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Abstract. Real-time three-dimensional (3-D) reconstruction of epithe-
lial structures in human mammary gland tissue blocks mapped with
selected markers would be an extremely helpful tool for diagnosing
breast cancer and planning treatment. Besides its clear clinical appli-
cation, this tool could also shed a great deal of light on the molecular
basis of the initiation and progression of breast cancer. We present a
framework for real-time segmentation of epithelial structures in two-
dimensional (2-D) images of sections of normal and neoplastic mam-
mary gland tissue blocks. Complete 3-D rendering of the tissue can
then be done by surface rendering of the structures detected in con-
secutive sections of the blocks. Paraffin-embedded or frozen tissue
blocks are first sliced and sections are stained with hematoxylin and
eosin. The sections are then imaged using conventional bright-field
microscopy and their background corrected using a phantom image.
We then use the fast-marching algorithm to roughly extract the con-
tours of the different morphological structures in the images. The re-
sult is then refined with the level-set method, which converges to an
accurate (subpixel) solution for the segmentation problem. Finally, our
system stacks together the 2-D results obtained in order to reconstruct
a 3-D representation of the entire tissue block under study. Our
method is illustrated with results from the segmentation of human and
mouse mammary gland tissue samples. © 2004 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1699011]

Keywords: breast cancer, molecular analysis, automatic segmentation, 3-D recon-
struction, fast-marching, level set.
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1 Introduction
The mature mammary gland is a treelike organ made up o
three different levels of branching ducts converging at the
nipple.1 The ducts are lined by epithelial cells and end in
secretory lobuloalveolar structures, which are the sites of milk
production during lactation. In cancer, this hierarchical orga-
nization is disrupted by uncontrolled growth of the epithe-
lium, and sometimes by the subsequent invasion of the su
rounding tissue.2 These morphological or structural changes
are accompanied by other genetic and epigenetic changes
the cellular level~see Fig. 1!. An example of this is seen in
ductal carcinomain situ ~DCIS!, which is a preinvasive form
of cancer. In DCIS, the molecular changes common in breas
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cancer can be observed together with well-defined morp
logical patterns, such as comedo or cribiform ones, with
without central necrosis.3,4

An interesting problem is the quantification of these g
netic or molecular changes in the context of the tissue en
ronment where they occur. In this way, by looking at canc
as an organ that is inherently heterogeneous and dynamic
believe that we will obtain a better understanding of t
events that drive the progression of the disease. There
since the normal mammary gland and its neoplastic varia
are neither flat nor homogeneous, the approach to this p
lem should be three-dimensional as well, and take into
count the heterogeneity of the gland. However, most clas
methods in biology focus on only a single type of abnormal
~molecular or morphological! and/or neglect three-
dimensionality and heterogeneity.

Although imaging of both tissue structure and functionin
vivo would be extremely desirable, the existingin vivo imag-
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Automatic segmentation of histological structures . . .
Fig. 1 Morphological and genetic alterations in breast cancer. The images show two optical sections of human mammary gland tissue acquired
using a confocal laser scanning microscope; nuclei are displayed in red; a probe for a certain DNA sequence in chromosome 17 is shown in green.
(a) Normal tissue; as expected, each nucleus contains up to two green signals (up to two copies of chromosome 17 per nucleus in a single optical
section). (b) Neoplastic lesion; not only do some nuclei contain more than two copies of the probe, but they also have distinct morphological
changes that can be observed in this section.
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ing methods~x-ray, magnetic resonance imaging, optical to-
mography, etc.! do not provide the necessary resolution for
cell-level molecular analysis. In addition, these methods pro
vide morphological information that can only be indirectly
related to the function of the tissue. Consequently,ex vivo
microscopic analysis of the tissue from flat fixed sections is
the routine method in histopathology. However, the limited
ability of the human eye to extrapolate and visualize 3-D
structures from sequences of 2-D scenes renders this meth
unsuitable for quantitative 3-D tissue characterization. To
overcome these issues, we have developed a system for sim
taneous morphological and molecular analysis of thick tissu
samples.5 The system consists of a computer-assisted micro
scope and a JAVA-based image display, analysis, and visua
ization program~R3D2!. R3D2 allows semiautomatic acqui-
sition, annotation, storage, 3-D reconstruction, and analysis o
histological structures~intraductal tumors, normal ducts,
blood vessels, etc.! from thick tissue specimens. For this pur-
pose the tissue needs to be embedded in a permanent or se
rigid medium after collection. The tissue is then fully sec-
tioned, and the resulting sections are stained in a way tha
visually highlights the desired structures. In histopathology
hematoxylin and eosin~H&E! is the most common combina-
tion of dyes used to observe the morphology of the tissue. In
order to image not only structure, but also molecular events
we alternate H&E staining with fluorescent staining~immun-
ofluorescence, fluorescencein situ hybridization! of proteins
and selected genes in consecutive sections.

