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Abstract. The confocal microendoscope is an instrument for imaging
the surface of the human ovary. Images taken with this instrument
from normal and diseased tissue show significant differences in cellu-
lar distribution. A real-time computer-aided system to facilitate the
identification of ovarian cancer is introduced. The cellular-level struc-
ture present in ex vivo confocal microendoscope images is modeled
as texture. Features are extracted based on first-order statistics, spatial
gray-level-dependence matrices, and spatial-frequency content. Se-
lection of the features is performed using stepwise discriminant analy-
sis, forward sequential search, a nonparametric method, principal
component analysis, and a heuristic technique that combines the re-
sults of these other methods. The selected features are used for clas-
sification, and the performance of various machine classifiers is com-
pared by analyzing areas under their receiver operating characteristic
curves. The machine classifiers studied included linear discriminant
analysis, quadratic discriminant analysis, and the k-nearest-neighbor
algorithm. The results suggest it is possible to automatically identify
pathology based on texture features extracted from confocal microen-
doscope images and that the machine performance is superior to that
of a human observer. © 2008 Society of Photo-Optical Instrumentation Engineers.
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Introduction

varian cancer is the fifth most common cancer in women.
ccording to statistics from the American Cancer Society,

here will be about 22,430 new cases of ovarian cancer in the
nited States in 2007, and about 15,280 women will die of

he disease.1 If diagnosed early, while still localized, the 5-y
urvival rate is 93%. However, only 19% of all ovarian can-
ers are found at this early stage. Clearly, early detection im-
roves the chances that ovarian cancer can be treated success-
ully. Unfortunately, an effective and routine screening test for
omen at risk is not available. Noninvasive imaging methods

uch as computed tomography �CT�, magnetic resonance im-
ging �MRI�, and ultrasound can confirm the presence of a
elvic mass, but do not have the resolution to visualize mor-

ddress all correspondence to Arthur Gmitro, Department of Radiology, Univer-
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ax: 520–626–3893; E-mail: gmitro@radiology.arizona.edu
ournal of Biomedical Optics 024021-
phological and cellular-level changes typical of early stage
cancer and precancer. The only way to diagnose early stage
cancer is to remove a tissue sample from a “suspicious” area
and examine it under a microscope.2 Such biopsy procedures
are surgically invasive and require significant turnaround
time. Moreover, due to the inherent sampling nature of the
procedure, diseased areas are often overlooked.

Bench-top confocal microscopes3 are routinely used to cre-
ate high-quality optical images of biological samples. A key
feature of confocal microscopy is the ability to reject light
from out-of-focus planes and provide a clear in-focus image
from a thin section of the sample—up to a few hundred mi-
crometers below the surface. Recently, there have been efforts
to adapt confocal imaging systems for in vivo use to perform
optical biopsy.4–14 Such instruments can be used alone, or
inserted through a trocar, catheter, large-bore needle, or the

1083-3668/2008/13�2�/024021/13/$25.00 © 2008 SPIE
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nstrument channel of a conventional endoscope. We devel-
ped and previously reported on such an instrument, which is
ased on a fluorescence slit-scan confocal microscope
oupled to a fiber optic imaging bundle.11–13,15 Although it is
ossible to image tissue autofluorescence, higher contrast im-
ges are typically obtained using an exogenous fluorescent
ye applied to the tissue. This confocal microendoscope is
apable of providing physicians with real-time cellular-level
mages of epithelial tissues, and since about 85% of ovarian
ancers are epithelial in nature1 such a system could poten-
ially be used for ovarian cancer detection.

