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Abstract. We describe a study of the discrimination of early mela-
noma from common and dysplastic nevus using fiber optic diffuse
reflectance spectroscopy. Diffuse reflectance spectra in the wave-
length range 550 to 1000 nm are obtained using 400-�m core mul-
timode fibers arranged in a six-illumination-around-one-collection ge-
ometry with a single fiber-fiber spacing of 470 �m. Spectra are
collected at specific locations on 120 pigmented lesions selected by
clinicians as possible melanoma, including 64 histopathologically di-
agnosed as melanoma. These locations are carried through to the his-
topathological diagnosis, permitting a spatially localized comparison
with the corresponding spectrum. The variations in spectra between
groups of lesions with different diagnoses are examined and reduced
to features suitable for discriminant analysis. A classifier distinguishing
between benign and malignant lesions performs with sensitivity/
specificity of between 64/69% and 72/78%. Classifiers between
pairs of the group common nevus, dysplastic nevus, in situ melanoma,
and invasive melanoma show better or similar performance than the
benign/malignant classifier, and analysis provides evidence that differ-
ent spectral features are needed for each pair of groups. This indicates
that multiple discriminant systems are likely to be required to distin-
guish between melanoma and similar lesions. © 2005 Society of Photo-
Optical Instrumentation Engineers. �DOI: 10.1117/1.2135799�
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1 Introduction

Among the wide variety of skin cancers, cutaneous melanoma
stands out as the major cause of fatality, and its incidence
continues to increase.1 Early detection and removal is critical,
as the prognosis for melanoma worsens with lesion thickness.
Data from an American cancer registry show a five-year sur-
vival rate for thin melanoma to be close to 100%, whereas
ulcerated invasive lesions exceeding 4 mm in thickness, even
without recorded metastases, have a five-year survival rate of
45%.2 Early diagnosis is vital but problematic. Unaided visual
examination of pigmented lesions by a physician is the most
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common technique, but studies report unsatisfactory diagnos-
tic accuracy �compared with histopathology� ranging from 563

to 85%4 and high interphysician variability. A 25-year review
of melanoma in the United Kingdom revealed that a correct
clinical diagnosis was made in only 41% of cases.5 It is ap-
parent that positively distinguishing melanoma from benign
pigmented lesions is often difficult until the melanoma’s in-
vasion is advanced. Physicians overcome this difficulty by
excision of any suspicious lesions. The resulting unnecessary
excision of many benign lesions has a significant monetary
cost and causes patient discomfort and disfigurement. There is
scope for substantial improvement. We describe our research
into the noninvasive clinical diagnosis of early melanoma
based on the spectroscopy of diffuse reflectance of white light
1083-3668/2005/10�6�/064020/9/$22.00 © 2005 SPIE
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from the lesion using a fiber optic, nonimaging contact probe.
For the purposes of our study, melanoma and melanoma-

like pigmented lesions were classified into four groups.6 Com-
mon nevus �N� exhibits a proliferation of melanocytes without
severe atypia. These melanocytes are located at the dermo-
epidermal junction or in the dermis. Compound nevus are a
form of common nevus exhibiting melanocytes in both loca-
tions. In a dysplastic nevus �DN�, signs of dysplasia, includ-
ing pleomorphism �changes in the size and shape of cells and
their nuclei� are observed among melanocytes. In in situ mela-
noma �ISM�, proliferation of severely atypical melanocytes
�in a layer or in nests� is evident, but confined to the epider-
mis. Invasive melanoma �IM� exhibits abnormal melanocytes
invading the dermis. In this case, the proliferation of abnor-
mal melanocytes has extended through the basement mem-
brane of the epidermis and may eventually reach the subcutis.
Advanced invasive melanomas may exhibit metastasis, the
spreading of the melanoma to remote sites via the lymphatic
or circulatory systems. Early melanomas are primarily in situ,
but may have areas of shallow dermal invasion.

