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ABSTRACT

Photon-counting spectral CT is a novel technology with a lot of promise. However, one common issue is detector
inhomogeneity which results in streak artifacts in the sinogram domain and ring artifacts in the image domain.
These rings are very conspicuous and limit the clinical usefulness of the images. We propose a deep learning
based image processing technique for ring artifact correction in the sinogram domain. In particular, we train a
UNet using a perceptual loss function with VGG16 as feature extractor to remove streak artifacts in the basis
sinograms. Our results show that this method can successfully produce ring-corrected virtual monoenergetic
images at a range of energy levels.
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1. INTRODUCTION

Photon-counting spectral computed tomography (CT) is a promising novel technology for next-generation CT
scanners.1–3 Advantages of photon-counting detectors, compared to standard energy-integrating detectors, in-
clude higher contrast-to-noise ratio and spatial resolution, and improved low-dose imaging. One common issue
in photon-counting CT is detector inhomogeneity, which results in energy threshold variation across detector
elements, and, if not corrected for, leads to streak artifacts in the sinogram domain and ring artifacts in the image
domain. This type of inhomogeneity can emerge due to an insufficiently calibrated forward model, temperature
differences, and defective pixels.4 Many methods have been suggested for artifact and noise reduction in CT
imaging and lately there has been a shift towards deep learning as a way to tackle these problems.4–9 In this
work, we add to this literature by training a deep neural network for ring artifact correction in the sinogram
domain and demonstrating its effectiveness in reducing ring artifacts for virtual monoenergetic images at a range
of energy levels in photon-counting spectral CT.

2. METHOD

2.1 Photon-counting spectral CT

2.1.1 Material decomposition

Consider a multi-bin system with B > 2 energy bins and, for simplicity, a 2-dimensional image space. The
material decomposition starts with the ansatz that the X-ray linear attenuation coefficient µ(x, y;E) can be
approximated by a linear combination of M basis materials

µ(x, y;E) ≈
M∑

m=1

am(x, y)τm(E), (1)
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where am and τm(E) are the basis coefficients and basis functions, respectively. It is usually resolved in the
sinogram domain and thus the target variables are the material line integrals

Am(ℓ) =

∫
ℓ

am(x, y)ds = R(am), (2)

where R denotes the Radon transform operator. The expected number of photons in energy bin j follows the
polychromatic Beer-Lambert law

λj(A) =

∫ ∞

0

ωj(E) exp

(
−

M∑
m=1

Amτm(E)

)
dE. (3)

This is our forward model. Finally, the measured data is the vector y := [y1, ..., yB ] where for each j we assume
that

yj ∼ Poisson(λj(A)). (4)

Hence, the (non-linear) inverse problem is to map the photon counts y to the material line integrals A :=
[A1, ..., AM ]. The most common approach to this problem is maximum likelihood.10–12 Setting up the objective
as the log likelihood and simplifying yields

min
A

B∑
j=1

(λj(A)− yj log(λj(A)))

s.t. Ai ≥ 0 ∀i = 1, ...,M.

(5)

This is subsequently solved using some iterative algorithm, e.g., the logarithmic barrier method.13

2.1.2 Data generation

After generating numerical basis material phantoms (soft tissue, bone and iodine) by segmenting CT images
from the KiTS19 dataset,9 photon-counting imaging was simulated using the fanbeam function in Matlab and
a spectral response model of a photon-counting silicon detector14 with 0.5 × 0.5 mm2 pixels. The simulation
was performed for 120 kVp and 200 mAs with 1579 detector pixels and 1600 view angles. After simulating
Poisson noise, the maximum likelihood method was used for material decomposition of the simulated sinograms
into bone and soft tissue basis sinograms, which were then reconstructed on a 583 × 583 pixel grid. To avoid
streak artifacts due to photon starvation, a logarithmic barrier function was used to penalize large negative basis
projection values. To simulate the effect of threshold variations, the simulation was performed with a random
threshold shift (σ = 0.5 keV) applied independently to each of the eight thresholds of each detector pixel, and two
material decompositions were performed: one with the actual bin thresholds that were used in the simulations,
including the random shift, and one with the nominal bin thresholds, where the latter configuration yields images
with ring artifacts.

2.2 Deep learning

2.2.1 Problem statement

We propose an image processing technique for ring artifact correction based on deep neural networks. More
formally, let x ∈ RM×H×W denote the streak corrupted basis sinograms and y ∈ RM×H×W their streak arti-
fact free counterpart, where M,H and W are the number of basis materials, view angles and detector pixels,
respectively. Then our objective is to learn

f : x → y. (6)

We let fθ be a neural network and learn the map (6) by learning parameters θ.