In a clinical setting, images from the confocal microendo-
cope are acquired in real time as the probe is placed in con-
act with and scanned across the tissue surface. A major ad-
antage of the confocal microendoscope is that many areas on
he surface of the ovary can be imaged in this way. In such a
cenario, it may be difficult for physicians to accurately iden-
ify subtle cellular and morphological changes characteristic
f pathologies. A real-time computer-aided diagnosis system
ould potentially be used to provide feedback that would ap-
ropriately guide the physician to diseased areas. Further-
ore, the system could aid the physician’s diagnosis and help

etermine the best course of action. Similar automated sys-
ems have been effective in reducing diagnostic error, cost,
nd patient suffering associated with unnecessary biopsies.16

Confocal microendoscope images of ovary display textural
haracteristics. Figure 1 shows images of the epithelial sur-

ig. 1 Representative confocal microendoscope images of the ovary:
exture of normal epithelium, �d� ovarian cancer, �e� ovarian cancer,
ournal of Biomedical Optics 024021-
face of ex vivo normal and cancerous ovarian tissue acquired
using the confocal microendoscope. The tissue was stained
topically with the fluorescent dye acridine orange �AO� prior
to imaging. Examination of these and similar images reveals
that tissue pathologies result in significant differences in cel-
lular distribution patterns, which is an important criteria used
by pathologists in making a diagnosis. In general, images
from ovarian carcinomas show significantly more heterogene-
ity than images from healthy ovarian tissue. Figure 2 shows
conventional histology images of normal and cancerous ova-
rian tissue with H&E �hemotoxolin and esosin� staining. Note

al stroma, �b� normal epithelium, �c� close-up of image �b� showing
close-up of image �e� showing the texture of cancerous tissue.

Fig. 2 Conventional histology images from �a� normal and �b� cancer-
ous ovarian tissue.
�a� norm
and �f�
March/April 2008 � Vol. 13�2�2
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ow the surface epithelium is a relatively uniform single cell
ayer in Fig. 2�a�, whereas in Fig. 2�b� the nuclei at the sur-
ace are far more heterogeneous in size and distribution than
he nuclei in normal tissue. Note that standard histopathology
nvolves slicing the tissue perpendicular to its surface to pro-
uce a cross-sectional view, whereas the confocal microendo-
cope images are en face to the surface. Topical administra-
ion of fluorescent dye primarily stains the epithelial surface
nd although the confocal microendoscope can image at
epths up to about 200 �m, it is most often adjusted for best
ocus at the stained surface layer of cells, typically a depth of
few tens of micrometers.
The analysis of these images for recognition of pathologies

an be considered analogous to the problem of texture classi-
cation. At the core of this problem is the need to mathemati-
ally model the cellular-level structure present in these images
s texture. A large number of schemes have been proposed for
exture analysis17 and this remains an active area of research.
sgiar et al.18 reported on colon cancer detection in micro-
copic images of colonic mucosa using texture analysis. Other
tudies have also reported on recognition of pathologies using
exture analysis in microscopic images of cervical cancer,19

rostate cancer,20 and bladder cancer.21 In most cases, how-
ver, images were obtained from extracted biopsy tissue that
ad been histologically stained prior to evaluation. Several
esearchers have published results on ovarian cancer detection
y texture analysis.22–24 However, to the best of our knowl-
dge all of these efforts have been based on nuclear texture
nalysis rather than texture analysis of a large region of tissue.

The confocal microendoscope is a novel imaging system
ith the potential to improve ovarian cancer detection. In this
aper, we present a technique for recognition of ovarian can-
er in confocal microendoscope images. To achieve this goal,
e model the cellular-level structure present in these images

s texture and extract features based on first-order statistics,
patial gray-level dependence matrices,25 and spatial-
requency content. For the latter, we present an alternative
omputational approach to extract texture features from the
ourier power spectrum based on the forward Radon

ransform26 and the Fourier projection-slice theorem.27 The
est features for classification and performance of various
lassifiers are evaluated using a database of images acquired
ith the confocal microendoscope instrument. Finally, the
erformance of the best machine classifier is compared to that
f expert human observers.