Scattering and absorption are known to characterize the
biochemical and morphological state of tissues,7 but the spec-
tral signature of melanoma compared with nevus is not well
characterized, particularly in the early stages of melanoma
development. The most definite cytological feature of malig-
nancy is nuclear pleomorphism, which is usually accompa-
nied by disorder in the tissue architecture on the scale of tens
of cells. Little is known about the differences in the distribu-
tion of melanin and melanosomes in benign and malignant
lesions, or the timing of the onset of increased blood supply to
lesions via angiogenesis, the creation of new blood vessels
from pre-existing ones. All of these features may alter the
diffuse reflectance signature.

Clinical diagnostic instruments should approach or exceed
the performance of specialist physicians. Recently quoted av-
erage values for sensitivity �percentage of malignant lesions
correctly diagnosed�, specificity �percentage of benign lesions
correctly diagnosed�, and diagnostic accuracy �their mean� are
80, 50, and 65%, respectively.8 In all studies, the gold stan-
dard is conventional histopathology. A key factor in the adop-
tion of new instruments is their ease of use; a fiber optic probe
is particularly attractive, as a measurement can be conducted
in seconds, making whole body scans possible within min-
utes. Fiber optic probes provide spatially localized informa-
tion on the scale of the fiber bundle. There has been little
research reported on their use in skin cancer diagnosis. Our
fiber-based approach employs diffuse reflectance spectros-
copy �sometimes known as elastic scattering spectroscopy9�.
It measures the modification of the spectrum of remitted light,
i.e., light that has propagated some distance into the skin,
been scattered, and recollected at the skin’s surface. This is
accomplished via a fiber optic probe usually placed in direct
contact with the skin. The first published work using nonim-
aging spectroscopic measurement of lesions was reported by
Marchesini et al.10 in 1992, who studied melanoma and nevus
with a 5-mm probe but later abandoned this approach in favor
of imaging spectroscopy.11 Zeng et al. developed a system
suitable for studying the autofluorescence or diffuse reflec-
tance of skin in vivo,12 but the system was not used to study
melanoma. The first major study of melanoma diagnosis by

13,14
fiber probe spectroscopy was conducted by Wallace et al.,
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who examined invasive melanomas and nevi. A contact fiber
probe was coupled to a spectrometer with a wavelength range
of 320 to 1100 nm. McIntosh et al.15 developed a noncontact
fiber probe coupled to a spectrometer with an extended spec-
tral range of 400 to 2500 nm, and examined a range of non-
melanoma skin lesions. Most recently, Garcia-Uribe et al.16

developed a system employing oblique fiber illumination and
a linear array of collection fibers, which they used to examine
a number of nonmelanoma pathologies.

We begin in Sec. 2 with a description of the hardware and
methods we employed to record the spectra, compare them
with histopathological diagnoses, and utilize both in the cre-
ation of a classifier. We report in Sec. 3 the performance of a
range of classifiers and consider the most important spectral
features in each. In Sec. 4, we discuss our results and consider
the wider implications, before concluding in Sec. 5.

2 Methods
The primary focus of this study was the collection of multiple
distinct white-light diffuse reflectance spectra from pigmented
lesions that were suspected of being melanoma. The subjects
recruited for the study were patients who had been evaluated
by their physician as having one or more clinically suspicious
lesions that required excision. This resulted in our clinical
dataset containing an unusually high proportion of lesions that
were difficult to diagnose clinically. The study was approved
by the Ethics Committee of the University of Western
Australia.

2.1 Spectrometer System
The instrument used to record the spectra is shown schemati-
cally in Fig. 1. Diffuse reflectance spectra in the wavelength
range 550 to 1000 nm were obtained using a pocket spec-
trometer �CVI Laser Systems, Albuquerque, NM� with a
2048-pixel linear charge-coupled device detector and spectral
resolution of 2 nm. The light source is a lamp utilizing a
regulated 2900-K tungsten-halogen bulb. The fiber probe con-
tains seven 400-�m core step-index fibers optimized for low
loss in the UV/VIS region in a close-packed six-illumination-
around-one-collection arrangement with center-center separa-

Fig. 1 Schematic diagram of the fiber probe-based skin spectroscopy
instrument.
tions of 470 �m and an outer diameter of 1.3 mm �CVI Laser
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Systems�. Data were acquired from the spectrometer via a
digital acquisition card �National Instruments�. The acquisi-
tion software was written in LabView and produced data files
suitable for further processing and analysis in Matlab.

