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ABSTRACT

Due to longitudinal undersampling multislice spiral computed tomography (MSCT) scans may suffer from wind-
mill artifacts in reconstructed images. To fulfill the sampling condition and achieve double sampling in z-direction,
some CT scanners use the z-flying focal spot (zFFS) technique, a hardware-based solution that effectively dou-
bles the number of detector rows. To obtain a software-based solution we developed a convolutional neural
network that is trained in a supervised manner with clinical projection raw data that were acquired with zFFS
enabled. We presented this approach as the row interpolation with deep learning (RIDL) network. In this work
we simplified the network architecture, extended the clinical dataset and generated an experimental synthetic
dataset consisting of two-dimensional projection data. We were able to observe a reduction in windmill artifacts
for both datasets used for training. Especially the synthetic dataset is very promising as we could observe a
superior reduction of artifacts with this dataset.
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1. INTRODUCTION

Multislice spiral computed tomography (MSCT), also known as multidetector CT, has become an integral part of
modern medical imaging after the theoretical introduction of spiral CT in 1989.1 The most common application
of these systems is spiral scanning, in which the patient is continuously moved through the gantry, resulting
in shorter scan times and higher temporal resolution.2 Nevertheless, artifacts can occur with this modality
that degrade quality of reconstructed images. The windmill artifact is an image distortion in the axial plane
whose appearance is characterized by bright streak-like patterns emerging from high contrast structures along
the longitudinal axis.3 When scrolling through the reconstructed slices these streaks appear to rotate. The
cause of this artifact can be attributed to inadequate data sampling in the z-plane resulting in not satisfying the
Nyquist condition and thus leading to aliasing.3,4

A hardware-based method to fulfill the sampling condition and reduce windmill artifacts is provided by the
z-flying focal spot (zFFS).2,4 This technique doubles the effective number of detector rows acquired during the
scan by periodically deflecting the X-ray focal spot in longitudinal direction. The resulting higher sampling
rate in z-direction reduces the occurrence of windmill artifacts. Figure 1 shows a scan acquired without zFFS
compared to a corresponding scan with zFFS enabled.
However, this method also has some drawbacks, as it is technically complex and thus prevents the use of zFFS
in CT systems that do not meet these requirements. Previous works, such as in Ref. 5, focus on the reduction
of windmill artifacts in the image domain. In contrast we try to solve the problem in projection domain. In
Ref. 6 we presented the row interpolation with deep learning (RIDL) network, which was similar to the zFFS
designed to double the effective number of acquired raw detector rows in projection domain. The network was
based on the SRResNet presented in Ref. 7 to compute super-resolution images, i.e. very high-resolution images.
In this paper we simplified the network architecture in order to reduce complexity of training process while
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Figure 1. Reduction of windmill artifacts by using zFFS. The left image was taken without zFFS (32×0.6 mm collimation,
pitch 1.4) while for the right reconstructed image (2 · 32×0.6 mm collimation, pitch 1.4) zFFS was enabled for acquisition
(C = 0 HU, W = 200 HU).

maintaining existing results. Furthermore, the clinical dataset used for network training was extended and an
experimental synthetic dataset was generated. Two separate networks were trained with the individual datasets
and the network predictions were compared in image domain by reconstructing two clinical spiral CT scans.

2. METHODS AND MATERIAL

2.1 Clinical Data Preparation

For the clinical dataset, we selected raw projection data from a total of 40 clinical CT scans from different
patients. The scans covered different body regions such as head, thorax and abdomen and were acquired with
Somatom Flash and Somatom Force dual source CT scanners (Siemens Healthineers, Forchheim, Germany) with
zFFS enabled. The dataset was split into two disjoint subsets so that 32 of the scans were used as training
dataset and 8 scans served as validation dataset. It was ensured that the different body regions and CT systems
used in the images were equally distributed in both datasets. Before training, some preprocessing steps were
performed, i.e. instead of using the complete projection data of the scans as a whole, randomized image patches
were generated to simplify the training process.