Image Acquisition and Preprocessing
.1 Tissue Samples

varian tissue samples from 38 patients �20 normal and 18
ancerous� were obtained from excised human ovaries under
rotocols approved by the Institutional Review Board of the
niversity of Arizona. Whole ovaries were obtained from pa-

ients undergoing oophorectomy. For this study, the surgeon
elected several tissue specimens from the ovary and provided
preliminary diagnosis based on macroscopic visualization.

issue specimens were approximately 4 mm long, 4 mm
ide, and 2 mm thick.
ournal of Biomedical Optics 024021-
2.2 Imaging
Tissue specimens were stained with 100 �l of 300 �M AO
prior to imaging. AO is a nucleic acid fluorescent dye that is
efficiently excited by an argon ion laser at 488 nm and has
dual emission spectra at 525 and 650 nm when bound to
DNA and RNA, respectively. Images of excised tissue were
collected using the confocal microendoscope within 1 h of
resection. The catheter of the confocal microendoscope was
positioned in contact with the biopsy specimen, and focused
on the surface layer of cells. The field of view of the system in
tissue is 430 �m with an axial resolution of 25 �m and a
lateral resolution of 2 �m. The confocal microendoscope em-
ploys a scientific-grade CCD camera from Princeton Instru-
ments to collect gray-scale images of tissue. The camera
records 512�512 pixel images with a 12-bit digitizer oper-
ating at approximately 4 frames /s. Each image was labeled
as “normal” or “cancerous” on the basis of histology results
from the corresponding tissue sample. Histology diagnosis
was made from the same tissue specimens, with standard pro-
cessing and H&E staining, immediately following confocal
imaging. Standard histology involves slicing tissue perpen-
dicular to the surface, whereas the confocal images are ob-
tained en face. Therefore, exact registration between confocal
imaging and histology is not possible, but the locations for
imaging were estimated to be within 1 mm of each other. In
some cases, tissue handling or contact with the confocal im-
aging probe can denude tissue of the epithelial layer. How-
ever, pathologists have stated that using the confocal microen-
doscope prior to histology preparation does not affect the
accuracy of their diagnosis.

2.3 Image Database and Preprocessing
A database of exemplar images was developed with 42 im-
ages of histology-verified cancerous tissue and 86 images of
normal tissue. This set of 128 images was used to study tex-
ture classification schemes for ovarian cancer detection.

Imaging systems that utilize fiber optic catheters have pix-
elation artifacts due to the limited number of fibers in the fiber
bundle. To reduce these artifacts, each 512�512-pixel image
was smoothed with a 3�3 averaging filter and downsized it
by a factor of 2 to 256�256 pixels. All images were normal-
ized using the min max range and requantized from 12 to
8 bits /pixel �i.e., every image covers the full range from 0 to
255�. The central 192�192-pixel region was extracted from
each image for subsequent evaluation.

3 Texture Features
The first step in the pattern recognition system design cycle is
feature extraction. As stated, features were calculated based
on first-order statistics, spatial gray-level dependence matri-
ces, and spatial-frequency content.

3.1 First-Order Statistics
First-order statistics are measures computed from the normal-
ized histogram of the image. The following five features were
calculated:28 mean, variance, standard deviation, coefficient of
variation, skewness, and kurtosis �numbered as features 0
through 5, respectively�.
March/April 2008 � Vol. 13�2�3
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.2 Spatial Gray-Level Dependence Matrices
patial gray-level dependence matrices25 �SGLDMs� are com-
only used to extract statistical texture features from images.
he normalized SGLDM is an estimation of the second-order

oint conditional probability density function p�i , j :d ,��. The
unction p�i , j :d ,�� measures the probability that 2 pixels,
hich are located with an intersample distance d and direction
, have gray levels i and j. The matrices are determined em-
irically by indexing through the image pixels, locating the
orresponding pixel at distance d and angle � away, adding a
ount to the SGLDM in the appropriate i, j and j, i elements,
nd then dividing all SGLDM elements by 2 times the number
f visited image pixels. The normalization factor is slightly
ess than the total number of pixels because edge pixels do not
ave a corresponding pixel at a distance d in the image and
re not included in the calculation.

In calculating the SGLDM for texture representation, there
re three fundamental parameters that must be defined: the
umber of bits of resolution B �such that 2B=L, where L is
he number of quantized gray levels�, the displacement value
, and the direction �. The number of bits of resolution used is
n important factor, as it influences computation time and
ow accurately the texture is represented. It also affects how
parse the SGLDM will be. We set B=8 �i.e., L=256 gray
evels� in all our experiments,29 but evaluate the final classifier
erformance as the number of bits is reduced.

