
Robust adaptive control approach for pneumatic artificial muscle 

system with actuator faults 

Yuhan Maa, Qiuzhen Yan*a, Lili Zhaob, Shuangjie Jia 
aCollege of Information Engineering, Zhejiang University of Water Resources and Electric Power, 

Hangzhou 310018, Zhejiang, China; bZhejiang SUPCON Technology Co., Ltd., Hangzhou 310053, 

Zhejiang, China 

ABSTRACT 

In this work, the angle tracking algorithm for a pneumatic artificial muscle-actuated mechanism is studied. The control 

system is subject to both multiplicative and additive actuator faults. Lyapunov synthesis is used to design controller. The 

uncertainties and external disturbances are dealt with according to robust adaptive strategy. The filtering error of 

closed-loop system may converge to the small neighour of origin even if both multiplicative and additive actuator faults 

happen.  

Keywords: Adaptive control, pneumatic artificial muscle, actuator faults 

1. INTRODUCTION 

Pneumatic artificial muscle (PAM) is a special actuator with a tube shape. By inflating/deflating compressed air, it can 

mimic human muscles’ functions to some extent1,2. PAM actuator has some prominent advantages, inclusive of rapid 

response, low cost and high power weight ratio, so that it can be seen as one of the most promising actuator at present. 

On the other hand, there exist some complicated inherent characteristics in PAM systems, such that achieving 

high-precision control is not an easy job for PAM systems. 

To get good performances of PAM systems, scholars have taken advantage of numerous control technique in PAM 

control system design over the past two decades. In Reference3, PID control algorithm for PAM systems is discussed. In 

Reference4, the tracking control of PAM actuators is solved by employing sliding mode control and disturbance observer. 

In Reference5, Cai et al. investigated output-feedback adaptive control for PAM systems with saturation input. In 

Reference6, Xie et al. proposed iterative fuzzy control for pneumatic muscle driven rehabilitation robot. In Reference7, 

Guo et al. present an adaptive learning control algorithm for a PAM actuated mechanism. None of above results has 

considered the controller design while there exist potential system faults. Obviously, the performance degradation of 

PAM systems must arise if no proper action is taken once the system faults occur8,9.  

Motivated by the above discussion, we study the angle tracking control design for a PAM-actuated mechanism，whose 

actuator is subject to both multiplicative and additive actuator faults. Robust adaptive control approach is adopted to 

compensate for uncertainties and external disturbances. The filtering error of closed-loop system may converge to the 

small neighour of origin even if both multiplicative and additive actuator faults happen. 

2. PROBLEM FORMULATION 

The control system structure of a PAM-actuated mechanism is shown in Figure 1. 
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Figure 1. Control system structure of the PAM-actuated mechanism. 

The relationship between the driving moment of this mechanism and the pulling forces is described as follows: 

1 2( ) ( ) ( )vT t J b F t r F t r d = + + − +
.                             (1) 

The internal pressures of two pneumatic muscles can be determined by the control input according to equations (2) and 

(3). 

1 0 0( ) ( ), ( ) ( )l l uP t c u t u t u c u t= = +                                  (2) 

        
2 0 0( ) ( ), ( ) ( )r r uP t c u t u t u c u t= = −                                 (3) 

The pulling forces
1( )F t and

2 ( )F t are caused by the internal pressures 
1( )P t  and

2 ( )P t as follows:  

2

1 1 1 1 2 1 3 4( ) ( )( ( ) )F t P t c t c c  = + + +  and 
2

2 2 1 2 2 2 3 4( ) ( )( ( ) )F t P t c t c c  = + + + ,     (4)  

where 
1

1 0 0( ) ( )t rl t  −= + and 
1

2 0 0( ) ( )t rl t  −= − . The representations of such variables and parameters are given 

in Table 1. 

From equations (1)-(4), we have 

2 1 2

0 0 1 0 2 0 0 0 1 0 2 0 3

1 2

2 (2 ) 2 ( )
( ) ( ) ( ) ( ) ( )

      = ( ) ( ) ( )
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s

b k u r c c l k u r c c c
t t t u t d t

J J J

t u t d t

  
  

 

−+ + +
= − + + +

+ +

           

(5)

 

where 
2 1 2

0 0 1 0 2 0 0 0 1 0 2 0 3
1 2

2 (2 ) 2 ( )
,

k u r c c l k u r c c c

J J

  
 

−+ + +
= = , ( ) ( ) ( )v

s

b
d t t d t

J
= − + . In this work, the control 

input of pneumatic muscle joint is subject to actuator faults, which are formulated by 

( ) ( )u t v t = +

                                         

(6) 

where ( )v t  is the real control input signal to be designed.   represents the multiplicative actuator fault, and 
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 represents the additive actuator fault. We assume 
min 0   , where min  is an unknown positive constant.  