2.2 Synthetic Data Preparation

In addition to the clinical dataset, the acquisition of synthetic data for training the RIDL network was inves-
tigated. An advantage of using synthetic data would be that any number of data could be generated without
requiring a CT scanner with zFFS. For the simulation we used the software package CT SIM which is based on
the deterministic ray propagation simulation software Deterministic Radiological Simulation (DRASIM). These
tools allow to simulate the radiation properties in a defined X-ray imaging setup through geometrically defined
phantoms.8 In our first experimental setup, we generated two-dimensional projection data of a water cylinder
(length: 10 cm, diameter: 40 cm, density: 1.0 g/cm3) containing overlapping water spheres with varying densi-
ties (0.5 - 3.0 g/cm3) and diameters (1 - 20 cm). Each water sphere was overlaid with another, smaller water
sphere of density 1.0 g/cm3, resulting in narrow circular edges with a width of 0.3 to 2 mm. These structures are
particularly difficult to interpolate. Figure 2 shows an example representation of a projection from the synthetic
dataset. A total of 200,000 projections with 80 detector rows and 800 channels containing randomly arranged
water spheres were simulated. Comparable to real clinical projection data acquired with zFFS, the detector
rows were simulated overlapped. No noise was added to the data. The dataset was split into a training dataset
with 160,000 projections and a validation dataset with 40,000 projections. In addition, the range of values of
the synthetic projection data was linearly scaled to the value range of the clinical data. Similar to the clinical
dataset, random image patches were selected from the projection data for network training, as we will describe
in more detail below.
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Figure 2. Example projection from the synthetic dataset with different sized water spheres consisting of 80 overlapped
detector rows and 800 channels.

2.3 Row Interpolation with RIDL-CNN

In the previous approach of our work, a neural network was trained that received raw projection data and
generated a prediction of the input with interpolated rows to effectively double the number of rows. The clinical
projection data used to train the network were obtained after the rebinning, which is the rearrangement of the
measured fan-beam data to parallel beam geometry. These projections were then divided into alternative rows
so that projections containing all rows (acquired with zFFS) were used as the desired output y, and every other
row from the corresponding projections was used for the network input x in training. In order to predict an
upsampled version of the input data using the network, a so-called subpixel convolutional layer9 was used, which
essentially performs an upsampling of the generated feature maps within the network by a specific type of image
reshaping. However, this procedure is time-consuming in network training, as well as in the subsequent use of
the trained network for the prediction of rows.
In further experiments, we could observe that a much simpler convolutional neural network without subpixel
convolution is able to produce results comparable to the RIDL-SRResNet. In the following, we will refer to
this network architecture as RIDL-CNN. Similar to the previous architecture, random patches with the size of
64×32×1 pixels were generated from the underlying projection data to train the network. Also in this case,
every other row from these patches serves as network input so that it has a size of 32×32×1. The desired output
has the same dimension and is obtained from the intermediate rows in the generated patches. Before network
training, all patches were linearly normalized to a value range in the interval from 0 to 1. Slope and offset
were set according to the minimum and maximum value of the clinical dataset. After network prediction, the
input and output rows have to be interlaced to obtain corresponding interpolated projections. Furthermore, the
value range of these projections must be denormalized to the original range of the clinical data. In total, the
RIDL-CNN consists of an input layer followed by 12 convolutional layers with 128 filters and 3×3 kernels. The
network output is computed by a final convolution. The number of trainable parameters is 1,625,857.

2.4 Implementation and Training

The RIDL-CNN was trained on both the clinical and synthetic dataset, resulting in two separately trained
networks. For both datasets, 500,000 examples were selected from the corresponding training dataset and 125,000
from the corresponding validation dataset. For the training we used the Adam optimizer and a combined loss
function that is described by:

Lcomb(y, ŷ) = α · LMS-SSIM(y, ŷ) + (1− α) · LMAE(y, ŷ)

This loss function was proposed in Ref. 10 and takes into account the pixel-wise computed error between the
network output ŷ and ground truth y by the mean absolute error (MAE) but also the structural similarity
between the two images by the multi-scale structural similarity index (MS-SSIM). The weighting factor was
empirically determined as α = 0.84. The networks were trained with a batch size of 256 and an initial learning
rate set to 1×10−5, which was halved if the error could not be minimized for 25 consecutive epochs.

2.5 Evaluation and Validation

In order to evaluate and validate the results, two scans of a skull phantom with real human bones were acquired
with a Somatom Force system. For the first scan, a basic scan mode with a collimation of 96×0.6 mm and
activated zFFS was used. For the second scan we used a scan mode of the CT system with a collimation of
48×1.2 mm. In this mode, no zFFS can be enabled and the acquired images show very strong windmill artifacts
due to the lower sampling in the z-direction. In both scans the pitch factor was set to 1, since especially scans
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with pitch values in this range suffer from windmill artifacts.2,3 A summary for both scan settings can be found
in Table 1.