In many applications, it is not obvious which value�s� of d
ill accurately capture the texture. Zucker and Terzopoulos30

roposed an algorithm for selecting the values of d that best
apture the texture. A �2 statistic, which was later
ormalized,31 is used to compare values at different displace-
ents to determine which are the most significant. We applied

he �2 test for intersample distances from 1 to 14 pixels on
ach of the preprocessed confocal microendoscope images. As
exture in the confocal microendoscope images is rotation in-
ariant, the value of �2 was averaged over four orientations
0, 45, 90, 135 deg� for each image. At 45 and 135 deg, a
-pixel distance is the adjacent pixel on the diagonal even
hough the physical distance is greater by a factor �2. The
nalysis indicated that values of d�6 capture the most sig-
ificant aspects of the texture. Based on this result the
GLDM were calculated at six distances, d= �1,2 ,3 ,4 ,5 ,6�,
nd four orientations, �= �0,45,90,135 deg�. At each dis-
ance and orientation we calculated the 14 features25,32 listed
n Table 1.

Since the texture in the confocal microendoscope images is
otation invariant, the features were averaged over the four
rientations to produce a total of 14 �features��6
distances�=84 SGLDM-based features. These features are
umbered 6 through 89 with the d=1 versions of Table 1
overing features 6 through 19 and so on �i.e., feature 20 is
SM2 and feature 34 is ASM3�. Throughout this paper, we

efer to the combined set of first-order statistics plus SGLDM-
ased features as “statistical features.”

.3 Spatial-Frequency-Based Features
he quasiperiodic patterns present in confocal microendo-
cope images suggest the use of texture features based on the
ourier power spectrum of the image. Extracting texture fea-

ures in the spatial-frequency domain entails the calculation of
ournal of Biomedical Optics 024021-
the square magnitude of the discrete Fourier transform of the
image and the definition of features as summations over re-
gions of the spatial-frequency plane.33 Since rotation invari-
ance is desired in this application, summing energy values
between certain frequency ranges in an annular fashion is ap-
propriate. However, the summation of energy values over an-
nular regions is not straightforward as the discrete Fourier
transform returns a rectangular array. In this study, we applied
the Radon transform26 in conjunction with the Fourier
projection-slice theorem27 to compute texture features in an
annular ring sampling geometry.34 Specifically, we computed
the Radon transform of the preprocessed image, and then per-
formed a 1-D discrete Fourier transform �DFT� operation on
the projection at each orientation. The result is a matrix whose
columns are radial lines in Fourier space. We call this matrix
the projection-slice Fourier transform. This approach simpli-
fies the task of summing energy values in the annular ring
sampling geometry. Instead of summing values of Fourier en-
ergies on a rectangular grid, we can now accomplish this task
by simply summing along rows of the square magnitude of
the projection-slice Fourier transform.

The Radon transform of the preprocessed 192�192-pixel
confocal microendoscope images was computed with a radial
sampling of 1 pixel and an angular sampling of 1 deg. The
maximum extent of the projection at 45 deg is 273 pixels, so
the 1-D DFT operation produces a projection-slice Fourier
transform matrix with dimensions of 273�180 pixels. To
extract texture features, nonoverlapping frequency bands of
four rows starting from the first row away from the center dc
row were added together. The calculated mean and standard
deviation of each band represents a feature. Because of Her-

Table 1 Calculated features.

Feature Abbreviation

Angular second moment ASM

Contrast CON

Correlation COR

Sum of squares SOS

Inverse difference moment IDM

Sum average SA

Sum variance SV

Sum entropy SE

Entropy ENT

Difference variance DV

Difference entropy DEN

Information measure of correlation 1 IMC1

Information measure of correlation 2 IMC2

Maximum probability MP
March/April 2008 � Vol. 13�2�4
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etian symmetry in the projection-slice Fourier transform,
nly half of the 272 /4=68 frequency bands are unique. Thus,
he means and standard deviations of 34 frequency bands
plus the mean dc component� generated a set of �34�2�
1=69 features. These features are numbered 90 through 158
ith feature 90 corresponding to the mean dc component and

ach subsequent pair of features corresponding to the mean
nd standard deviation, respectively, as the annular rings in
requency space increase from the dc to higher frequencies.

