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Abstract—Long lasting efforts have been made to reduce
radiation dose and thus the potential radiation risk to the
patient for CT acquisitions without severe deterioration of
image quality. To this end, different reconstruction and noise
reduction algorithms have been developed, many of which
are based on iterative reconstruction techniques, incorpo-
rating prior knowledge in the image domain. Recently, deep
learning-based methods have shown impressive performance,
outperforming many of the previously proposed CT denois-
ing approaches both visually and quantitatively. However,
with most neural networks being black boxes they remain
notoriously difficult to interpret and concerns about the
robustness and safety of such denoising methods have been
raised. In this work we want to lay the fundamentals for a
post-hoc interpretation of existing CT denoising networks by
reconstructing their invariances.

Index Terms—low dose, denoising, explainable, invari-
ances.

I. INTRODUCTION

N recent years, deep learning methods have been

employed for many problems in medical image for-
mation, including image-based and projection-based noise
reduction, image reconstruction, scatter estimation, and
artifact reduction. While the results of deep neural-network
(DNN) based methods often excel those of conventional
algorithms both qualitatively and quantitatively, they lack
interpretability due to most DNNs being black boxes.
Particularly for low dose CT imaging, recent advance-
ments in generative methods such as generative adversarial
networks (GANS) [1] and variational autoencoders (VAEs)
[2] demonstrated impressive performance, providing com-
petitive image quality compared to commercial iterative
reconstruction techniques [3].

In this work, instead of focusing on the actual denoising
performance of DNN-based methods for CT imaging, we
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want to lay the fundamentals for a post-hoc analysis
of such networks in terms of their interpretability and
robustness. To this end, we investigate what they have
learned to represent and to ignore (i.e. their invariances)
at different layers and argue that robust and non-robust
denoising networks are invariant to different input features.
Note, that this type of analysis is not restricted to CT
and similar methods can be applied to denoising networks
for other imaging modalities (e.g. magnetic resonance
imaging or positron emission tomography).

II. BACKGROUND
A. CT Image Denoising with DNNs

In this work we assume to have high-dose images
y € R™*™ as well as low dose images z € R™*"
during training time. The aim of any deep-learning based
denoising method is then to find a function f(- ;6) with
parameters 6, such that

argeminllf(I;@) -y, (1)

where f is realised by a DNN. In recent years most im-
provements on finding an optimal f focused on alterations
of the architecture and training scheme. While earlier
work utilized pixelwise losses (in image or feature space)
which lead to smooth predictions and lack high-frequency
information [4, 6], many recent methods are being trained
as GAN:s, leading to extremely realistic denoising results
[3,5].

B. Invariances of DNNs

Our work is based on reference [7], where the authors
seek to reconstruct and interpret the invariances of im-
age classification DNNs using invertible neural networks
(INNs).

Given a network f(x) we can analyze any internal latent
representation z thereof by decomposing f into f(z) =
U(z) = U(P(z)). To then explain z we need to know what
information of the input x is captured in z and to what
information ® is invariant to (and is thus missing in z).
To this end, the authors of [7] employ a VAE comprised
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Fig. 1: Denoising performance of Chen et al. [4] and Yang et al. [5] for six different dataset samples (columns). Blue
arrows indicate regions where the networks produced errors in the reconstruction of anatomical details.

of an encoder E and a decoder D that is trained to learn a
complete data representation zZ = E(x) by reconstructing
the input from Z s.t. ||D(E(x)) — || is minimized.
Since the complete data representation z now not only
contains the information captured in z but also its invari-
ances v, we need to disentangle v and z by learning a
mapping
t(-]z) : 2 =5 v =1t(z]2). )

Here, it is assumed that invariances v can be sampled
from a Gaussian distribution, i.e. p(v) = AN (v|0,1), and
the mapping ¢ is realized through a normalizing flow [8—
10], a sequence of INNs between the simple (normal)
distribution p(v) and the complex distribution p(2).

Since t is invertible, we can generate new z that
only differ in their realization of the invariances by first
sampling v ~ p(v) and then applying the inverse mapping
of ¢

7 2) v = 2 =t (v]2). 3)

To visualize z in the low dose image space we can
reconstruct them using the previously trained decoder D:
T = D(2).

III. METHODS

A. Dataset

For all our studies the Low Dose CT Image and Pro-
jection dataset [11] is employed. The dataset comprises
50 head scans, 50 chest scans, and 50 abdomen scans
acquired at routine dose levels with a SOMATOM Defi-
nition Flash (Siemens Healthineers, Forchheim, Germany)
CT scanner. Additionally the dataset provides simulated
low dose reconstructions (at 25 % dose for abdomen/head
and at 10 % dose for chest scans) which were used as
input to the denoising networks. We split the dataset
into 70 %/20 %/10 % for training/validation/test across all
patients and trained with a weighted sampling scheme such
that slices from each patient were sampled with equal
probability.

To make results between different methods comparable
we trained and validated all denoising networks as well
as the invariance reconstruction method on the same
training/validation split of our data.
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B. Denoising Methods

While our method can be used to provide post-hoc
invariance analysis for any (trained) DNN-based denoising
method, for simplicity, we here focus on interpreting the
invariances of two well-known denoising methods:

Chen et al. [4] proposed a simple three-layer convo-
lutional neural network which was trained to minimize
(1) using an Lo loss. The authors trained their network
on patches of size 33 x 33 using an SGD optimizer and
showed that their method can outperform conventional
state-of the art methods.