Table 1. Summary of the settings for the two scans used to evaluate and validate the results.

Scan Collimation Pitch zFFS Reconstructed slices
1 96×0.6 mm 1.0 yes 1.0 mm
2 48×1.2 mm 1.0 no 1.5 mm

As in our previous work, the trained networks were applied to reconstruct these phantom CT scans. For this
purpose, a plugin we developed for the Siemens-specific reconstruction software was used to adjust the raw
projection data after the rebinning. In the first scan, every second row, i.e. the zFFS-generated rows were
replaced by rows predicted by the RIDL networks. In addition, a reconstruction with linear interpolated rows
was performed, which should correspond to an acquisition without zFFS. For all reconstructions, the error
measures RMSE and SSIM were calculated in relation to the ground truth reconstruction with zFFS enabled.
Since no zFFS can be used in the acquisition setting employed in the second scan, there is no ground truth data.
The results in these reconstructions can therefore only be evaluated qualitatively. In this case, the number of
rows in the raw data was doubled by extending them with predictions from the RIDL networks.

3. METHODS AND MATERIAL

3.1 Scan with 96×0.6 mm Collimation

Figure 3 shows reconstructions of a specific slice with differently modeled projection raw data from the first scan.
Difference images are calculated to the ground truth data acquired with zFFS. Comparing the reconstruction
without zFFS to the result of the RIDL-CNN trained on the clinical dataset, only a very slight reduction of
the windmill artifacts can be seen in the image domain. Furthermore, there are noisy structures noticeable in
the difference image in Figure 3c in the area of the bones. However, MSE and SSIM indicate a quantitatively
slightly better result compared to omitting the zFFS. Looking at the reconstruction with the network trained
with synthetic data (see Figure 3d), we find an improvement in the image quality both in the image domain and
in the difference image. Especially the problem with the noisy structures in the bone areas does not occur. With
regard to the error measures, this reconstruction also provides the best result quantitatively.

Figure 3. Qualitative and quantitative comparison of a reconstructed slice (1. scan) without zFFS, with the RIDL-CNN
trained with the clinical dataset and the RIDL-CNN trained with the synthetic dataset compared to the ground truth
scan with zFFS (C = 60 HU, W = 360 HU). Below the difference images to the ground truth are shown (C = 0 HU, W
= 150 HU).
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3.2 Scan with 48×1.2 mm Collimation

Figure 4 compares the results for two reconstructed slices from the second scan. In both slices reconstructed
with WFBP without zFFS, very dominant windmill artifacts can be observed. Comparing these slices with the
results of the network trained with clinical data, a slight reduction of the artifacts can be seen qualitatively. The
results obtained with the network trained with the synthetic dataset can most effectively reduce the occurring
windmill artifacts and provide superior image quality compared to the network trained with clinical data. The
comparison of the reconstructions can only be performed qualitatively due to missing ground truth data, since
the applied scan mode does not allow for enabling zFFS.

Figure 4. Qualitative comparison of two selected slices (2. scan) without zFFS, with the RIDL-CNN trained with the
clinical dataset and the RIDL-CNN trained with the synthetic dataset (C = 60 HU, W = 360 HU).

4. DISCUSSION AND CONCLUSION

In this work, we further adapted our RIDL network and simplified the network architecture. In addition, we
extended the clinical dataset and generated an experimental synthetic dataset. This was done by simulating two-
dimensional raw data containing different sized overlapping spherical structures. In our experiments presented
here, we observed that the results with the synthetic data are very promising. Although no clinical data were
included in this dataset, windmill artifacts were reduced more effectively than with the RIDL-CNN trained
with the current setup of clinical data. This observation suggests that training with clinical data can still be
optimized. One problem could be the noise in clinical projection data. Denoising the clinical data before network
training could be considered. However, it is valuable that training with synthetic data can address the problem
of windmill artifacts, without having to rely on raw clinical projection data acquired with a CT system that
supports zFFS. The next step is to investigate how the synthetic dataset can be adapted more efficiently to our
task. In addition, data with a concrete CT system geometry will be simulated. Furthermore, we will optimize
the training with clinical data and investigate whether the results can be improved by a combination of synthetic
and clinical data.
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