Feature Selection
eature selection is arguably the most crucial step in pattern
ecognition system design. To design an efficient ovarian tis-
ue classification system, one must select features that capture
he salient differences between the texture classes �normal and
ancerous�. It is well known that a positive bias is introduced
n classification accuracy estimates if feature selection is per-
ormed on the entire data set and the same data set is used to
valuate classifier performance.35 To obtain the most reliable
stimate of classifier performance, a separate data set should
e used to determine the “optimal” feature subset. However,
eature selection is unreliable when based on a small amount
f data.36 Due to the limited amount of data available in this
tudy, we utilized the full data set �128 images� for feature
election. The lack of a large number of samples is a common
roblem in biomedical applications and many researchers
ave used a similar approach.37–39 To estimate the true perfor-
ance of the automated classification system, a larger set of

amples will be necessary, and we are currently performing
uch an evaluation.

.1 Techniques for Feature Selection
wo sets of features, statistical features and spatial-frequency-
ased features, were already described. To determine the op-
imal subset of features, a third set was concocted by merging
he two sets into a combined set of 159 features �90 statistical
eatures and 69 spatial-frequency features�. As the features
ave different physical units, and thus substantial differences
n variances, it is necessary to normalize them prior to feature
election. Therefore, each feature was scaled to have zero
ean and unit variance. The normalized features were used in

ll subsequent analysis.
In this study, the following five approaches were investi-

ated for the selection of the best set of features: stepwise
iscriminant analysis,40 forward sequential search,41 a non-
arametric method,42 principal component analysis,43 plus a
ollection of the most popular features from these other four
chemes. These techniques were applied to each of the three
ets of features �statistical, spatial-frequency, combined�. We
onstrained our experiment to five features. It is generally
ccepted that using at least 10 times as many training samples
er class as the number of features is good practice to follow
n classifier design.44 Adding more features can make matters
orse due to the curse of dimensionality. To make a fair com-
arison between all the feature selection schemes, we forced
ach algorithm to select exactly five features.

.1.1 Stepwise discriminant analysis
tepwise discriminant analysis �SDA� was implemented
sing45 SPSS. The procedure begins by selecting the indi-
ournal of Biomedical Optics 024021-
vidual feature that provides the greatest univariate discrimina-
tion. Subsequently, at each step of the procedure, one feature
is either added to or removed from this set of features based
on the effect of the new feature on the selection criterion.
Wilks’s lambda, which measures the ratio of the variance in
each group to the total variance, was used as the selection
criterion.46 SDA utilizes two threshold values: Fin for feature
entry and Fout for feature removal. The values for Fin and Fout
were chosen in such a way that five features were selected for
each experiment.

4.1.2 Forward sequential search
Forward sequential search �FSS� is one of the most common
search techniques47 and is often applied to feature selection.
This simple procedure adds features one at a time by selecting
the next feature that maximizes the criterion function. The
procedure terminates when the desired number of features
�i.e., 5� is achieved. In this study, we used the parametric
Mahalanobis distance criterion for measuring feature set dis-
crimination. The metric is attractive because under Gaussian
class-conditional densities, the probability of error is inversely
proportional to the Mahalanobis distance.48

4.1.3 Nonparametric method �NPM�

The performance of a non-parametric classifier, k nearest
neighbor �k-NN�, was used as a criterion for feature subset
selection. Classification accuracy of the k-NN classifier was
estimated using the leave-one-out error estimation
technique.49 As before, the desired number of features was set
to 5. To determine the optimal value for the parameter k of the
k-NN algorithm, experiments were conducted using various
values �k=1, 3, 5, 7, 9� for each feature set. The peak classi-
fication accuracy was achieved when k=7 for all three feature
sets �see Srivastava50 for additional information�.

4.1.4 Principal component analysis
Principal component analysis �PCA� is a method to derive a
new set of features that are uncorrelated linear combinations
of the original variables.49 In this study, the data were pro-
jected into the subspace of the five most significant principal
components.

