isotropic [78] and anisotropic [75] chiral HCMs. As well as the
requirement that the constituent particles of a composite material be electrically small [79,80],
the implementation of homogenization formalisms requires that the particles are numerous and
distributed statistically uniformly throughout the composite material. Therefore, claims of neg-
ative refraction in a chiral metamaterial based on the homogenization of a composite material
containing a single chiral inclusion must be regarded warily [81]. In a similar vein, the notion
of homogenization precludes the possibility of the constituent materials containing resonant
inclusions. Accordingly, claims of a negatively refracting chiral metamaterial arising from the
homogenization of resonant inclusions must be viewed with caution too [82]. At best, one can
obtain the constitutive parameters of an equivalent homogeneous medium that can replicate the
experimental and/or numerical results obtained for a specific source-scatterer-detector configu-
ration [83], but there is no guarantee that those constitutive parameters would be acceptable if
the location of the source, the location of the detector, and/or the shape and size of the scatterer
were to change without alteration of the composite material that the scatterer is made of.

Planewave propagation in Faraday chiral materials is rather more complicated than it is for
isotropic chiral materials, because the effects of directionality come into play. For definiteness,
let us choose the unit vector û = ẑ and consider propagation in the xz plane; i.e.,

k̂ = x̂ sin θ + ẑ cos θ. (17)

Equation (5) then has the form [25]

a4

(
k

ω

)4

+ a3

(
k

ω

)3

+ a2

(
k

ω

)2

+ a1

(
k

ω

)
+ a0 = 0 , (18)

with coefficients

a4 = (ε sin2 θ + εz cos2 θ )(μ sin2 θ + μz cos2 θ ) − (ξ sin2 θ + ξz cos2 θ )2, (19)
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a3 = 2 cos θ
{
sin2 θ [μg(εξz − εzξ ) + εg(μξz − μzξ ) + ξg(μεz + εμz − 2ξξg)]

+ 2 cos2 θξg

(
εzμz − ξ 2

z

)}
, (20)

a2 = sin2 θ
{
μμz

(
ε2
g − ε2

) + (
ξ 2 + ξ 2

g

)
(μεz + εμz) − 2ξ

[
ξz

(
ξ 2
g − ξ 2

) + μgεzξg

]
− 2εg[ξz(μgξ − μξg) + μzξξg] − ε

[
εz

(
μ2 − μ2

g

) + 2ξz(μξ − μgξg)
]}

+ 2 cos2 θ
(
εzμz − ξ 2

z

)(
3ξ 2

g − ξ 2 − εgμg − εμ
)
, (21)

a1 = 4 cos θ
(
εzμz − ξ 2

z

)[
ξ (εgμ + εμg) + ξg

(
ξ 2
g − ξ 2 − εμ − εgμg

)]
, (22)

a0 = (
εzμz − ξ 2

z

)[(
ε2 − ε2

g

)(
μ2 − μ2

g

) + (
ξ 2
g − ξ 2

)2 − 2
(
ξ 2
g + ξ 2

)
(εμ + εgμg)

+ 4ξξg(εμg + μεg)
]
. (23)

Hence, four independent wavenumbers k = k
(1)
FCM, k

(2)
FCM, k

(3)
FCM , and k

(4)
FCM may be extracted

as the roots of Eq. (18). Propagation with NPV is supported provided that the real-valued scalar
WFCM < 0, where

WFCM = Re (k)Re

[
1

μ∗
z

(
k̃∗ sin θ − iξ ∗

z β∗) sin θ

+ 1

(μ∗)2 − (
μ∗

g

)2

(
k̃∗{[μ∗(|α|2 + 1) + iμ∗

g(α − α∗)
]

cos2 θ

+μ∗|β|2 sin2 θ − [μ∗(α∗β + αβ∗) + iμ∗
g(β − β∗)] sin θ cos θ

}
+ (

μ∗ξ ∗
g − μ∗

gξ
∗)[(|α|2 + 1) cos θ − α∗β sin θ ]

− i
(
μ∗ξ ∗ − μ∗

gξ
∗
g

)
[(α − α∗) cos θ − β sin θ ]

)]
(24)

and α and β are defined in terms of entries of L(k) per

α = [ L ]12 [ L ]33 + [ L ]13 [ L ]23

[ L ]13 [ L ]13 − [ L ]11 [ L ]33

β = [ L ]12 [ L ]23 − [ L ]13 [ L ]22

[ L ]13 [ L ]23 + [ L ]12 [ L ]33

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (25)

Matters simplify considerably when propagation is parallel to the z axis (i.e., θ = 0). The
four independent wavenumbers then reduce to

k
(1)
FCM = ω

(√
ε + εg

√
μ + μg − ξ − ξg

)
k

(2)
FCM = ω

(−√
ε + εg

√
μ + μg − ξ − ξg

)
k

(3)
FCM = ω

(√
ε − εg

√
μ − μg + ξ − ξg

)
k

(4)
FCM = ω

(−√
ε − εg

√
μ − μg + ξ − ξg

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(26)

and the NPV parameter WFCM for each wavenumber becomes

WFCM = 2 Re
{√

ε + εg

√
μ + μg − ξ − ξg

}
Re

{ √
ε∗ + ε∗

g√
μ∗ + μ∗

g

}
for k = k

(1)
FCM, (27)
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Fig. 6 The chiral metamaterial of Zhang et al. [84]. The microstructure comprises inductor-
capacitor circuits (a) and (b). These are arranged in a tilted configuration to form the metamaterial
(c) and (d). (Reprinted with permission from Ref. 84. Copyright 2009 by the American Physical
Society.)

WFCM = 2 Re
{√

ε + εg

√
μ + μg + ξ + ξg

}
Re

{ √
ε∗ + ε∗

g√
μ∗ + μ∗

g

}
for k = k

(2)
FCM, (28)

WFCM = 2 Re
{√

ε − εg

√
μ − μg + ξ − ξg

}
Re

{ √
ε∗ − ε∗

g√
μ∗ − μ∗

g

}
for k = k

(3)
FCM, (29)

WFCM = 2 Re
{√

ε − εg

√
μ − μg − ξ + ξg

}
Re

{ √
ε∗ − ε∗

g√
μ∗ − μ∗

g

}
for k = k

(4)
FCM. (30)

Numerical studies on the homogenization of an isotropic chiral material and a magnetically
biased ferrite have revealed that the resulting Faraday chiral material can support NPV propa-
gation provided that the gyrotropic constitutive parameter of the ferrite constituent material is
sufficiently large in magnitude relative to the corresponding magnitudes of nongyrotropic per-
meability parameters [25]. In particular, Faraday chiral materials can support NPV propagation
when their constituent materials do not.