For calibration, reference spectra from a white diffusing
reflectance standard �CVI Laser Systems� and a dark scan
were recorded using the same integration time as the measure-
ment. The fiber probe end was held at a fixed angle and dis-
tance to the reflectance standard in a blackened, light-tight
enclosure designed to eliminate secondary reflections and
stray light. This distance and angle were designed to yield a
reflectance slightly greater than that of pale skin in contact
with the probe. A standard used in a contact geometry with
optical properties closer to that of skin would be preferable,
but we know of none with sufficiently well characterized
properties. The lamp produced stable output after less than
five minutes of operation. Warm-up times of at least five min-
utes were used for all calibration and measurement. Spectra
were recorded by taking ten spectral measurements over a
period of five seconds, each with an integration time of
30 ms. These measurements were averaged to obtain the final
spectrum. Varying probe pressure did affect the spectra, but
spectra measured with this system from a small area of nor-
mal skin were found to vary by less than 5%. A trained op-
erator was able to achieve repeatability on the order of 2%.

2.2 Measurement Protocol and Histopathology
In this study, we sought �for the first time to our knowledge�
to more closely couple the process of histopathological diag-
nosis with the spatial localization provided by the fiber probe.
This was achieved in three steps: 1. record a localized spec-
trum; 2. transfer the location of the probe from the tissue in
vivo to the microscopic histological section; and 3. record a
histopathological diagnosis of a type and scale relevant to the
recorded spectrum. This last represents a major departure
from routine histopathology practice.

To determine the tissue volume over which the probe was
most sensitive, we assumed the sensitivity to tissue changes to
be proportional to the photon fluence.17 Light transmission
and collection through skin was simulated with a layered
model �to be described elsewhere� and Monte Carlo modeling
based on a modified version of the multi-layered Monte Carlo
software package �MCML�.18 We concluded that the area of
highest sensitivity was confined to a 400-�m-diam cylinder
immediately below the central collection fiber. This
cylinder had a wavelength-dependent depth range of
200 to 400 �m, extending into the papillary dermis.

2.2.1 Record a localized spectrum
To make multiple spectral measurements from different areas
of the same lesion, the skin surrounding the lesion was
marked with a 2-mm reference grid using ink that remained
visible throughout the excision and subsequent tissue process-
ing steps. These markings were used to guide the placement
of the probe via a matched template attached to it. At each
location, the probe was placed in light contact with the skin
�using index-matching glycerol� and a spectrum was recorded.
Figure 2 shows schematic diagrams of the grid, the matching

template, the scan locations on pathology tissue blocks, and a
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photograph of a marked lesion. A spectrum was also taken
from the normal tissue adjacent to the lesion.

2.2.2 Transfer probe locations to histopathological
sections

Immediately following the recording of the spectra, the lesion
was excised following an inscribed ellipse and placed in for-
malin. An incision was made along one side of the grid as a
position reference. When the size of the ellipse permitted, a
second double incision was made along the opposite grid edge
to permit shrinkage measurement. The ellipse and incisions
are shown schematically in Fig. 2�a�. The incisions appeared
on the sections as notches, as illustrated in Fig. 3. The excised
tissue was cut along the grid lines into 2-mm-wide blocks,
noting the side adjacent to the probe location �Fig. 2�c��. Stan-
dard histological procedures for cutaneous lesion diagnosis19

were then followed. The blocks of tissue were dehydrated,
clarified, embedded in wax, and sliced with a microtome, ini-
tially to cut back the uneven tissue surface until continuous
sections were obtained, and then to yield 5-�m-thick sec-
tions. These sections were stained using hematoxylin and
eosin solution and mounted on a microscope slide.

Fig. 2 Measurement procedure: �a� lesion with marked measurement
grid, shrinkage references, ellipse, and scan positions; �b� template
used to position probe; �c� excised tissue blocks showing offset scan
positions; and �d� photograph of a lesion.