This paper focuses on the annotation of the structures o
interest on the H&E-stained sections. Manual segmentatio
has been used before to delineate histological structures.6–8 In
order to build the 3-D reconstruction of the block, we initially
annotated each of the interesting features of the tissue on ea
section by using manually drawn contours. This step consti
tuted a bottleneck in the study of samples. Semiautomati
approaches to segmentation of features of interest in histolog
cal sections have also been used,9 but they still involve too
much user interaction to be useful for reconstructing large
tissue samples. Automatic segmentation of the structures o
d
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interest is the answer to this problem. We propose an a
matic method followed by interactive correction that grea
reduces the amount of interaction required, thus allowing
to use our system for imaging and reconstruction of lar
complex tissue structures.

Automatic extraction of contours in 2-D images is usua
done with active contour models, originally presented by K
et al.10 These methods are based on deforming an initial c
tour ~polygon! toward the boundary of the desired object
extract in an image. The deformation is achieved by minim
ing a certain energy function, which is computed by integr
ing along the contour, terms related to its continuity, a
terms related to the pixel values of the area of the ima
where the contour is defined. That energy function approac
a minimum near the object’s boundary, and thus the mini
zation process drives the curve toward the desired shape

As an alternative, implicit surface evolution models ha
been introduced by Malladi et al.11,12 and Caselles et al.13 In
these models, the curve and surface models evolve unde
implicit speed law containing two terms, one that attracts it
the object’s boundary and another that is closely related to
regularity of the shape. Specifically, the proposal is to use
level-set approach of Osher and Sethian.14 This is an interface
propagation technique used for a variety of applications,
cluding segmentation. The initial curve is represented here
the zero level set of a higher dimensional function, and
motion of the curve is embedded within the motion of th
higher dimensional function. An energy formulation similar
the active contours leads to a minimization process with s
eral advantages. First, the zero level set of the higher dim
sional function is allowed to change topology and form sha
corners. Second, geometric quantities such as normal and
vature are easy to extract from the hypersurface. Finally,
method expands straightforwardly to 3-D,15 but adding a di-
mension to the problem increases the computational cos
sociated with the method. The narrow-band approach of
alsteinsson and Sethian16 accelerates the level-set flow b
considering for computations only a narrow band of pixe
around the zero level set. However, in our experience,
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 445



Fernandez-Gonzalez et al.
Fig. 2 Protocol followed on tissue blocks. The different steps (sectioning, annotation, reconstruction, high-magnification acquisition, and molecular
analysis) are illustrated. Samples are fully sectioned at 5 mm (step 1). The odd sections are stained with H&E, the even ones with some kind of
fluorescence technique (application dependent). Images are acquired of all the sections (step 2), and the structures of interest are delineated in the
H&E-stained ones (step 3). A 3-D reconstruction of the specimen is created from these markings (step 4). From the 3-D reconstruction of the tissue,
different areas can be selected for molecular analysis (step 5). The system will take high-magnification images of those areas on the corresponding
fluorescent sections (step 6). Image analysis tools can then be used to quantify the presence and distribution of molecular markers in the
high-magnification images (step 7).
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narrow-band technique does not reduce the computation
cost to a reasonable limit, owing to the large size of the im-
ages of the sections.