A chiral metamaterial with constitutive relations very similar to those of the Faraday chiral
material (15) has been developed recently by Zhang et al. [84]. As represented in Fig. 6, their
metamaterial comprises metallic chiral resonators in which the loop of the resonator is tilted
with respect to a reference plane. This metamaterial exhibits a negative-real refractive index
for one wavenumber at frequencies between 1.06 and 1.27 THz, as shown in Fig. 7, despite the
magnetic permeability having a positive real part over this frequency range.
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Fig. 7 Experimental values of refractive indexes (nL for left-handed waves and nR for right-handed
waves) for the chiral metamaterial of Zhang et al. [84], plotted against frequency (in terahertz).
Also plotted are the dielectric, magnetic, and magnetoelectric constitutive parameters ε, μ, and
ξ respectively. Real parts are in black and imaginary parts are in gray. The real part of the index
nL is negative between 1.06 and 1.27 THz. (Reprinted with permission from Ref. 84. Copyright
2009 by the American Physical Society.)

2.4 Materials with Simultaneous Mirror-Conjugated and Racemic Chirality
Characteristics

Let us next consider an isotropic chiral material described by the constitutive relations in Eq. (7).
The mirror conjugate material is also an isotropic chiral material, described by the constitutive
relations in Eq. (7) but with the chirality parameter ξ replaced by −ξ . When an isotropic chiral
material and its mirror conjugate are mixed together in a random fashion, in equal proportions
(and provided that no chemical reactions or molecular conformational changes occur), the
resulting racemic mixture is an isotropic dielectric-magnetic material; i.e., it is achiral. However,
an isotropic chiral material and its mirror conjugate can be mixed together in equal proportions
and yet retain chirality, thereby producing a material with simultaneous mirror-conjugated and
racemic chirality (SMCRC) characteristics. This can be achieved by fixing the orientations of the
chiral elements that make up the constituents of the mixture. For example, an artificial SMCRC
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material may be conceptualized as a mixture of equal proportions of left-handed springs aligned
along the x axis and right-handed springs along the y axis; and left- as well as right-handed
springs in equal proportions aligned along the z axis [85]; all springs are electrically small. Also,
certain naturally occurring minerals exhibit SMCRC below their Néel temperatures [86,87].

The 3×3 constitutive dyadics of an SMCRC material may be expressed as

ε = ε1(x̂x̂ + ŷŷ) + ε3ẑẑ

ξ = ξ (x̂x̂ − ŷŷ)

ζ = −ξ

μ = u1(x̂x̂ + ŷŷ) + μ3ẑẑ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (31)

Equation (5) yields the four wavenumbers k = k
(1)
SMCRC , k

(2)
SMCRC , k

(3)
SMCRC , and k

(4)
SMCRC .

However, since SMCRC materials are Lorentz-reciprocal [88], there are only two independent
wavenumbers, at most. For propagation in an arbitrary direction given by

k̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ, (32)

the wavenumbers are [85]

k
(1)
SMCRC = ω

√
b3 (b1 − b2)

k
(2)
SMCRC = −k

(1)
SMCRC

k
(3)
SMCRC = ω

√
b3 (b1 + b2)

k
(4)
SMCRC = −k

(3)
SMCRC

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (33)

wherein the scalars

b1 = 2εzμz cos2 θ + (εzμ + εμz) sin2 θ

b2 = sin2 θ

√
(εzμ − εμz)

2 − 4εzμzξ 2 cos2 2φ

b3 = 1

2
(εμ + ξ 2)

[
(ε sin2 θ + εz cos2 θ )(μ sin2 θ + μz cos2 θ ) + ξ 2 sin4 θ cos2 2φ

]−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(34)

are introduced. Propagation of plane waves with NPV is supported provided that the real-valued
scalar WSMCRC < 0, where [26]

WSMCRC = Re (k)

(
1

ω

{
(|α|2 + |β|2) cos2 θ + sin2 θ

− [(α + α∗) cos φ + (β + β∗) sin φ] sin θ cos θ
}

× Re

(
k∗

μ∗
1

)
+ 1

ω
(α sin φ − β cos φ)(α∗ sin φ − β∗ cos φ) sin2 θRe

(
k∗

μ∗
3

)

+ sin θRe

[
(α∗ sin φ + β∗ cos φ)

ξ ∗

μ∗
1

]
− (αβ∗ + α∗β) cos θRe

(
ξ ∗

μ∗
1

))
, (35)

and the scalars α and β are defined as in Eqs. (25).
For planewave propagation along the racemic axis (i.e., k̂ = ẑ), only one independent

wavenumber, namely

k
(1)
SMCRC = −k

(2)
SMCRC = k

(3)
SMCRC = −k

(4)
SMCRC = ω

√
ε1μ1 + ξ 2, (36)
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emerges from Eq. (5). The corresponding NPV parameter WSMCRC simplifies as

WSMCRC =
(∣∣∣∣αβ

∣∣∣∣
2

+ 1

)
Re

⎡
⎢⎣
(√

ε1μ1 + ξ 2
)∗

μ∗
1

⎤
⎥⎦

− 2Re

(
α

β

)
Re

(
ξ ∗

μ∗
1

)
Re

(√
ε1μ1 + ξ 2

)
for k = k

(1),(3)
SMCRC, (37)

WSMCRC =
(∣∣∣∣αβ

∣∣∣∣
2

+ 1

)
Re

⎡
⎢⎣
(√

ε1μ1 + ξ 2
)∗

μ∗
1

⎤
⎥⎦

+ 2Re

(
α

β

)
Re

(
ξ ∗

μ∗
1

)
Re

(√
ε1μ1 + ξ 2

)
for k = k

(2),(4)
SMCRC. (38)

Numerical studies indicate that NPV arises as long as that the magnitude of the magneto-
electric constitutive parameter ξ is sufficiently large compared with the magnitudes of dielectric
and magnetic constitutive parameters [26]. In addition, the directions of NPV propagation are
influenced little by |ξ |. Furthermore, the incorporation of dielectric and magnetic constitutive
parameters with negative-real parts enhances the propensity for NPV propagation.