Yang et al. [5] improved on previous works by training
a Wasserstein GAN (WGAN) [12] in combination with a
perceptual loss [13] in feature space. Furthermore, they
utilize a deeper generator compared to [4] and train the
network on larger patches of size 64 x 64.

We trained both [4] and [5] on the dataset described
in Sec. III-A using the hyperparameters as described in
the original papers. Whenever hyperparameters were not
stated by the authors, we ran a grid-search and used the
parameters that result in the lowest validation loss.

C. Recovering Invariances

Similar to reference [7] we first learn a complete data
representation Z = E(x) for a given low dose image x by
training a VAE ¢g(x) = D(E(x)). Our encoder is based
on a ResNet-101 [14] and our decoder on a BigGAN
[15] where the conditioning on the class is replaced by
a conditioning on the latent representation z. To improve
reconstruction quality the VAE is trained together with a
critic C' as a WGAN and instead of training it on entire
512 x 512 pixels images we train it on 128 x 128 pixels
patches.

For both of the two denoising networks evaluated, we
train three conditional INNs (cINNs) to learn to recon-
struct invariances at three different layers in the network.

TABLE I: Overview of generator architectures used in
Chen et al. [4] and Yang et al. [5]. Kernel sizes of the
2D convolutions are indicated by k and their number of
filters by f. Final nonlinearities of the original architectures
were omitted to accommodate for the normalization of our
data.

Layer Chen et al. [4]  Yang et al. [5]
1 Conv k9 f64 Conv k3 32
ReLU ReLU
3 Conv k3 32 Conv k3 32
ReLU ReLU
5 Conv k3 f1 Conv k3 32
1'5 Conv k3 f1

For Chen et al. [4] we do so at layer 1, 3, and 5 and for
Yang et al. [5] at layer 1, 7, and 13 (refer Tab. I). Each of
the cINNs, ¢ is composed of four invertible blocks, where
each block is composed of coupling blocks [16], actnorm
layers [17], and shuffling layers. For each invertible block,
the conditioning on the denoising network representation
z is realized by concatenating an embedding h = H(z),
where H is a shallow network, with the input to the
respective block.

For each network and layer we then reconstruct dif-
ferent samples of the invariances # = D(t71(v, 2)),v ~
N(0,1). Additionally, we can compute the standard devi-
ation over a large set (here 250) of samples to highlight
regions with high variation across the reconstructed invari-
ances.

IV. RESULTS
A. Denoising Methods

We find that the results from both denoising networks
are similar to those reported in the respective original
papers (Fig. 1). Due to the Lo loss in image space the
results from [4] appear smooth and lack structural fidelity.
This is alleviated by training with an adversarial loss and
consequently our results for [5] look much more realistic
with higher details and noise structures very similar to
those present in the high dose images.

However, we find that both methods are unable to
correctly reconstruct anatomical details in several cases
(refer Fig. 1, blue arrows). This is particularly problematic
when the network is trained in an adversarial setting,
where those false anatomies can look very convincing to
the radiologist.

B. Reconstructed Invariances

The reconstructed invariances for both networks and two
different samples (ref. Sec. III-C) are provided in Fig. 2.
For each sample we also show the low dose input image
x, the high dose ground truth image y, the reconstruction
of the complete data representation £ = D(Z), and the
denoised image f(z).

From this we find that both denoising methods are
invariant to several anatomical features to some extent
(Fig. 2; blue arrows). We also find a higher overall variance
of the invariances in homogeneous regions of the image
for [4], indicating that it is more invariant to the specific
realization of noise in the low dose input image. However,
when inspecting the VAE reconstructions £ = D(Z) we
also find major deviations from the original low dose
image z (Fig. 2, red arrows), which may explain some
of the differences between the reconstructed invariances
and x.
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Fig. 2: Best viewed in color. Analysis of Chen et al. [4], (a) & (b), and Yang et al. [5], (i) & (ii). Provided are low
dose input image x, high dose ground truth image y, VAE network reconstruction Z (Sec. III-C), denoised image f(x),
five reconstructed samples from the space of invariances, and the standard deviation over 250 invariance samples. Red
arrows highlight errors in the VAE reconstruction and blue arrows highlight regions in the reconstructed invariances.
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V. CONCLUSION

In this work we analyzed deep neural networks for CT
image denoising regarding their invariances to anatomical
features in the low dose image domain. To reconstruct
those invariances we adapted a method from prior work
on interpretable Al and sampled reconstructions of invari-
ances for two CT denoising networks. Upon analysis of the
reconstructed invariances, we find that the representations
of both networks at different layers are invariant to several
anatomical features.

While this work demonstrated the potential of an
invariance-based analysis of DNNs for CT image denois-
ing, the ability to interpret those invariances is currently
limited due to reconstruction errors from the embedding
Zz and the complex, high-dimensional structure of the
invariance images Z. Overcoming this drawback by im-
proving the embedding z as well as mapping the sampled
invariances to a semantically meaningful space remains
part of future work.
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