Fig. 3 Example section showing shrinkage and position reference in-
cisions, and a magnified location showing relative size of diagnostic

grid.
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The initial cutting back of the tissue with the microtome
was determined to remove approximately 0.5 mm of tissue,
but this varied between samples, leading to some uncertainty
in position. The measurement grid was offset by 0.5 mm from
the marked grid lines to compensate for this. Tissue shrinkage
also caused uncertainty in position. It may occur during the
excision, fixation, and histopathology processing steps. Thin
sections may exhibit nonuniform shrinkage, resulting in un-
even curvature of the skin’s surface, which impedes the accu-
rate measurement of length. Lateral shrinkage was determined
from a comparison of the measured distance between the ref-
erence marks on the mounted section and the known grid
spacing. Measured values were in the range 0 to 25%. These
values were used to adjust the locations for localized histopa-
thology.

Shrinkage could only be measured when the excision area
was large enough to permit both reference incisions to be
made. Cosmetic considerations frequently prevented this, re-
sulting in shrinkage data being available for fewer than half of
the recorded lesions.

2.2.3 Record localized histopathology
Based on the results of our modeling, we produced a template
overlay for the histopathology diagnosis that divided up the
slide at the probe location into six 200-�m-wide vertical sec-
tions, as shown in Fig. 3. Each of the locations was divided
into an epidermis and a dermis portion. As vertical shrinkage
was not quantified, this easily identified division was used in
preference to a specific depth. The distribution of atypical
melanocytes was evaluated for each section. Within the epi-
dermis, these melanocytes could be absent, present in a layer
along the dermal-epidermal junction, or present in nests in the
lower epidermis, or through the whole depth of the epidermis.
Invasions into the dermis were recorded with notes on the
depth, extent, and volume proportion of melanocytes in the
invaded tissue. The presence of regression was also recorded.

2.3 Description of Clinical Data
Table 1 lists the number of lesions and spectra collected dur-
ing this study in each of the four pathology groups. The 120
lesions were obtained from 115 patients. The number of spec-
tra for each lesion varied with the number of grid intersections
that lay within the lesion. Lesion sizes recorded in our study
varied with type: dysplastic nevi ranged in size from

Table 1 Lesions and localized spectra recorded during this study.

Diagnosis Code Number
Total

spectra

Common nevus N 23 75

Dysplastic nevus DN 33 167

In situ melanoma ISM 24 114

Invasive melanoma IM 40 224
2 to 15 mm in diameter and melanomas from 2 to 20 mm.
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The average number of spectra taken for each lesion type
ranged from 3.2 in nevus, to 5.6 in invasive melanoma and
5.0 in dysplastic nevus.

A new feature of this study is the collection of multiple
spectra from each lesion. Our measurement grid ensures that
these spectra are from nonoverlapping areas spaced over the
whole lesion. Indications of the variability of localized histo-
logical diagnosis within our measured lesions are provided in
Table 2. Each of the abnormal pathology subgroups have a
localized diagnosis of common nevus in around 10% or more
of instances, and invasive melanoma has a localized diagnosis
of in situ melanoma in around 10% of instances. The whole-
lesion histopathological diagnosis �the gold standard� is as
severe as the worst local diagnosis. For example, an in situ
melanoma may be associated with areas of common and dys-
plastic nevus, but will not contain any regions of invasive
melanoma.

Average spectra recorded by the system for normal skin,
dysplastic nevus, in situ melanoma, and invasive melanoma
are shown in Fig. 4. The shaded areas represent the regions
within one standard deviation above and below the average
curves shown. The figures illustrate the variability between
and within the groups of spectra, and provide an indication of
the difficulty of the classification problem.

2.4 Data Analysis
Little information currently exists on the relationship between
specific types of pigmented lesions and their reflectance spec-
tra. In the absence of such information, we approach the prob-
lem of lesion classification with statistical techniques and seek
classifiers that can separate lesions into pathology groups.
Next, we describe the extraction of numeric features from the
spectra, the construction and evaluation of classifiers, and the
evaluation of the importance of features.

2.4.1 Feature definition
The spectral range and resolution limit spectra to 225 poten-
tially independent data points, which is an intractably large
number for our statistical approach. We sought to reduce this
to a manageable number of data points or features using two
approaches. The first follows Wallace et al.13 and contains
intensity and slope features placed at points of spectral differ-
ence between pathology groups. �The use of slopes in addition
to levels for classifying spectra is common within the field of
chemometrics.� To these, we have added features specific to
chromaphores within skin for a total of 29 features. The sec-

15

Table 2 Local diagnoses �columns� as a percentage for each category
of overall histopathological diagnosis �rows�.