2.5 Counterposition, Negative Phase Velocity, and Negative Refraction

While NPV may be a useful indicator of the propensity for negative refraction by certain
homogeneous materials, NPV can arise in the absence of negative refraction (and vice versa) in
certain anisotropic [89] and bianisotropic [90] materials and metamaterials. Furthermore, from a
practical point of view, the direction of energy flow, as provided by the time-averaged Poynting
vector, may be more pertinent than the direction of the wavevector. Therefore, in the context
of NPV and negative refraction, the phenomenon of counterposition should be considered too.
This arises at a planar interface when the refraction wavevector and its associated time-averaged
Poynting vector are oriented on opposite sides of the normal to the interface, as has been
described for certain crystals [91,92].

In order to explore the relationships between counterposition, NPV and negative refraction,
let us focus on the Lorentz-reciprocal [88] bianisotropic material—known as a pseudochiral
omega material [93]—described by the constitutive dyadics [94]

ε = εx x̂x̂ + εy ŷŷ + εzẑẑ

ξ = −iξ ẑŷ

ζ = iξ ŷẑ

μ = μx x̂x̂ + μy ŷŷ + μzẑẑ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (39)

These particular constitutive dyadics are used to describe a metamaterial assembled from layers
of split-ring resonators [98], this being a commonplace configuration for metamaterials [99,100].
As well as NPV, such magnetoelectric metamaterials may support other exotic electromagnetic
phenomenons, for example, longitudinal polarization [101].

Suppose that a metamaterial described by Eqs. (39) fills the half-space z > 0, while the
half-space z < 0 is vacuous. The wave vectors of the incident, the reflected, and the refracted
plane waves lie wholly in the xz plane. The wavevectors for the two refracted plane waves that
exist in the half-space z > 0 may be expressed as

k(j ) = κ x̂ + kzj ẑ, (j = 1, 2), (40)
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Fig. 8 (a) Real part of kzj/k0 and (b) the angle (in degrees) between the real part of k(j) and
the positive z axis, both plotted against κ/k0. The solid curves correspond to the plane wave
labeled j = 1, and the dashed curves to the plane wave labeled j = 2. Note that Im(kzj ) > 0 for
all κ/k0 ∈ [0, 1), for both values of j. See Sec. 2.5 for other details.

where the real-valued

κ = k0 sin θ ∈ [0, k0) , (41)

with the free-space wavenumber k0 = ω
√

ε0μ0. The wavevector components kzj are delivered
from Eq. (5) as follows:

kz1 = k0

√
μx

(
εy − κ2

μzk
2
0

)

kz2 = k0

√
εx

εz

[(
εzμy − ξ 2

) − κ2

k2
0

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (42)

Herein, the square roots must be evaluated such that both refracted plane waves transport energy
away from the interface z = 0 in the half-space z > 0. Since kzj ∈ C in general, the refracted
plane waves may be nonuniform. The time-averaged Poynting vector corresponding to the plane
wave labeled as j is written as Pj .

Confusingly, the term negative refraction has been used to mean different things. The sense
of refraction is determined solely by the relative orientations of the real parts of the refraction
and incidence wavevectors, in keeping with Snel’s law, which emanates from the principle of
conservation of linear momentum. Thus, negative refraction arises whenever the real part of
kz1 (or kz2) is negative. In contrast, negative refraction was also set up [89] as the negative
“refraction of the energy flux density,” but it amounts to a negative-deflection phenomenon that
can occur whether refraction is positive or negative and is easily appreciated as such when the
incident plane wave is replaced by a beam (of finite width). Similar comments apply to certain
later works too [95–97].

In order to illustrate the distinctions between counterposition, NPV, and negative refraction,
let us investigate a specific example in which the constitutive parameters for the bianisotropic
material occupying the half-space z > 0 are: εx = 0.1 + 0.03i, εy = 0.14 + 0.02i, εz = 0.13 +
0.07i; μx = −0.2 + 0.2i, μy = −0.22 + 0.03i, μz = −0.27 + 0.6i; and ξ = 0.21 + 0.05i.

This is a dissipative material.
The real part of kzj /k0, (j = 1, 2), is plotted as a function of (κ/k0) ∈ [0, 1) in Fig. 8. Also

presented in Fig. 8 are plots of the angle between the real part of k(j ), (j = 1, 2), and the positive
z axis. We see that the refracted plane wave labeled 1 is positively refracted for 0 < (κ/k0) <

0.4 but negatively refracted for 0.4 < (κ/k0) < 1; also, the refracted plane wave labeled 2
is negatively refracted for 0 < (κ/k0) < 0.29 but positively refracted for 0.29 < (κ/k0) < 1.
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Fig. 9 (a) The x component of the normalized time-averaged Poynting vector and (b) the angle (in
degrees) between the time-averaged Poynting vector and the positive z axis, both plotted against
κ/k0. The solid curves correspond to the plane wave labeled j = 1, and the dashed curves to
the plane wave labeled j = 2. Note that ẑ • P > 0 for all κ/k0 ∈ [0, 1), for both plane waves. See
Sec. 2.5 for other details.
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Fig. 10 The quantity Re (k(j)) • Pj/(k0|Pj |) plotted against (κ/k0) ∈ [0, 1). The solid curve corre-
sponds to the plane wave labeled j = 1, and the dashed curve to the plane wave labeled j = 2.
See Sec. 2.5 for other details.

Since the imaginary parts of both kz1 and kz2 are positive, both refracted plane waves attenuate
as z → ∞.

In Fig. 9, the normalized x component of the time-averaged Poynting vectors for both
refracted plane waves are plotted against (κ/k0). Also plotted is the angle between Pj and
the positive z axis, for both refracted plane waves. The x component of P1 is negative for all
(κ/k0) ∈ [0, 1), but the x component of P2 is negative only for (κ/k0) ∈ [0, 0.06). That is, P1

always subtends a negative angle to the positive z axis while the sign of the angle that P2

subtends depends on κ . The z components of Pj for both refracted plane waves are positive for
all (κ/k0) ∈ [0, 1), as is required by the choice of square roots in Eq. (42).