By letting 
1 2 1( ) ( ), ( ) ( ), ( ) ( )x t t x t t y t x t = = = , we have  

1 2

2 1 1 2 2

1

( ) ( ),

( ) ( ) ( ) ( ),

y(t)= ( ),

s

x t x t

x t x t v t d t

x t

  

=


= + + +



                               

(7)

 

The control task of our work is to derive the precise trajectory tracking from y  to desired trajectory dy . 

Table 1. The representations of parameters. 

Symbol Definition 

T Driving moment of mechanism 

J Moment of inertia 

  Rotation angle of pneumatic muscle joint 

vb  Damping coefficient 

d External disturbance 

r Radius of pneumatic muscle joint 

F1 , F2 Pulling forces 

c1 - c4 Parameters in mathematical model of aerodynamic muscle 

1 2 ,    Contraction rate of pneumatic muscle 

P1 , P2 Pressure value of pneumatic muscle 

0  Initial contraction rate of pneumatic muscle 

l0 Initial length of pneumatic muscle 

c0 Proportionality factor 

cu Voltage coefficient 

u0 Initial voltage 

 , l ru u  Input control voltages of pressure proportional valves 

u Control input 

3. CONTROLLER DESIGN 

Let 1, , 2, , 1 1 1, 2 2 2,, .d d d d d dx y x y e x x e x x= = = − = −  According to equations (6) and (7), we have
 

1 2

2 1 1 2 2 2,

,

( ) ( ) ( )s d

e e

e x t v t d t x  

=


= + + + −                                

(8)

  

Let us define 
1 2 ,ss e e= + with 0  . 

2 1 1 2 2 2,( ) ( ) ( )s s ds e x t v t d t x   = + + + + −

                           

(9)
 

Let 2

1

1

2
V s


= , where 

min 2  = . By taking the time derivative of 2V , we get 
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1
1 2 1 2,

min min

min min

1 1
( ( ) ) ( )

    ( )

s
s d

T s

d
V s e x t x s sv

d
sp s sv

  


     

 


  

= − − + + +

= + + +

                    

   

(13)

 

where 1
2, 2 1

1 1
[ , , ] , [ , ( ),1]T T

s dp x e x t


 
  

= − − = . Without loss of generality, we assume  

                2

0 1 2

min

| | || || || ||sd
x x


  

 
+  + +

                                 

(14) 

 

where 0 , 1  and 2 are unknown positive constants. 

2

1 0 1 1

min

| | ( || || || || )TV sp s x x sv


   


 + + + +

                    

(15)

 

Let av = ˆ Tp − . Substituting a rv v v= +  into equation (15) yields 

2 min
1 0 1 2

min min

2

0 1 2

min

( ) | ( || || || || )

   ( ) | | ( || || || || ) | | | |

T

a r a

T

a r a

V s p v s x x sv sv

s p v s x x sv s v

 
   

 


    



−
 + + + + + +

 + + + + + + 

            

(16)

 
where

 

min

min

: sup( )
 




−
= . Let   2

0 1 2,  , ,  w( , ) 1,|| ||,|| || ,| |
TT

p k k ax v x x v      = =  ， . It follows that 

1

min

( ) | | ( , )T T

a a rV s p v s w x v sv


 


 + + +

                          

(17)

 

Then, we design the controller as  

0 a rv s v v= − + + ,                                       (18) 

 
ˆ T

av p = −
,                                            

(19)
 

 
ˆ ( , )ˆ ( , ) tan( )

T
T a

r a

v

s w x v
v w x v





= −                                   (20) 

1 1 1
ˆ ˆp s h p  = −

,                                         
(21)

 

2 2 2
ˆ ˆ| | ( , )as w x v h   = − ,                                (22)                      

where
0 1 2 1 20, 0, 0, 0, 0, 0.vh h          

4. CONVERGENCE ANALYSIS 

Theorem 1: For the closed-loop system comprised of equations (1), (18)-(22), all signals are bounded, and the system is 

stable in the meaning that  
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2

1

2
lim | ( ) |t s t




→                                           (23) 

The definitions of 1 and 2  are available in (31). 