Whole lesion diagnosis

Localized diagnosis

IM ISM DN N

Dysplastic nevus 0 0 83 17

In situ melanoma 0 82 3 15

Invasive melanoma 81 9 1 9
ond approach, in common with McIntosh et al., uses 50
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features constructed from a uniform sampling of the intensity
across the collected spectrum. Some previous studies have
made use of normalized spectra, i.e., the spectra from the
lesion are divided by the spectrum of normal skin adjacent to
the lesion. We collected normal skin spectra, but found that
classification using normalized spectra was less accurate. We
do not further describe these results.

2.4.2 Classification system
Several different approaches may be used to classify lesion
spectra. Neural network classifiers are more commonly em-
ployed when a very large number of input values are used.
They are prone to overfitting, the failure to generalize to data
outside the training set,20 and are difficult to use in quantify-
ing feature importance.21 For these reasons, we restrict our
attention to discriminant analysis. Linear and quadratic dis-
criminant classification systems generate a numerical value by
combining input features; binary classification is performed
by applying a threshold to this value. Quadratic discriminant
analysis is capable of distinguishing sets that are inseparable
by linear methods but significantly increases the number of

20

Fig. 4 Measured spectra showing average curves and ±1 SD bound-
aries for skin and invasive melanoma �upper� and dysplastic nevus
and in situ melanoma �lower�.
features that must be considered and may be inaccurate
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when used on non-normal data. The features used in our
analysis were tested for normality, and significant kurtosis and
truncation were observed. Furthermore, tests on an initial sub-
set of the data showed quadratic discriminants performed
worse than linear discriminants. For these two reasons, we
restricted our subsequent analysis to linear classifiers.

2.4.3 Generating and ranking classifiers
We have performed our feature selection using an all-subsets
approach.22 This approach may be susceptible to overfitting
and coincidental matches if the classifier is generated using
purely internal analysis, i.e., if the whole dataset is used for
both training and testing. We avoided this problem by using
k-fold cross validation20 to robustly evaluate the classifier per-
formance. K-fold cross validation is known to underestimate
the classification accuracy, because its test classifiers are con-
structed on subsets of the data. In general, classifiers improve
their performance with dataset size, but this performance is
asymptotic to the maximum classification accuracy. It is dif-
ficult to determine the required size of dataset for a particular
classifier, but empirical rules of thumb exist; Huberty22 sug-
gests that for two-group classifiers, the group dataset sizes
should exceed 3p, for a p-feature classifier. We do not expect
multiple spectra from the same lesion to be wholly indepen-
dent. If we assume no independence �a conservative view�,
some of our pathology groups are just sufficient in size to test
a five-feature classifier.

The optimal number of features to include in a classifier is
closely tied to the size of the dataset, but also depends on the
changes in classifier performance as the number of features is
increased. In general, classifier performance on a training set
improves asymptotically to a maximum with the number of
features, but the ability to generalize to new data is reduced at
the same time. Hastie, Tibshirani, and Friedman20 suggest
adopting the smallest sized set of features that approaches the
asymptotic limit. We have considered three-, four-, and five-
feature classifiers. The small performance increase between
four- and five-feature classifiers indicates that we are ap-
proaching the asymptotic limit for a classifier set by our
dataset size.

In ranking the classifiers, a single five-fold partition was
used. When the mean five-fold cross-validated accuracy from
ten random partitions was calculated for the classifiers, the
ranking of classifiers was almost unchanged. The results
presented next use classifiers ranked by a single five-fold
cross-validation.

3 Results
We present indicative results based on sensitivity and speci-
ficity at a single threshold, as well as an illustrative set of
receiver operator characteristic �ROC� curves, which charac-
terize the trade-off of sensitivity against specificity as the clas-
sifier threshold is adjusted. In this and following sections,
feature set A is the set of features based on spectral charac-
teristics, and feature set B is the set of uniformly sampled
points across the spectra.