When the inequality

Re(kzj )x̂ • Pj < 0 (43)

is satisfied, counterposition occurs [92]. From Figs. 8 and 9, it may be inferred that counterpo-
sition occurs for the refracted plane wave labeled 1 when 0 < (κ/k0) < 0.4. Hence, the κ-range
for positive refraction is the same as that for counterposition for the planewave labeled 1. This
contrasts with the situation for the plane wave labeled 2 where counterposition arises only for
0.06 < (κ/k0) < 0.29.

The sign of the phase velocity for the plane wave labeled j is determined the quantity
Re (k(j )) • Pj , which is plotted against (κ/k0) ∈ [0, 1) in Fig. 10. The refracted plane wave
labeled 1 has NPV for 0.18 < (κ/k0) < 1, whereas NPV is exhibited by the refracted plane
wave labeled 2 for 0 < (κ/k0) < 0.08. Notice that the κ–ranges for NPV and negative refraction
do not coincide. Take, for example, κ = 0.2k0: (i) The angle between Re (k(1)) and the +z axis
is 79 deg and the angle between P1 and the +z axis is −15 deg. Thus, here the plane wave is
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Table 1 Values of κ for which negative/positive refraction, counterposition, and nega-
tive/positive/orthogonal phase velocity occur for the plane wave labeled 1. The right-most column
shows the directions in the half-space z > 0 of Re(k(1)) (thick dashed arrows) and P1 (thick solid
arrows) for representative values of κ; also shown are the directions of the wavevectors for the
incident and reflected plane waves in the half-space z < 0 (thin solid arrows).

(κ/k 0) ∈ Refraction Counter-position Phase velocity P1, Re(k(1))

(0, 0.18) +ve yes +ve

{0.18} +ve yes orthogonal

(0.18, 0.4) +ve yes −ve

(0.4, 1) −ve no −ve

positively refracted but it has NPV. (ii) The angle between Re (k(2)) and the +z axis is −87 deg
and the angle between P2 and the +z axis is 50 deg. This plane wave is negatively refracted
despite having positive phase velocity.

Exceptionally, the phase velocity can be neither positive nor negative. At κ = 0.18k0, the
phase velocity vector and the time-averaged Poynting vector are orthogonal for the plane wave
labeled 1. Orthogonal phase velocity occurs for the plane wave labeled 2 at κ = 0.08k0.

The foregoing results are summarized in Tables 1 and 2 for the plane waves labeled 1
and 2, respectively. Included in these tables are illustrations of the directions of Re (k(j )) and
Pj (j = 1, 2), for representative values of κ . This numerical example illustrates the complexity
that can arise at the planar boundary of a chiral metamaterial—indeed, the independence of
negative refraction and NPV can even arise for isotropic dielectric materials if nonuniform
plane waves are taken into consideration [90].
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Table 2 As Table 1 but for the plane wave labeled 2.

(κ/k 0) ∈ Refraction Counter-position Phase velocity P2, Re(k(2))

(0, 0.06) −ve no −ve

(0.06, 0.08) −ve yes −ve

{0.08} −ve yes orthogonal

(0.08, 0.29) −ve yes +ve

(0.29, 1) +ve no +ve
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3 Structurally Chiral Materials

3.1 Preliminaries

In contrast to the materials considered in Sec. 2, structurally chiral materials owe their chirality
to the handedness of their morphology at macroscopic length scales (i.e., at length scales
comparable to the wavelength). A very general class of structurally chiral materials is represented
by helicoidal bianisotropic materials (HBMs). These include chiral nematic and chiral smectic
liquid crystals as well as sculptured thin films. The nonhomogeneity of HBMs—which gives rise
to their chirality—is spatially continuous at macroscopic length scales. Another technologically
important type of structurally chiral material is represented by ambichiral materials. These are
piecewise homogeneous in a certain direction [32]. The propensity of both HBMs and ambichiral
materials to support negative refraction is reviewed in the following sections.

3.2 Helicoidal Bianisotropic Materials

The frequency-domain constitutive relations [102]

D(r) = εHBM (z) • E(r) + ξHBM (z) • H(r)

B(r) = ζHBM (z) • E(r) + μHBM (z) • H(r)

}
(44)

describe a HBM with the z axis being the helicoidal axis. The four 3×3 nonhomogeneous
constitutive dyadics herein have the general form

βHBM (z) =

⎛
⎜⎜⎝

β11(z) β12(z) β13(z)

β21(z) β22(z) β23(z)

β31(z) β32(z) β33(z)

⎞
⎟⎟⎠ , (β = ε, ξ, ζ, μ), (45)

and may be expressed as

βHBM (z) = S(z) • βHBM (0) • S−1(z), (β = ε, ξ, ζ, μ). (46)

The helicoidal architecture is specified by the rotation dyadic

S(z) =

⎛
⎜⎜⎜⎜⎝

cos
(πz



)
−h sin

(πz



)
0

h sin
(πz



)
cos

(πz



)
0

0 0 1

⎞
⎟⎟⎟⎟⎠ , (47)

with  being the half-period. The HBM is structurally right-handed if h = 1, left-handed if
h = −1, and structurally achiral if h = 0.

A host of structurally chiral materials are encompassed by the constitutive Eqs. (44). The
chirality may be purely dielectric, in which case ξHBM = ζHBM = 0 and μHBM = μ0I. This
subcategory includes chiral nematic liquid crystals (wherein εHBM has a uniaxial form), chiral
smectic liquid crystals (wherein εHBM has a biaxial form) [30,31]; and their solid-state coun-
terparts called chiral sculptured thin films [33]. Illustrations of organic and inorganic chiral
sculptured thin films, both fabricated by vapor deposition techniques, are provided in Fig. 11.
The chirality may also be purely magnetic, in which case ξHBM = ζHBM = 0 and εHBM = ε0I.
Fully bianisotropic chirality may be achieved through infiltrating a chiral sculptured thin film
with an isotropic chiral fluid [104,105].