Thus we propose to use the fast-marching method.17 This
method considers monotonically advancing fronts~speed al-
ways positive or negative!, providing a result very quickly,
albeit one that is not as accurate as the one obtained by usin
the level-set algorithm. Malladi and Sethian18 showed that the
fast-marching method can be used as the initial condition fo
the slower but more accurate level-set segmentation, obtain
ing real-time delineation of the structures of interest. A com-
bination of all these tools is the framework we use to recon
struct normal and cancerous ducts in mammary gland tissu
sections of DCIS samples.

This paper is organized as follows. Section 2 describes th
general tissue handling and image acquisition protocols tha
we use, as well as the theoretical basis of the segmentatio
scheme; Sec. 3 shows the results of applying our method t
histological tissue sections; and Sec. 4 discusses the resu
and suggests some future developments and improvements
our approach.

2 Methodology
2.1 Tissue Processing and Imaging
The tissue processing and staining protocol used is illustrate
in Fig. 2. Tissue blocks of 4- to 5-mm thickness were sliced
into 5 mm ~thin! sections~step 1!. The odd sections were
stained with H&E to obtain morphological information at
both the cytological~single cell! and architectural~organ! lev-
els. The even sections were stained using some fluorescen
technique~e.g., immunocytochemistry, fluorescencein situ
446 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
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hybridization!, depending on the molecular phenomena t
we wanted to study. Describing the acquisition and analysi
the fluorescent images is out of the scope of this paper, wh
focuses on the segmentation of epithelial structures in
H&E-stained sections. Therefore the rest of this section
scribes only the protocol used for the H&E-stained sectio
Low magnification~2.53!, panoramic images of all the sec
tions were automatically acquired using a motorized Ze
Axioplan I microscope coupled with a monochrome XilliX
Microimager CCD camera~step 2!. To create these large pan
oramic images, the system scanned the entire section, ta
single-field-of-view snapshots and tiling them together in
single, whole-view images of the sections. The required
quence of microscope movements and camera operation
produced by an application running on the Sun Ultra 10 wo
station that controls the camera and all moving parts of
microscope.

Next we annotated the structures of interest~ducts, lymph
nodes, tumors! in the images of the H&E-stained section
~step 3!. These annotated structures were used to produ
three-dimensional model of each tissue block~step 4!.

These four initial steps are the focus of this paper. Ho
ever, to better understand the rationale for the process,
briefly describe the final three steps, which are out of
intended scope for this paper. The user can choose to re
areas in the three-dimensional rendition of the organ, base
their morphology. This can be done on the H&E sections
on the intermediate fluorescent sections. To do so, the sys
requires the user to acquire high-magnification~40 to 1003!
images of the corresponding section~s! ~steps 5 and 6!. If the
high-magnification images are taken from the intermedi
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Fig. 3 Background correction. (a) Image of a section belonging to a human case. The background pattern created by the acquisition method is
readily noticeable. (b) Same image after background correction.
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immunofluorescent sections, quantification routines can b
run on these new images~step 7!.

Manually annotating all the relevant morphological struc-
tures in all the sections of fully sectioned tissue blocks is
feasible but, for all purposes, impractical because of the tre
mendous human effort needed. Although it might be the mos
accurate and reliable approach, manual annotation is not po
sible except when reconstructing small, very simple tissue
volumes. As a result, we have developed automatic method
that eliminate or greatly reduce human interaction, thus mak
ing the reconstruction of complex systems possible. The fol
lowing discussion describes our approach.

2.2 Segmentation

2.2.1 Background removal
The algorithm that we use to acquire an image of an entire
section creates a mosaic from a set of snapshots~one per field
of view!. This approach gives rise to a background pattern
across the image@Fig. 3~a!# involving relatively large gradi-
ents in between elements of the mosaic. The objects of inte
est often span several fields of view, and since our segment
tion approach depends largely on the gradients of the image
we need to eliminate the background pattern in order to obtai
good segmentation results. This can be done by performing
set of arithmetic operations on the ‘‘mosaic’’ image, known as
background compensation.