3.1 Classifiers
Three- and five-feature classifiers were constructed using fea-

ture sets A and B for a range of groupings reported with
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sensitivity/specificity in Table 3. Classifiers were constructed
to distinguish between benign �N and DN� and malignant
�ISM and IM� pigmented lesions. The best classifier had
sensitivity/specificity of 64/69% and used five features from
the feature set B. Under internal analysis, the same classifier
had sensitivity/specificity of 72/78%. For comparison, clas-
sifiers were constructed between N and IM. Although not
clinically useful for early melanoma, this classification facili-
tates the comparison with other studies in Sec. 4. The best
classifier had sensitivity/specificity of 73/73% and used five
features from feature set B. Under internal analysis, the same
classifier had sensitivity/specificity of 74/83%.

Given the modest performance of these classifiers, three
additional classifier types were generated to test the hypoth-
esis that the different stages of melanoma development pro-
duce distinct changes to the recorded spectra that are not eas-
ily distinguished by a single benign �B�/malignant �M�
classifier. The classifiers were set up between N and DN, DN
and ISM, and ISM and IM, and constructed from five-feature
classifiers from feature set B. Figure 5 displays representative
ROC curves for each classifier as well as for the B/M classi-

Table 3 Five-fold cross-validated classifier performance for three-
and five-feature classifiers expressed as percentage sensitivity/
specificity for the feature sets A and B.

Classifier

Set A Set B

Three
features

Five
features

Three
features

Five
features

N+DN versus ISM+IM 60/61 60/65 60/61 64/69

N versus IM 67/65 72/70 63/60 73/73

N versus DN 70/64 72/69 76/68 77/69

DN versus ISM 55/63 59/66 56/66 56/71

ISM versus IM 63/63 64/60 63/54 69/58

Fig. 5 Receiver-operator characteristic curves for selected diagnosis-
based groups of melanoma and nevus. The straight curve represents

random classification.
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fier. Ideally, the B/M classifier should exhibit significantly
better performance than the others, as it is based on a larger
dataset. In fact, the performance of the N/DN classifier ex-
ceeds that of the B/M classifier, and the DN/ISM and ISM/IM
classifiers display better performance over much of the thresh-
old range. These results suggest that an approach utilizing
multiple classifiers may perform better. This hypothesis is ex-
plored further in Sec. 4. We cannot test multiple classifier
performance directly, as the subdivided datasets are too small
for such an analysis. We instead describe a method for evalu-
ating and comparing the significant spectral features in each
classifier.

3.2 Quantifying Feature Importance
An obvious approach for determining the most effective clas-
sifier features is to declare those features in the best classifier
to be the most important. This approach is flawed, as the
single best classifier may have arisen through a coincidental
fit and may not perform well on new data. Our feature impor-
tance metric is the number of occurrences of each feature
within the top 1% of classifier feature sets, which is similar to
the approach suggested by Huberty.20 We are able to confi-
dently report feature significance, because we evaluate the
performance of all classifiers for each of the feature sets.
Figure 6 displays histograms of the frequency of occurrence
of these features in the top-ranked three- and five-feature clas-
sifiers based on feature set A for the N/DN, DN/ISM, and
ISM/IM classifiers. Figure 7 shows the same feature fre-
quency histograms for the top classifiers obtained using fea-
ture set B. These results are discussed in the next section.

4 Discussion
We first discuss some of the interesting aspects of our results
in Sec. 4.1, and then consider the wider implications in Sec.
4.2.

4.1 Issues Arising from this Study

4.1.1 Feature importance
The histograms presented in Figs. 6 and 7 show that only a

Fig. 6 Feature significance counts for feature set A for each classifica-
tion group for three- and five-feature classifiers. The x axis enumerates
features.
small number of features appear frequently within the top 1%
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of classifiers. If we construct a new classifier based on the
most frequently appearing features, then the high performance
of this classifier demonstrates that the selection of important
features by this metric is not spurious. Indeed, in each case,
this most-frequent-feature classifier was within the top 1% of
classifiers.