Most notably, HBMs can discriminate between left- and right-circularly polarized light. Let
us consider a plane wave normally incident on a slab of an HBM that has its helicoidal axis
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Fig. 11 Scanning electron microscope images of chiral sculptured thin films made from silicon
oxide (top, Courtesy of Mark W. Horn, Pennsylvania State University) and parylene [103] (bottom).

aligned with the direction of slab thickness. Within a certain wavelength regime, the incident
light may be almost entirely reflected if the structural handedness of the HBM coincides with
the handedness of the incident light. Conversely, if the two handednesses are opposite then the
incident light will undergo almost no reflection. This circular Bragg phenomenon underpins
many actual and potential technological applications of HBMs [33].

The propagation of plane waves in HBMs has been comprehensively analyzed [102,106].
Combining the constitutive Eqs. (44) with the source-free Maxwell curl postulates yields the
system of partial differential equations

∇ × E(r) = iω [ζHBM (z) • E(r) + μHBM (z) • H(r)]

∇ × H(r) = −iω [εHBM (z) • E(r) + ξHBM (z) • H(r)]

}
. (48)

Upon implementing the Oseen transformation [109]

E′(r) = S−1(z) • E(r)

H′(r) = S−1(z) • H(r)

}
, (49)
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and introducing the planewave representations

E′(r) = E′
0(z) exp (iκHBMx)

H′(r) = H′
0(z) exp (iκHBMx)

}
, (50)

wherein κHBM may be interpreted as a wavenumber in the xy plane, Eqs. (48) generally reduce
to the 4×4 matrix differential equation

∂

∂z
F′

0(z) = M′(z) • F′
0(z). (51)

Herein, the column 4-vector

F′
0(z) =

⎡
⎢⎢⎢⎢⎢⎣

x̂ • E′
0(z)

ŷ • E′
0(z)

x̂ • H′
0(z)

ŷ • H′
0(z)

⎤
⎥⎥⎥⎥⎥⎦ , (52)

and the 4×4 matrix function M′(z) may be formally expressed as

M′(z) = A′ + κHBM

[
C′

1,1 exp

(
iπz



)
+ C′

1,−1 exp

(
− iπz



)]

+ κ2
HBM

[
C′

2,2 exp

(
i2πz



)
+ C′

2,0 + C′
2,−2 exp

(
− i2πz



)]
, (53)

with the 4 × 4 matrixes A′, C′
1,±1, C′

2,0, and C′
2,±2 being independent of z and κHBM but

not of the half-period  and the handedness parameter h. Explicit representations of M′(z, ω)
are straightforwardly derived but cumbersome; the reader is referred elsewhere for further
details [33].

In the case of axial propagation (i.e., κHBM = 0), the solution to Eq. (51) is conveniently
expressed in closed form as [102]

F′
0(z) = exp(iA′z)F′

0(0). (54)

The nonaxial propagation case (i.e., κHBM �= 0) is considerably more complicated to handle.
However, Eq. (53) can be exploited to derive a solution to Eq. (51) in terms of a power series
in z [106]. As an alternative, a piecewise uniform approximation may also be implemented
[107,108].

The propensity of HBMs to exhibit characteristics related to negative refraction has been
explored for the particular cases of chiral ferronematic materials (which are characterized
by the constitutive relations in Eq. (44) with εHBM and μHBM having uniaxial forms, and
the magnetoelectric dyadics ξHBM and ζHBM being null valued) [27] and chiral ferrosmectic
materials (which are characterized by the constitutive Eqs. (44) with εHBM and μHBM having
biaxial forms, and the magnetoelectric dyadics ξHBM and ζHBM being null valued) [28]. In both
instances, it was observed that the structural handedness of the materials is effectively reversed
when the real parts of the permittivity and permeability parameters are changed from positive
to negative. That is, a structurally right/left-handed HBM with negative real permittivity and
permeability parameters exhibits the circular Bragg phenomenon as though it were a structurally
left/right-handed HBM with positive real permittivity and permeability parameters. Furthermore,
when the real parts of the permittivity and permeability parameters are changed from positive
to negative, the reflection and transmission coefficients undergo a phase reversal that can result
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Fig. 12 The ambichiral metamaterial of Plum et al. [117]. The structure is based on layers of
metallic rosettes. The rosettes in consecutive layers have a relative twist of 15 deg. (Reprinted
with permission from Ref. 117. Copyright 2009 by the American Physical Society.)

in negative Goos–Hänchen shifts [28]. Such negative Goos–Hänchen shifts are a characteristic
of materials that support NPV [110–113].

3.3 Ambichirality

Imagine a uniaxial crystalline sheet whose distinguished axis is oriented normal to the sheet’s
thickness direction. Now consider stack of such sheets with the angle between the distinguished
axes of each pair of neighbouring sheets being π/q, q = 2, 3, . . . . For q > 2 this stack represents
an ambichiral material, as originally conceived by Reusch [32] and later analyzed by Joly and
Billard [114]. As is true for HBMs (which may be viewed as the limiting case q → ∞),
ambichiral materials can exhibit different Bragg resonances for different circular polarization
states.† However, if the dielectric and magnetic dyadics of the underlying constituent materials
are indefinite, the corresponding ambichiral material loses its ability to discriminate between
different circular polarization states, provided that the number of constituent sheets is sufficiently
large. This property—which arises because two of the four planewave components in each sheet
are of the NPV type and two are of the positive-phase-velocity type—enables such an ambichiral
material to function as a polarization-universal rejection filter [116].

The ambichiral architecture essentially underpins a recent report by Plum et al. [117] of a
negatively refracting metamaterial, based on a stack of sheets each containing metallic rosettes
with every sheet rotated about the normal axis with respect to the previous sheet in the stack by
an angle less that 90 deg. An illustration is provided in Fig. 12. A similarly stacked chiral meta-
material that supports negative refraction, with a cross-wire microstructure, has been described
by Zhou et al. [118].