First we need a phantom, that is, an image of an empt
field of view taken under the same illumination conditions
and microscope configuration that we used to acquire the in
tial image. Since most of the images that we acquire have a
empty frame in the upper left corner, it is simple to choose
that frame as our phantom for the corresponding section. Afte
normalizing the pixel values in the phantom, and for each
frame in the entire image, we divide the value at each pixel by
the value at the corresponding pixel in the phantom frame
The resulting image is background-corrected as shown in Fig
3~b!, and it is a better input for our segmentation algorithms.

2.2.2 Preliminary segmentation: fast-marching
method
Consider a monotonically advancing 2-D frontC with a speed
F that is always positive in the normal direction, starting from
an initial pointp0 ,
-

s

-
-
,

.

]C

]t
5Fn. ~1!

This equation drives the evolution of a front starting from
infinitesimal circular shape aroundp0 until each pointp inside
the image domain is visited and assigned a crossing t
U(p), which is the timet at which the front reaches pointp.

The gradient of the arrival time is inversely proportional
the speed function, and thus we have a form of the eiko
equation

u¹UuF51 and U~p0!50. ~2!

One way to solve Eq.~2! is to use upwind finite-difference
schemes and iterate the solution in time.15 In other words, the
scheme relies on one-sided differences that look in the upw
direction of the moving front, thereby choosing the corre
viscosity solution, namely

@max~u2Ui 21,j ,u2Ui 11,j ,0!#2

1@max~u2Ui , j 21 ,u2Ui , j 11,0!#25
1

Fi , j
2

. ~3!

The key to solving this equation rapidly is to observe th
the information propagates from smaller values ofU to larger
values in the upwind difference structure in Eq.~3!. The idea
is to construct the time surface, one piece at a time, by o
considering the ‘‘frontier’’ points; we detail the fast-marchin
method in Table 1.

Note that in solving Eq.~3!, only alive points are consid
ered. This means that for each point, the calculation is m
using the current values ofU at the neighbors, and not est
mates at other trial points. Considering the neighbors of
grid point ( i , j ) in 4-connectedness, we designate$A1 ,A2%
and$B1 ,B2% as the two couples of opposite neighbors so t
we get the orderingU(A1)<U(A2), U(B1)<U(B2), and
U(A1)<U(B1). Since we haveu>U(B1)>U(A1), we can
derive

@u2U~A1!#21@u2U~B1!#25
1

Fi , j
2

. ~4!

Computing the discriminant~D! of Eq. ~4!, we complete the
steps described in Table 2. Thus the algorithm needs only
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 447



f

f

of
f

al

di-
el

the
e-
or

ay
the
used

hing
9.
en
e
ly
of
so

this
the

om-

ame
-

tain
are
,
od

tial

e of
to
to

dea
of a
nc-

x-
els

-

an
he
n

-

gy

Fernandez-Gonzalez et al.
pass over the image to find a solution. To execute all the
operations that we just described in the minimum amount o
time, the trial points are stored in a min-heap data structure.17

Since the complexity of changing the value of one element o

Table 1 Fast-marching algorithm.

Algorithm for 2-D Fast Marching

d Definitions:

Alive set: all grid points where the action value U has
been reached and will not be changed;

Trial set: next grid points (4-connectedness neighbors) to
be examined. An estimate U of U has been computed using
Eq. (3) from Alive points only (i.e., from U);

Far set: all other grid points, where there is no estimate
for U yet;

d Initialization:

Alive set: reduced to the starting point p0 , with U(p0)
5U(p0)50;

Trial set: reduced to the four neighbors p of p0 with
initial value U(p)51/F(p) (U(p)5`);

Far set: all other grid points, with U5`;

d Loop:

Let p5(imin,jmin) be the trial point with the smallest action
U;

Move it from the trial to the alive set (i.e., U(p)
5Uimin ,jmin

is frozen);

For each neighbor (i,j) (4-connectedness in 2-D) of
(imin ,jmin);

If (i,j) is far, add it to the trial set and compute Ui,j using
Eq. (3);

If (i,j) is trial, update the action Ui,j using Eq. (3).