The histograms also illustrate that the classifiers for each
of the three paired pathologies have a different set of most-
important features. The classifiers for the two pairs farthest
from the B/M threshold, N/DN and ISM/IM, share almost no
features. This result is consistent with the histopathology of
early melanoma. The predominant change exhibited in early
dysplasia, nuclear pleomorphism in the lower epidermis, is
quite distinct from the proliferation of epidermal nests and
dermal invasion observed during later in situ and invasive
melanoma.6 As a consequence, these two stages can be ex-
pected to have distinct spectral signatures, and this is sup-
ported by these results. For the pathology pair astride the B/M
threshold, DN/ISM, the feature frequency histograms show
that the best classifier shares some features with both the
N/DN and ISM/IM classifiers. This is consistent with in situ
melanoma being characterized by features of both early stage
dysplasia and later stage proliferation.

We note that these observations are consistent for feature
sets A and B and for both three- and five-feature classifiers.
This eliminates the possibility that they have arisen from co-
incidental features of a single feature set or classifier type.

4.1.2 Pathology-based subclassification
Our classifier performance results demonstrated similar or
slightly increased classification ability when our benign and
malignant lesion classes were subdivided into specific pathol-
ogy groups. As this subdivision typically decreases the dataset
size by a factor of 2, a decrease in classification accuracy
would be expected, unless the division simplifies the classifi-
cation task. These results suggest that a classification system
for melanocytic lesions should be designed to take advantage
of the distinct signatures of the pathology stages. Our results

Fig. 7 Feature significance counts for feature set B for each classifica-
tion group for three- and five-feature classifiers. The x axis represents
the spectral sampling point.
on feature importance lend weight to this suggestion. Several
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classification techniques exist for constructing multigroup
classifiers, but they require more data than is available in this
study.

4.1.3 Spatially localized histopathology
Our choice of a 200-�m grid for localizing the modified his-
topathological diagnosis took into consideration the probed
volume, the accuracy of the localization, and the workload of
the diagnosing histopathologist. This grid was large enough to
encompass architectural histopathological features that appear
on the scale of tens of cells. Table 2 illustrates the heteroge-
neous nature of many lesions on this scale. We expect that the
inclusion of measurements with conflicting diagnoses within
their volume of sensitivity would reduce the performance of
any empirically derived classifier and should ideally be re-
moved from the training set. During this study, as described,
accurately localized histopathology was not available for all
lesions. Our analysis required inclusion of the whole dataset,
and so could not take full advantage of the localized histopa-
thology. A significant benefit still accrued from our measure-
ment procedure, which ensured that multiple measurements
from a lesion were evenly spaced, ensuring maximum inde-
pendence and lesion coverage. The development of a multi-
group classifier with a larger dataset would certainly require
localized histopathology to ensure that the finer grained pa-
thology groups were not compromised by scans from differ-
ently structured areas of the lesion.

4.2 Wider Implications
Ours is the only reported study based on a single illumination-
collection fiber spacing. Wallace et al.’s probe had 18 illumi-
nation and 12 collection fibers arranged symmetrically with
several different spacings and a total diameter of 1.5 mm,13

similar to our own �1.3 mm�. McIntosh et al., in contrast,
used a much larger probe with a 7 mm diameter held slightly
above the surface of the skin, causing the returned signal to be
averaged over the lesion.15 Neither study quantified the vol-
ume of sensitivity of the probe. Garcia-Uribe employed a
probe with varying fiber spacings across the lesion and re-
corded the spectra returned from each fiber.16 No correction
was reported for the different sampling depths toward one
side of the lesion, the effect of the probe’s asymmetry, or the
contribution of lesion extent to these readings. While these
studies provide a useful starting point, the use of varying fiber
spacings and unquantified volumes of probe sensitivity pre-
vent the studies from being extended to make use of localized
histopathology. Furthermore, sampling of a whole lesion
could prevent the identification of small morphological
changes that are important in the histological detection of
early melanoma.