4 Closing Remarks

The interaction of light with chiral metamaterials presents promising opportunities. In this
review we have highlighted the propensity of these metamaterials to support negative refraction
and closely related phenomenons. However, these opportunities come at a price: there are also
formidable challenges, both experimental and theoretical, associated with chiral metamaterials.
As we highlight in Sec. 2.5, the characterization of the complex behavior exhibited by these
metamaterials requires careful treatment. In particular, optical properties cannot be characterized

†The q = 2 case—which corresponds to an equichiral material—is of little technological interest as such materials
exhibit the same Bragg resonances for both circular polarization states [115].
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Fig. 13 Two of the eight sculptures from the permanent installation The Matter of Time by Richard
Serra at the Guggenheim Museum Bilbao. The sculpture on the left may remind the reader of a
Swiss roll, the one on the right of a double split-ring resonator, both structures commonplace in
the literature on negatively refracting metamaterials. Were the metal sheets in both sculptures
strictly vertical, both would be achiral.

by a simple scalar refractive index that refers only to one mode of propagation, along one
direction only. Instead, multiple wavevectors, which may be directionally dependent, need to be
considered. The comprehensive characterization of optical properties may involve significant
distinctions still being made between counterposition, NPV, and negative refraction.

A perusal of ongoing experimental research on optical (frequency � 500 THz) metama-
terials shows that standard micro- and nano-fabrication techniques are being used to make
them [12–15,100,119–122]. Metamaterials for operation at frequencies exceeding 500 THz
would have to be engineered on the nanoscale [15,119]. Remarkable optical effects can be
expected from nanoengineered metamaterials, as nanotechnology for optics is a play of phase,
length, and time [123]. As quantum-confinement effects will also emerge at higher frequen-
cies [124], a strict scaling down of classical electromagnetics [125] may not suffice for designing
both metamaterials and metamaterial-based devices. The associated difficulties are likely to be
accentuated for asymmetric morphology at the nanoscale and, thus, for chiral metamaterials. To
compensate, we must note that nanofabrication methods [126–128] are suited well to produce
assemblies of different kinds of electrically small cells for multifunctional performance at the
macroscopic scale.

While metamaterials (chiral or otherwise) have much to offer, after the past nine years or
more of intensive research there still remains a wide gulf between the research frontier and
practical applications [129]. One major issue to be tackled is the dissipation of electromag-
netic energy in a material of reasonable thickness. Either pre-amplification or the incorpora-
tion of gain materials appears necessary, though we must note that the energy budget may
then turn out to be economically impractical. Another major issue is the rapid variation of
constitutive parameters with frequency in the frequency regimes of interest. This large disper-
sion could significantly distort pulse-modulated waves. Ingenuity and perseverance—perhaps,
along with serendipity—are needed to find economically viable metamaterials that refract
negatively.
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Ågren, “A metal-wire/quantum-dot composite metamaterial with negative ε and com-
pensated optical loss,” Appl. Phys. Lett. 93, 193106 (2008).

[18] D. G. Stavenga, “Invertebrate superposition eyes—structures that behave like meta-
material with negative refractive index,” J. Eur. Opt. Soc. Rapid Pub. 1, 06010
(2006).

[19] A. Pimenov, A. Loidl, K. Gehrke, V. Moshnyaga, and K. Samwer, “Negative refraction
observed in a metallic ferromagnet in the gigahertz frequency range,” Phys. Rev. Lett. 98,
197401 (2007).

[20] S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys.
68, 449–521 (2005).

[21] S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, “Waves and energy
in chiral nihility,” J. Electromag. Waves Applics. 17, 695–706 (2003).

[22] J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[23] C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized

waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).

SPIE Reviews 018003-23 Vol. 1, 2010

http://dx.doi.org/10.1021/cm960441a
http://dx.doi.org/10.1088/0022-3727/39/7/S02
http://dx.doi.org/10.1364/OPN.18.1.000032
http://dx.doi.org/10.1103/PhysRevLett.84.4184
http://dx.doi.org/10.1126/science.1058847
http://dx.doi.org/10.1080/00107510410001667434
http://dx.doi.org/10.1364/OL.32.000053
http://dx.doi.org/10.1038/nphoton.2006.49
http://dx.doi.org/10.1126/science.1157566
http://dx.doi.org/10.1364/OE.17.007784
http://dx.doi.org/10.1117/1.3073670
http://dx.doi.org/10.1063/1.3013331
http://dx.doi.org/10.1103/PhysRevLett.98.197401
http://dx.doi.org/10.1088/0034-4885/68/2/R06
http://dx.doi.org/10.1163/156939303322226356
http://dx.doi.org/10.1126/science.1104467
http://dx.doi.org/10.1103/PhysRevLett.95.123904


Mackay and Lakhtakia: Negatively refracting chiral metamaterials . . .

[24] T. G. Mackay, “Plane waves with negative phase velocity in isotropic chiral mediums,”
Microw. Opt. Technol. Lett. 45, 120–121 (2005). Corrections 47, 406 (2005).

[25] T. G. Mackay and A. Lakhtakia, “Plane wave with negative phase velocity in Faraday
chiral mediums,” Phys. Rev. E 69, 026602 (2004).

[26] T. G. Mackay and A. Lakhtakia, “Negative phase velocity in a material with simultaneous
mirror-conjugated and racemic chirality characteristics,” New J. Phys. 7, 65 (2005).

[27] A. Lakhtakia, “Reversal of circular Bragg phenomenon in ferrocholesteric materials with
negative real permittivities and permeabilities,” Adv. Mater. 14, 447–449 (2002).

[28] A. Lakhtakia, “Handedness reversal of circular Bragg phenomenon due to negative real
permittivity and permeability,” Opt. Exp. 11, 716–722 (2003).

[29] A. Lakhtakia, Beltrami Fields in Chiral Media, World Scientific, Singapore (1994).
[30] S. Chandrasekhar, Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge,

UK (1992).
[31] P. G. de Gennes and J. A. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press,

Oxford, UK (1993).
[32] E. Reusch, “Untersuchung über Glimmercombinationen,” Ann. Phys. Chem. Lpz. 138,

628–638 (1869).
[33] A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and

Optics, SPIE Press, Bellingham, WA, USA (2005).
[34] J. C. Bose, “On the rotation of plane of polarisation of electric waves by a twisted struc-

ture,” Proc. R. Soc. Lond. 63, 146–152 (1898). A facsimile reproduction is available in:
O. N. Singh and A. Lakhtakia, Eds., Electromagnetic Fields in Unconventional Materials
and Structures, Wiley, New York, NY, USA (2000).