Table 2 Solving the upwind scheme locally.

1. d If D>0, u should be the largest solution of Eq. (4);

If the hypothesis u.U(B1) is wrong, go to 2;

If this value is larger than U(B1), this is the solution;

d If D<0, B1 has an action too large to influence the
solution. It means that u.U(B1) is false. Go to 2;

Simple calculus can replace case 1 by the test:

If 1/Fi,j.U(B1)2U(A1), u5U(B1)1U(A1)1$21/Fi,j
2

2@U(B1)2U(A1)#2%1/2/2 is the largest solution of Eq. (4)
else go to 2;

2. Considering that we have u,U(B1) and u>U(A1), we
finally have u5U(A1)11/Fi,j .
448 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
the heap is bounded by a worst-case processing time
@O(log2 N)#, the total algorithm has a complexity o
O(N log2 N) on a grid withN nodes.

Finally, we define the speed of propagation in the norm
direction as a decreasing function of the gradientu¹I (x)u,
that is, a function that is very small fnear large image gra
ents~i.e., possible edges! and large when the brightness lev
is constant:

F~x!5exp2au¹I ~x!u, a.0, ~5!

wherea is the edge strength, or the weight that we give to
presence of a gradient in order to slow down the front. D
pending on this value, the speed function falls to zero more
less rapidly, and thus it could stop a few grid points aw
from the real edge. Also, variations in the gradient along
boundary can cause inaccurate results. False gradients ca
by noise can be avoided using an edge-preserving smoot
scheme on the image as a preprocessing step; see Ref. 1

The user can run the fast-marching method from a giv
set of initial points~mouse clicks on the background of th
images!. Alternatively, the user can decide to segment on
the structures within a manually defined rectangular region
interest. If the region is too big, subsampling can be used
that the segmentation process is not too slow. However,
option must be used carefully, since subsampling smooths
boundaries of the objects present in the image and can c
pletely obliterate smaller structures. The resulting contour~or
contours if we are segmenting several objects at the s
time! will provide an excellent initial condition for the level
set method.

Putting all of these elements together, we are able to ob
a good approximation of the shape of the object that we
trying to segment~Fig. 5!. In order to improve the final result
we propose to run a few iterations of the level-set meth
using the result of the fast-marching method as the ini
condition.

2.2.3 Final segmentation: level-set method
Once we have obtained a good approximation of the shap
the object using the fast-marching algorithm, we can afford
use the more computationally expensive level-set method
improve the result of the segmentation. The essential i
here is to embed our marching front as the zero level set
higher dimensional function. In our case, we take that fu
tion to bef(x)56d, whered is the signed distance fromx
to the front~see Fig. 4!, assigning negative distances for pi
els inside the evolving curve, and positive distances for pix
outside it.

Following the arguments in Ref. 14, we obtain the follow
ing evolution equation:

f t1F~x,y!u¹fu50, ~6!

whereF is again the speed in the normal direction. This is
initial-value partial differential equation, since it describes t
evolution of the solution on the basis of an initial conditio
defined asf(x,t50)5f0 . As pointed out earlier, the level
set approach offers several advantages:

• The zero level set of the function can change topolo
and form sharp corners.
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Automatic segmentation of histological structures . . .
Fig. 4 Basic concept behind the level-set method. The marching front
is embedded as the zero level set of a higher dimensional function.
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• A discrete grid can be used together with finite differ-
ences to approximate the solution.

• Intrinsic geometric quantities such as normal and curva
ture can be easily extracted from the higher dimensiona
function.

• Everything extends directly to 3-D.

To mold the initial condition~in our case the result of the
fast-marching method! into the desired shape, we use two
force terms. By substituting these two terms in the motion
equation18,20 we get:

f t2g~12ek!u¹fu2b¹g3¹f50, e.0, b.0,
~7!

whereg is an edge indicator function defined by the speed o
the front@Eq. ~5!# in the eikonal Eq.~2!; k is the curvature of
the expanding front, andf t is the unknown that we are trying
to compute. As before, the imageI (x) can be preprocessed
using an edge-preserving smoothing scheme.