Proof: 

By substituting equation (18) into equation (17), we have 

 

2

1 0

2

0

2

0

ˆ ( , )ˆ| | ( , ) ( , ) tan( )

ˆ ( , )ˆ ˆ ˆ   | | ( , ) | | ( , ) | | ( , ) ( , ) tan( )

ˆ ˆ  | | ( , ) | | ( , ) ( , ) t

T
T T T a

a a

v

T
T T T T T a

a a a a

v

T T T T

a a a

s w x v
V s sp s w x v s w x v

s w x v
s sp s w x v s w x v s w x v s w x v

s sp s w x v s w x v s w x v


   




     



    

 − + + −

= − + + − + −

= − + + + −
ˆ ( , )

an( )
T

a

v

s w x v



       

(24) 

       

By Lemma 1, we obtain 

ˆ ˆ( , ) ( , )ˆ ˆ ˆ ˆ| | ( , ) ( , ) tan( ) | ( , ) | ( , ) tan( ) 0.2785
T T

T T T Ta a
a a a a v

v v

s w x v s w x v
s w x v s w x v s w x v s w x v

 
    

 
−  −      

 

(25)  

Then, combining equation (23) with equation (24) leads to  

2

1 0 | | ( , ) 0.2785T T

a vV s sp s w x v    − + + +
                      

     (26) 

Define a Lyapunov function as 

2 1

1 22 2

T Tp p
V V

 

 
= + +

,    

A direct calculation gives                                                   

2

2 0 1 1 1

1

2 2 2

2

2

0 1 2

1
ˆ| | ( , ) 0.2785 ( ( ))

1 ˆ      ( ( | | ( , ) ))

  0.2785 ( ) ( )

T T T

a v

T

a

T T

v

V s sp s w x v p s h p

s w x v h

s p h p p h

      


   


    

 − + + + + − −

+ − −

 − + + − + −

      (27) 

Using basic algebra operations, we have 

1

1 1 1 1

1 1 1

( )

( ) ( )
2 2 2

T

T T T T

T T T

p h p p

h p p h p p h p p h p p

h h h
p p p p p p p p

−

= − + − +

= − − − − +

                          (28) 

and  
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2

2 2 2 2

2 2 2

( )

( ) ( )
2 2 2

T

T T T T

T T T

h

h h h h

h h h

  

       

       

−

= − + − +

= − − − − +

                       (29) 

According to equations (28) and (29, we obtain 

2 1
2 0 1 1 2 2 2

1 2

1
0 1 1 2 2 2 2

1 2 2

1 1 1
2 0.2785

2 2 2 2

   min(2 , , ) 0.2785
2

  

T T T T

v

T T

v

h
V s h p p h p p h

h
h h V p p h

V

       
  

     

 

 − −  −  + + +

 −  + + +

= − +

（ ）

             (30)  

where  

1
1 0 1 1 2 2 2 2min(2 , , ),  0.2785

2

T T

v

h
h h p p h       = = + + .                    (31) 

From equation (30), we have 

1 2 2
2 2

1 1

( )  e [ (0) ] +
t

V t V
  

 

−
 − , 

which implies  

12 2 2
2

1 1

1
e [ (0) ] +

2

t
s V

  

  

−
 − . 

Further, we obtain 

2

1

2
lim | ( ) |t s t




→  . 

Hence, we can get good control precision by choosing proper value of 1 . On the other hand, from equation (30), we 

can see 
2 ( ) V t  is bounded. The boundedness of ,p   and s may be obtained directly. Further, we can check all signals 

in the closed-loop system are bounded. 

5. NUMERICAL SIMULATION 

A numerical simulation was carried out to verify the effective of control algorithm for the controlled system (7), in which 

1 2 1 20.5sin( ) 0.1sgn( )vd x x x x= + ,
1 2(0) 3, (0) 0,x x= =  

1, ( ) cos(0.4 ),dx t t= 2, (0) 0.4 sin(0.4 )dx t = − , 
0 10.9, 1,c c= =  

2 1.5,c =  
3 4,c =  1,uc =  

0 02,  =10Kg.cm,  4cm, 0.5V, 20cm.vb J r u l= = = =  

The control algorithm (17)-(19) is adopted for simulation with  = 2,s 0 1 210 5, 5,  = = =,  
1 22, 2, 0.1.vh h = = =  

The actuator fault is 0.50.6 0.4e t −= + ,   is a random number between -0.50 and 0.50. Figures 2 and 3 show both 

angle signal and angular velocity signal may asymptotically track their desired trajectories. The curves of angle tracking 

error and angular velocity tracking error are respectively shown in Figures 4 and 5, which converge to the 
neighbourhood of zero. The value of control input is illustrated in Figure 6. It can be seen that the signal of control input 

is smooth and continuous.  
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Figure 2. Angle trajectory 1x . 

 

Figure 3. Angular velocity trajectory 2x . 

 

Figure 4. Angle tracking error. 
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Figure 5. Angular velocity tracking error.  

 

Figure 6. Control input. 

6. CONCLUSION 

A robust adaptive control approach is developed for a PAM actuated mechanism with both multiplicative and additive 

actuator faults. The unknown parameters are estimated by using adaptive learning strategy, and nonparametric 

uncertainties are compensated for according to robust adaptive strategy. The filtering error of the system asymptotically 

converges to the neighborhood of zero. The boundedness of all signals is guaranteed. 
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