[35] T. Ohno and S. Miyanishi, “Study of surface plasmon chirality induced by Archimedes’
spiral grooves,” Opt. Exp 14, 6285–6290 (2006).

[36] K. Jefimovs, N. Saito, Yu. Ino, T. Vallius, P. Vahimaa, J. Turunen, R. Shimano, M. Kau-
ranen, Yu. Svirko, and M. Kuwata-Gonokami, “Optical activity in chiral gold nanograt-
ings,” Microelectron. Eng. 78–79, 448–451 (2005).

[37] S. Takahashi, A. Potts, D. Bagnall, N. I. Zheludev, and A. V. Zayats, “Near-field
polarization conversion in planar chiral nanostructures,” Opt. Commun. 255, 91–96
(2005).

[38] M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar
chiral magnetic metamaterials,” Opt. Lett. 32, 856–858 (2007).

[39] C. Zhang and T. J. Cui, “Negative reflections of electromagnetic waves in strong chiral
medium,” Appl. Phys. Lett. 91, 194101 (2007).

[40] M. Faryad and Q. A. Naqvi, “Cylindrical reflector in chiral medium supporting simultane-
ously positive phase velocity and negative phase velocity,” J. Electromag. Waves Applics.
22, 563–572 (2008).

[41] T. G. Mackay and A. Lakhtakia, “Negative reflection in a Faraday chiral medium,”
Microw. Opt. Technol. Lett. 50, 1368–1371 (2008).

[42] T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and
counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79, 235121
(2009).

[43] M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction
demystified,” Eur. J. Phys. 23, 353–359 (2002).

[44] R. A. Depine and A. Lakhtakia, “A new condition to identify isotropic dielectric-magnetic
materials displaying negative phase velocity,” Microw. Opt. Technol. Lett. 41, 315–316
(2004).

[45] A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “A parametric study
of microwave reflection characteristics of a planar achiral-chiral interface,”
IEEE Trans. Electromag. Compat. 28, 90–95 (1986).

[46] P. P. Banerjee and M. R. Chatterjee, “Negative index in the presence of chirality and
material dispersion,” J. Opt. Soc. Am. B 26, 194–202 (2009).

SPIE Reviews 018003-24 Vol. 1, 2010

http://dx.doi.org/10.1002/mop.20742
http://dx.doi.org/10.1103/PhysRevE.69.026602
http://dx.doi.org/10.1088/1367-2630/7/1/065
http://dx.doi.org/10.1364/OE.11.000716
http://dx.doi.org/10.1098/rspl.1898.0019
http://dx.doi.org/10.1364/OE.14.006285
http://dx.doi.org/10.1016/j.mee.2004.12.057
http://dx.doi.org/10.1016/j.optcom.2005.06.001
http://dx.doi.org/10.1364/OL.32.000856
http://dx.doi.org/10.1063/1.2804124
http://dx.doi.org/10.1163/156939308784150344
http://dx.doi.org/10.1002/mop.23373
http://dx.doi.org/10.1103/PhysRevB.79.235121
http://dx.doi.org/10.1088/0143-0807/23/3/314
http://dx.doi.org/10.1002/mop.20127
http://dx.doi.org/10.1109/TEMC.1986.4307254
http://dx.doi.org/10.1364/JOSAB.26.000194


Mackay and Lakhtakia: Negatively refracting chiral metamaterials . . .

[47] A. Baev, M. Samoc, P. N. Prasad, M. Krykunov, and J. Autschbach, “A quantum chemical
approach to the design of chiral negative index materials,” Opt. Exp. 15, 5730–5741
(2007).

[48] C. Zhang and T. J. Cui, “Chiral planar waveguide for guiding single-mode backward
wave,” Opt. Commun. 280, 359–363 (2007).

[49] C.-W. Qiu, N. Burokur, S. Zouhdi, and L.-W. Li, “Chiral nihility effects on energy flow
in chiral materials,” J. Opt. Soc. Am. A 25, 55–63 (2008).

[50] C. Sabah, “Left-handed chiral metamaterials,” Central Eur. J. Phys. 6, 872–878 (2008).
[51] D.-H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Material parameter

retrieval procedure for general bi-isotropic metamaterials and its application to optical
chiral negative-index metamaterial design,” Opt. Exp. 16, 11822–11829 (2008).

[52] K. Matra and N. Wongkasem, “Left–handed chiral isotropic metamaterials: analysis and
detailed numerical study,” J. Opt. A: Pure Appl. Opt. 11, 074011 (2009).

[53] Q. A. Naqvi, “Fractional dual solutions to the Maxwell equations in chiral nihility
medium,” Opt. Commun. 282, 2016–2018 (2009).

[54] B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials
with negative index,” Appl. Phys. Lett. 94, 151112 (2009).

[55] T. G. Mackay and A. Lakhtakia, “Electromagnetic fields in linear bianisotropic medi-
ums,” Prog. Optics 51, 121–209 (2008).

[56] E. Charney, The Molecular Basis of Optical Activity, Krieger, Malabar, FL, USA (1985).
[57] A. Lakhtakia, Ed., Selected Papers on Natural Optical Activity, SPIE Optical Engineering

Press, Bellingham, WA, USA (1990).
[58] R. Ro, V. V. Varadan, and V. K. Varadan, “Experimental study of chiral composites,”

Proc. SPIE 1558, 269–287 (1991).
[59] R. Luebbers, H. S. Langdon, F. Hunsberger, C. F. Bohren, and S. Yoshikawa, “Calculation

and measurement of the effective chirality parameter of a composite chiral material over
a wide frequency band,” IEEE Trans. Antennas Propagat. 43, 123–130 (1995).
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A. Tünnermann, F. Lederer, and T. Pertsch, “Polarization-independent negative-index
metamaterial in the near infrared,” Opt. Lett. 34, 704–706 (2009).

[122] U. Huebner, J. Petschulat, E. Pshenay-Severin, A. Chipouline, T. Pertsch, C. Rockstuhl,
and F. Lederer, “Negative-index materials: Two approaches for nanofabricated metama-
terials,” Microelectron. Eng. 86, 1138–1141 (2009).