The second term of the equation has two components. Th
first one slows the surface in the neighborhood of high gradi
ents~edges!, while the second one~motion by curvature! pro-
vides regularity to the curve. The parametere is the weight of
the motion by curvature term, and determines the strength o
its regulatory effect: the bigger we makee, the more we limit
f

the possibility of obtaining sharp corners and irregular co
tours. In practice, an intermediate value ofe provides a good
trade off between contour smoothing and accuracy.

Finally, the last term of the equation attracts the front
the object’s boundaries. It aligns all the level sets with t
ideal gradient, which would be a step function centered at
point of maximum gradient in the original image.b is the
weight of the advection of the front by the edge vector fie
¹g. It determines the strength of the attraction of the front
the edges.

At times, for very small objects, it is possible to use t
level-set method from the initial point. However, for any typ
of morphological structure, we can use the result of the ei
nal Eq. ~2!, U(x,y), as the initial condition for the level-se
algorithm: f(x,y;t50)5U(x,y). Then by solving Eq.~7!
for a few time steps using the narrow-band approach, we
tain an accurate, real-time segmentation of the desired ob
~see Fig. 5!.

3 Results
In this section we consider the problem of reconstruct
DCIS areas in a tissue biopsy of a cancerous human breas
well as a group of normal ducts through an entire mou
mammary gland. The tissue samples were sliced for a tota
55 sections in the human tissue and 206 sections in the m
one. We used all of the sections for the reconstruction of
human case and 40 sections for reconstruction of the mo
case. Manually delineating all the structures in every sec
is an extremely time-consuming process. To automatic
segment those structures using the framework describe
Sec. 2, we begin by defining a region-of-interest~ROI! where
we will run the segmentation algorithm. This ROI can
extended to cover the entire section, but considering the
of the images, it is wise to use subsampling in order to run
algorithm in real time. The level of subsampling can be d
termined by the user; greater subsampling can be used
large ROIs without compromising the resolution and accura
of the final segmentation.

After defining the ROI, we have to tune the different p
rameters of the segmentation process, particularlya @Eq. ~5!#
Fig. 5 The segmentation of a lymph node in a mouse mammary gland section is shown in black. (a) The result of the fast-marching method; it
provides a good approximation to the boundaries of the lymph node; the blue point in the middle of the lymph node is the initial contour from
which the algorithm was run. (b) The result of using the level-set method after the fast-marching method; the final contour is more accurate and
smoother. In both cases the images were subsampled in the x and y directions to be able to run the segmentation in real time.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 449



Fernandez-Gonzalez et al.
Fig. 6 Segmentation of a DCIS tumor in human mammary gland tissue. (a) Segmentation using just the level set method. The blue dot represents
the initial contour. (b) Results of the full segmentation with blue lines delineating tumor masses. (c) Results after editing using the interactive tools
provided by the system.
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ande @Eq. ~7!#. This is done by the user based on the default
values provided by the algorithm and the type of object tha
he or she is trying to segment. However, we have observe
that a particular set of parameters is frequently good enoug
to segment similar structures~i.e., all the tumors, all the ducts,
all the lymph nodes! throughout all the sections of a particular
tissue block. Thus the user only needs to modify the param
eters the first time that he or she tries to segment a new typ
of morphological element in the tissue.

After selecting the parameters of the flow, initial points are
defined inside~to find the internal contour! or outside~to find
the external contour! the structures of interest. In most cases
one computer mouse click is enough, although large image
may require several evenly distributed clicks. The value of
U(x) at these points is set to zero as in Eq.~2!, and the
fast-marching algorithm of Table 1 is executed. When this
method finishes, the finalU(x) function is passed as the ini-
tial condition to the level-set motion Eq.~7!. We then iterate
this equation for a few steps. This segmentation scheme pro
vides a result in less than 1 s for images whose size~after
subsampling, if any! is around 2 kbytes~e.g., 5123512 pix-
els! running on a Sun Ultra 10 workstation with 1 Gbytes of
RAM.