2.2.2 Network architecture

UNet is an widely utilized architecture for a range of different tasks in biomedical imaging. The defining feature
is the encoder-decoder structure. We use a version of the original UNet15 shown in Fig. 1.
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Figure 1. Illustration of UNet.15

2.2.3 Loss functions

Mean square error (MSE) is perhaps the most commonly used loss function for applications of deep learning in
biomedical imaging

ℓmse =
1

MHW
||fθ(x)− y||22. (7)

Using MSE loss will encourage the output to match the target pixel-by-pixel. This low-level per-pixel comparison
is well known to produce output that is overly-smooth and lacking fine details that affect the perceptual qual-
ity.16,17 For several image transformation tasks, it has proved useful to instead employ a perceptual loss function
which, instead of comparing pixel-by-pixel, compares high-level feature representations between the output and
target. These feature representations are extracted from a pretrained convolutional neural network. We follow16

and use VGG1618 pretrained on ImageNet19 as feature extractor, or loss network. Let ϕj denote the j-th layer
of VGG16, then our perceptual loss is defined as

ℓvgg =
1

CjHjWj
||ϕj(fθ(x))− ϕj(y)||22, (8)

where Cj is the number of channels in layer j. We will set j = 9 which corresponds to “relu2 2” in.16

3. TRAINING DETAILS

From each of the 1600× 1579 basis sinograms we extract 20 256× 256 patches. A total of 630 samples, yielding
12600 patches, are split 70/30 into a training and validation set. The network is trained using Adam20 with
β1 = 0.5, β2 = 0.9, and learning rate γ = 1×10−4 for 100 epochs with a batch size of 16 on one NVIDIA GeForce
RTX 3070 Laptop GPU. We standardize the input by diving by the channel-wise standard deviation. We can
obtain ring corrupted data with a range of different artifact magnitudes by taking a linear combination of streak
corrupted and streak free basis sinograms. In this work, we are mainly concerned with the case when the rings
are barely perceptible. Let w denote the weight given to the ring corrupted basis sinogram and (1 − w) the
weight given to its ring free counterpart. We found that w = 0.4 produces a realistic level for the artifacts and
w = 1 a suitable level to train on.

4. RESULTS

4.1 Qualitative results

Qualitative results are available in Fig. 2 and 3. First, in Fig. 2, we have the results from the sinogram domain.
Here, a pair of streak corrupted basis sinograms are passed through the network to produce the corresponding
predicted pair. Note that despite training on 256× 256 patches the network generalizes sufficiently to be able to
deal with the entire 1600×1579 basis sinograms. The network does a fairly good job at removing the streaks. We
subsequently reconstruct basis images from these sinograms and form virtual monoenergetic images at 40, 70,
and 100 keV displayed in Fig. 3. Streak correction in the sinogram domain translates well into ring correction in
the image domain. However, some residual rings are still visible. Note that, somewhat surprisingly, there is no
significant difference in the performance of the network trained using MSE loss and the network trained using
the perceptual loss.

Proc. of SPIE Vol. 12304  123042Q-3



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. Basis sinograms. The square in top right corner shows a magnification of the indicated ROI. (a-d) soft tissue, (a)
truth, (b) observed, (c) observed + UNet mse, (d) observed + UNet vgg, (e-h) bone, (e) truth, (f) observed, (g) observed
+ UNet mse, (h) observed + UNet vgg.

Table 1. Quantitative results

Network SSIM PSNR Resolution (mm)
Truth NA NA 0.46

Observed 0.69 45.96 NA
UNet mse 0.88 49.30 0.62
UNet vgg 0.82 50.17 0.61

4.2 Quantitative results

Quantitative results are available in table 1. We employ the standard metrics used in this type of literature.
Namely, structural similarity index measure (SSIM)21 and peak signal-to-noise ratio (PSNR). However, we
appreciate the fact that these are not necessarily great metrics of perceptual quality∗ and instead stress our
qualitative results. Note that, surprisingly, the network trained with a perceptual loss achieves higher PSNR
than the network trained with MSE loss. However, this difference is sufficiently small to reasonably be attributed
to stochastic variation in the optimization procedure. We also investigate the resolution by adding a central
circular insert in the KiTS19 phantoms and retrieving the edge spread function as an average over radial profiles
in the region of interest (ROI). We then fit a Gaussian error function to estimate the resolution as its standard
deviation. Both networks produce a slight decrease in resolution.

5. CONCLUSION

Detector inhomogeneity, a common issue in photon-counting spectral CT, results in streak artifacts in the
sinogram domain and ring artifacts in the image domain. In this work, we propose a deep learning image
processing technique for ring artifact correction in the sinogram domain. Artifact corrupted data is generated by
solving the material decomposition problem with a correctly and an incorrectly calibrated forward model. We
trained a deep neural network to remove the streaks in the basis sinograms, which are subsequently reconstructed

∗See e.g.,16 for a brief discussion.
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(i) (j) (k) (l)
Figure 3. Virtual monoenergetic images at 40, 70 and 100 keV. The square in top right corner shows a magnification of
the indicated ROI. (a-d) 40 keV, (a) truth, (b) observed, (c) observed + UNet mse, (d) observed + UNet vgg, (e-h) 70
keV, (e) truth, (f) observed, (g) observed + UNet mse, (h) observed + UNet vgg, (i-l) 100 keV, (i) truth, (j) observed,
(k) observed + UNet mse, (l) observed + UNet vgg.

to produce ring corrected basis images and virtual monoenergetic images. Instead of training a network to
produce output that is similar to target pixel-by-pixel, we use a perceptual loss function that encourages the
feature representation of the output to be similar to that of the target. Unexpectedly, we found that the network
trained using the standard MSE loss essentially performs on par with the network trained using the perceptual
loss. Future research will address the slight degradation in resolution caused by the networks, investigate why
the networks perform so similarly, and further develop this method on a larger and more diverse dataset.
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