[123] A. Lakhtakia and J. B. Geddes III, “Nanotechnology for optics is a phase-length-time
sandwich,” Opt. Eng. 43, 2410–2417 (2004).

[124] J. M. Martinez-Duart, R. J. Martı́n-Palma, and F. Agulló-Rueda, Nanotechnology for
Microelectronics and Optoelectronics, Elsevier, Amsterdam, The Netherlands (2006).

[125] A. Lakhtakia, “Scaling of fields, sources, and constitutive properties in bianisotropic
media,” Microw. Opt. Technol. Lett. 7, 328–330 (1994).

[126] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer
resolution,” Science 272, 85–87 (1996).

[127] M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, “Blending of nanoscale and
microscale in uniform large-area sculptured thin-film architectures,” Nanotechnol. 15,
303–310 (2004).

[128] D. Van Gough, A. T. Juhl, and P. V. Braun, “Programming structure into 3D nanomate-
rials,” Mater. Today 12(6), 28–35 (2009).

[129] P. Ikonen, “Electrically small metamaterial–based antennas—have we seen any real
practical benefits?,” presented at EuCAP 2009 3rd European Conference on Antennas
and Propagation, Berlin, Germany, March 23–27, 2009. http://arXiv.org/0902.1820.

Tom G. Mackay completed his PhD studies in applied mathematics under
the supervision of Werner S. Weiglhofer in the Department of Mathemat-
ics, University of Glasgow, in 2001. Then he moved to the Department
of Mathematics and Statistics (now called the School of Mathematics),
University of Edinburgh, where he is currently a Reader. He is also an ad-
junct professor in the Department of Engineering Science and Mechanics,
Pennsylvania State University. At present his research interests include
homogenization, complex materials, metamaterials, and sculptured thin
films. He has received financial support from The Carnegie Trust for The

Universities of Scotland, The Nuffield Foundation, and EPSRC (UK); he held a Royal Society
of Edinburgh/Scottish Executive Support Research Fellowship in 2006/2007, and he holds a
Royal Academy of Engineering/Leverhulme Trust Senior Research Fellowship for 2009/2010.
For further details see http://www.maths.ed.ac.uk/∼tgm.

SPIE Reviews 018003-28 Vol. 1, 2010

http://dx.doi.org/10.1016/j.optcom.2004.06.005
http://dx.doi.org/10.1088/0031-8949/77/05/055401
http://dx.doi.org/10.1103/PhysRevB.79.035407
http://dx.doi.org/10.1063/1.3086873
http://dx.doi.org/10.1364/JOSAB.23.000423
http://dx.doi.org/10.1364/OL.34.000704
http://dx.doi.org/10.1016/j.mee.2009.01.064
http://dx.doi.org/10.1117/1.1786610
http://dx.doi.org/10.1002/mop.4650070711
http://dx.doi.org/10.1126/science.272.5258.85
http://dx.doi.org/10.1088/0957-4484/15/3/013
http://dx.doi.org/10.1016/S1369-7021(09)70178-6
http://arXiv.org/0902.1820
art/090107_1_fu11.eps
http://www.maths.ed.ac.uk/~tgm


Mackay and Lakhtakia: Negatively refracting chiral metamaterials . . .

Akhlesh Lakhtakia obtained a bachelor of technology degree in electron-
ics engineering from the Banaras Hindu University, Varanasi, India, in
1979, and master of science and doctor of philosophy degrees in electri-
cal engineering from the University of Utah, Salt Lake City, in 1981 and
1983, respectively. Thereafter, he joined the faculty of the Pennsylvania
State University, where he became distinguished professor of engineering
science and mechanics in January 2004. From 2004 to 2007 he also held
the rank of a visiting professor of physics at Imperial College, London. In
2006, he became the Charles Godfrey Binder (Endowed) Professor of En-

gineering Science and Mechanics. He has published more than 650 journal articles; contributed
18 chapters to research books and encyclopedias; edited, coedited, authored, or coauthored 13
books and 10 conference proceedings; reviewed for 111 journals; serves on the editorial boards
of four electromagnetics journals; was the Editor-in-Chief of the international journal Specula-
tions in Science and Technology from 1993 to 1995; and became the first Editor-in-Chief of the
online Journal of Nanophotonics launched by SPIE in 2007. He served as an international lec-
turer for the International Commission for Optics and the Optical Society of America was twice
a visiting professor of physics at Universidad de Buenos Aires, a visiting professor of physics
at the University of Otago, and a visiting fellow in mathematics at the University of Glasgow.
He headed the IEEE EMC Technical Committee on Nonsinusoidal Fields from 1992 to 1994
and is a fellow of the Optical Society of America, SPIE, and the Institute of Physics (UK). He
also served as the 1995 Scottish Amicable Visiting Lecturer at the University of Glasgow. He
received the PSES Outstanding Research Award in 1996, the PSES Premier Research Award in
2008, and the PSES Outstanding Advising Award in 2005. For his research on sculptured thin
films and complex-medium electromagnetics, he received the Faculty Scholar Medal in Engi-
neering in 2005 at Penn State, and a Doctor of Science degree in Electronics Engineering from
the Banaras Hindu University in 2006. Nanotech Briefs recognized him in 2006 with a Nano 50
Award for Innovation. The University of Utah made him a Distinguished Alumnus in 2007. His
current research interests lie in the electromagnetics of complex materials, sculptured thin films,
chiral nanotubes, nanoengineered metamaterials, biomimetics, and negative refraction. At Penn
State, he codeveloped a course on green engineering for undergraduate engineering students, as
well as a course on fundamentals of engineering principles and design for preservice elementary
schoolteachers.

SPIE Reviews 018003-29 Vol. 1, 2010

art/090107_1_fu10.eps

	Negatively refracting chiral metamaterials: a review
	Abstract.
	Introduction
	Homogeneous and Homogenizable Chiral Materials
	Preliminaries
	Isotropic Chiral Materials
	Faraday Chiral Materials
	Materials with Simultaneous Mirror-Conjugated and Racemic Chirality Characteristics
	Counterposition, Negative Phase Velocity, and Negative Refraction

	Structurally Chiral Materials
	Preliminaries
	Helicoidal Bianisotropic Materials
	Ambichirality

	Closing Remarks