3.1 Human Case Segmentation
Figure 6 displays the result obtained with the combination o
the fast-marching and the level-set methods in a tissue biops
from a patient with an intraductal carcinoma. Figure 6~b!
450 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
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shows the segmentation of a tumor mass in a human tis
block. The results of the segmentation can be edited and
moved with the interactive tools provided by our system@see
Fig. 6~c!#. For this segmentation, an area was selected aro
the structures of interest and no subsampling was used.
initial contours are represented by blue points in Fig. 6~a!.

3.2 Mouse Case Segmentation
In Fig. 7 we can see the segmentation of the external cont
of several ducts in a particular area of a mouse mamm
gland. In this case we also run the algorithm on an ROI
one of the sections with no subsampling factor. Figure 7~a!
displays the points where we initialized the contours. Figu
7~b! and 7~c! show the results of the segmentation before a
after interactive correction of the results, respectively.

3.3 3-D Reconstruction
Finally the segmented shapes are connected~manually! be-
tween sections, and 3-D reconstructions of the samples
built. Figure 8 shows a reconstruction of the tumors contain
in the human tissue block, including the tumor shown in F
6. Increasing the ‘‘motion by curvature’’ term, as described
Sec. 2, can reduce surface noise. In Fig. 9 we can see
reconstruction of the normal ducts segmented in the image
the mouse mammary gland~see one of the corresponding 2-
segmentations in Fig. 7!.
Fig. 7 Segmentation of normal ducts in a mouse mammary gland tissue sample. (a) Initial data. (b) Results of the segmentation (red lines delineate
normal ducts). (c) Results after editing using the interactive tools provided by the system.
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Fig. 8 3-D reconstruction of tumors in a human mammary gland tis-
sue block. Tumor masses are rendered as gray volumes. The scene
was stretched ten times in the z direction to obtain a better view.
h

e

s

f

e

ati-
ed
rate
li-

igh
ave
tion

hus
ere-

of
om-
hed
hod

the
pat-
ient
3.4 Further Examples
Figures 10 and 11 show two more examples of the results tha
can be obtained with our segmentation approach. In bot
cases the initial ROI was subsampled by a factor of 2 in both
the x and y directions. The same segmentation parameters~a
ande! were used for both examples.

Figure 10~a! shows a DCIS lesion together with a normal
duct in a human tissue section. Both structures were seg
mented at the same time using a single initial point, as can b
seen in Fig. 10~b!. Figure 10~c! shows the results incorporated
to the full resolution image.

In Fig. 11~a!, a terminal ductal lobular unit~TDLU! can be
observed. These are lobuloalveolar structures where milk i
produced during lactation in the human breast. The multiple
alveoli that form the TDLU, together with the presence of a
ductal part, make automatic segmentation of this type o
structure a difficult task. However, after subsampling the im-
age, our algorithm is able to find a contour that surrounds th
entire structure@Figs. 11~b! and 11~c!#, thus allowing its 3-D
reconstruction.
t

-

4 Discussion
We have developed a microscopy system that semiautom
cally reconstructs histological structures from fully section
tissue samples. However, the interaction required to ope
the system is quite intensive, limiting the scope of its app
cation to small tissue volumes or to studies not requiring h
throughput analysis of the samples. In this paper we h
presented a method that reduces the time and interac
needed to build the 3-D reconstruction of a tissue block, t
increasing the potential throughput of the system and th
fore allowing us to use this approach for the reconstruction
large, complex specimens. To achieve this goal we have c
bined image processing techniques and two well-establis
schemes for interface propagation: the fast-marching met
and the level-set method.