Wallace et al.13 reported a good classification performance
of 100/84% with a set of 15 melanoma and 32 compound
nevi �i.e., common nevi containing melanocytes in the epider-
mis and dermis�. An extension to this study14 reported a re-
duced performance of 83/88% using a neural network clas-
sifier on a larger dataset with 26 melanoma and 49 common
nevi. This classification task differed from the one we report
by the exclusion of the intermediate cases of dysplastic nevus
and in situ melanoma. McIntosh and Garcia-Uribe both re-

ported high classification accuracies �97 and 100%, respec-
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tively� in distinguishing nevus from dysplastic nevus. Our
N/DN classifier had the highest performance, suggesting it is
the most tractable of the clinically useful classifiers.

Most other studies of the diagnosis of pigmented lesions
have employed a camera-based system. This has been coupled
with image processing to replicate the procedures followed by
physicians, or has included images taken at multiple wave-
lengths and their analysis. Camera-based systems are further
developed than other technologies for lesion classification and
have been the subject of larger clinical trials. The B/M clas-
sification performance �sensitivity/specificity� of these sys-
tems include the Spectrophotometric Intracutaneous Analysis
system SIAscope’s 80.1/82.7% on a set of 384 pigmented
lesions with 52 melanomas with six in situ;23 Electro-Optical
Sciences �Irvington, NY� MelaFind’s 100/85% on a set of
246 lesions with 63 melanomas comprising 33 invasive and
30 in situ;24 and the diagnostic and neural analysis of skin
cancer �DANAOS� study that yielded 82/85% with a dataset
containing 2218 lesions with 187 melanoma.25 Several of
these studies relied on leave-one-out analysis to verify their
classification accuracies. This technique has greater variance
than five-fold cross-validation and may yield overestimates
for individual classifiers.20

The presence and handling of the intermediate lesion pa-
thologies �DN and ISM� in these studies varied considerably.
While the SIAscope and MelaFind studies did distinguish be-
tween in situ and invasive melanoma, the classifier was con-
structed to distinguish the whole melanoma set. The small
proportion of in situ melanoma in the SIAscope study is not
representative of early melanoma. The DANAOS study did
not distinguish between melanoma development stages; in-
stead, melanoma were grouped by pathology type with the
majority being superficial spreading melanoma. The propor-
tion of dysplastic nevus also determines the relevance of the
study to early melanoma. The DANAOS and SIAscope stud-
ies presented 11 and 3% of their total nevus as dysplastic. The
MelaFind study reported 60%, which was similar to our clini-
cally observed population. Our own results �Table 3� suggest
that populations lacking the intermediate cases may yield ar-
tificially high classification performances. In our view, most
lesion classification studies reported to date should be consid-
ered as preliminary, and require larger and more refined clini-
cal trials to further evaluate and develop their potential.

5 Conclusion
This study achieves modest performance in the classification
of pigmented skin lesions, from 139 patients selected from a
prescreened population presenting clinically suspicious le-
sions to physicians. Our results �Table 2� demonstrate the het-
erogeneity of lesions and the need for localization of the mea-
surement volume. We described a probe design and protocol
for the generation of a training set that takes this into account,
although this was only partially utilized due to the lack of
data. The improved or similar classification performances on
groups of lesions that were divided by specific lesion pathol-
ogy, in combination with the importance of different features
for different groups, suggest that distinct spectral signatures
distinguish each lesion type. These results support the devel-

opment of classifiers for individual lesion development stages,
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rather than simple classifiers that seek to establish a benign or
malignant case.

Our results highlight a need for a new clinical dataset,
large enough that the individual groups are adequate to accu-
rately train classifiers and assess their performance. In this
case, each of the groups will need to contain at least 100
lesions. As statistical errors can be introduced by a training set
that is of significantly different composition to the screened
population, an effort will have to be made to ensure that ma-
lignant pathologies do not dominate. If such a device were to
be designed for screening by nonspecialists, this would re-
quire the inclusion of a large number of benign lesions. A
further obstacle to such a study is the ethical consideration
that prevents excision and histopathology of examined benign
lesions. Without excision, gold-standard evaluation of lesion
microstructure is impossible. An extension of this work is the
development of classifiers that are not restricted to threshold-
based binary outcomes. This would permit the degree of ma-
lignancy and invasion to be better assessed, which would
likely be of the most interest to specialists. Despite the modest
performance of our classifiers, our study suggests avenues for
further development of the next generation of more accurate
fiber-probe-based lesion classification systems.
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