Our approach starts by correcting the background of
images. This is an important step, since the background
tern generated during image acquisition modifies the grad

Fig. 9 3-D reconstruction of normal ducts in a mouse mammary
gland. The ducts are rendered as gray volumes. A single duct and its
branches can be traced throughout the gland. The z direction was not
stretched in this case.
Fig. 10 Segmentation of a different DCIS tumor in human mammary gland tissue. (a) The duct on the-left contains a DCIS lesion with a necrotic
center; the one on the right is normal. (b) The ROI was subsampled by a factor of 2 in both the x and y directions; the blue dot represents the initial
seed. (c) Results of the segmentation on the full-resolution image.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 451
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Fig. 11 Segmentation of a terminal ductal lobular unit in a human mammary gland. (a) The duct on the left contains a section of a TDLU, one of
the sites of milk production in the human breast. (b) The ROI was subsampled by a factor of 2 in both the x and y directions; the blue dot represents
the initial seed. (c) Results of the segmentation on the full-resolution image.
e

is

,

-

o

to

s
-
f

t
g
l
t
n

e

o
’s

is
c-
s of
ec-

tric
nal
b-

the
lly
the

nts
ow-
g-

for
m-
of

n in
ap-
first

m-
to
east
nd
for
er-
nd
ar
the
w,
tain
u-

er
e
rch
of the image, and the speed function that we use for interfac
propagation depends on that gradient. Once the backgroun
has been corrected, we run the fast-marching method. Th
technique provides a good approximation of the boundaries o
the objects that we are trying to segment in a very short time
since it assumes monotonic speed functions~always positive
or always negative!. We then use the approximation provided
by the fast-marching method as the initial condition for the
level-set method. This more computationally expensive algo
rithm is run for just a few steps, enough to fit the front to the
contours of the structures of interest, but not as many as t
make the segmentation too time-consuming.

Though this approach is very useful, it can still be im-
proved. The most accurate segmentations~and reconstruc-
tions! are obtained on full-resolution images. However, for
some large structures, such as lymph nodes, or when trying
delineate multiple elements at the same time~for example, a
group of ducts!, segmentation on a full-resolution image is not
real time, and can take up to 1 min. Using subsampling take
the segmentation execution time back to real time at the ex
pense of some accuracy loss. Also, in areas with a lot o
texture in the tissue around the ducts~stroma!, tuning the
parameters of the algorithm~a ande! becomes more difficult.
At times this process can take a few trials, since the expand
ing front tends to get trapped in high gradients that do no
correspond to the boundaries of the feature that we are tryin
to segment, but to the texture of the stroma. Finally, once al
the structures of interest have been segmented, the user s
needs to manually connect them between sections. This co
stitutes a new bottleneck in the tissue analysis process.

For these reasons, we are currently working on a time step
independent scheme that is expected to be faster than the cu
rent one. To improve the accuracy of the results, we hav
developed an edge-preserving smoothing algorithm based o
the Beltrami flow,19 which can replace the Gaussian smooth-
ing currently used before executing the segmentation meth
ods. This algorithm eliminates false gradients that are due t
noise, while enhancing gradients that are due to the object
boundaries, thus allowing the front to fit the boundaries of the
452 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
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object more accurately. Finally, the level-set approach
readily extensible to 3-D. The ability to segment 3-D stru
tures of interest versus 2-D ones would save the proces
connecting the segmented 2-D contours from section to s
tion, thus improving the analysis time. Also, since geome
properties can be easily extracted from the higher dimensio
function used in the level-set algorithm, we could readily o
tain some information about the extracted volume from
segmentation algorithm itself. We are also working on a fu
interactive segmentation method based on the model of
intelligent scissors,21 because the selection of the seed poi
for segmentation is something that cannot be automated,
ing to the high variability in the shapes of object’s to be se
mented.

In conclusion, we have presented a real-time method
automatic segmentation of morphological structures in ma
mary gland tissue sections. It is precisely the delineation
those structures that required the heaviest user interactio
our sample analysis protocol. Therefore, the automatic
proach to segmentation that we describe here represents a
step toward real-time reconstruction and analysis of ma
mary gland samples. Achieving that goal would allow us
accelerate our studies on the biological basis of human br
cancer. Moreover, obtaining real-time reconstruction a
analysis of samples from our system would be useful
pathological diagnosis in a clinical environment; 3-D rend
ings of all the morphological structures in a mammary gla
biopsy could be mapped with the distribution of particul
markers of breast cancer within a few hours of extracting
tissue from the patient. From an intrasurgical point of vie
the renderings would prove—tissue processing and s
permitting—an important tool in the evaluation of breast t
mors and their margins.
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