4.1.5 Popular features
In an effort to combine the suboptimal feature subsets pro-
vided by the already mentioned feature selection schemes �ex-
cluding PCA�, and to acquire the most stable and consistent
features, we defined a new set of features, which consisted of
the most commonly selected features of the other approaches.
We tabulated the frequency of occurrence of a feature in the
feature subsets acquired via SDA, FSS, and NPM, and incor-
porated the most frequently occurring features in the new
“POP” set. If ever there was a tie, it was broken on the basis
of a feature’s individual discriminatory ability using the Ma-
halanobis distance criterion.

4.2 Evaluation of Performance
Assessment of classification performance in diagnostic sys-
tems is often accomplished using receiver operating charac-
teristic �ROC� analysis.43 The performance of each of the five
feature subsets from the preceding was estimated via ROC
March/April 2008 � Vol. 13�2�5
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nalysis51 and bootstrap error estimation52 using a linear dis-
riminant classifier. The procedure involved random drawing
ith replacement from the available samples in the data set to

reate a training set. The remaining samples form an indepen-
ent test set, which was used with an optimum linear dis-
riminant function designed from the training data. We used
he output discriminant score from the linear discriminant as
he decision variable in the ROC analysis. Performance of a
eature subset was measured by computing the area Az under
he ROC curve using53 LABROC4. To reduce bias due to case
election, training and testing were repeated many times, each
ith different training and test data sets. The process was

epeated 100 times and the 100 Az values were averaged to
rovide a measurement of the effectiveness of that feature
ubset. If at any time a degenerate data set was encountered
nd the corresponding Az could not be accurately computed,
he data set was excluded from the analysis and replaced by
nother iteration of bootstrap sampling, which ensured that
00 Az values were computed for each five-feature subset.

Machine Classifiers
.1 Linear and Quadratic Discriminant Functions
mathematical representation of the Bayesian classifier is a

et of discriminant functions, gi�x�, i=1, . . . ,c where c is the
umber of classes. The discriminant functions classify a pat-
ern x by assigning x to class �i if gi�x��gj�x� for all j� i.
n the two-class case, it is equivalent to form a single decision
unction:

g�x� = g1�x� − g2,�x� , �1�

nd to assign x to class �1 if g�x��0 �cancerous�, and to
lass �2 if g�x��0 �normal�. Under the assumption that the
istribution of the feature vectors x within the i’th class is
ultivariate Gaussian with mean �i and covariance matrix �i,

nd that the covariance matrices for both classes are identical,
.e., �1=�2=�, the resulting decision function attains a lin-
ar form, and the classifier results from linear discriminant
nalysis54 �LDA�. Alternatively, if the covariance matrices are
ifferent for each class, the classification rule adopts a qua-
ratic form, and the classifier results from quadratic discrimi-
ant analysis �QDA�. To evaluate the performance of LDA or
DA classifiers, the output discriminant score g�x� was re-
arded as a decision variable, and the discriminant scores for
he test samples were subjected to ROC analysis, as already
escribed.

.2 k-NN

he k-NN algorithm is a simple nonparametric classifier that
lassifies patterns by assigning them to the class that is most
eavily represented in the “votes” of the k nearest samples.49

o measure classification performance via ROC analysis, it
as necessary to assign a confidence measure to each sample

n addition to the traditional binary decision �normal/
ancerous�. To generate such a measure, we used the weighted
oting algorithm developed by Arya and Mount55 that calcu-
ates the k-NNs for each sample and assigns a confidence
sing the following rule:
ournal of Biomedical Optics 024021-
p =
�i=1

k
exp �− di

2/�2�ci

�i=1

k
exp �− di

2/�2�
, �2�

where d1 , . . . ,dk are the distances to the k nearest samples
from the test sample, � is the mean of d1 , . . . ,dk, and
c1 , . . . ,ck are the class labels of the k-NNs. For the two-class
case, we chose c=0 for normal samples and c=1 for cancer-
ous samples. The resulting confidence measure is a number
ranging from zero �normal� to one �cancerous�.

6 Experiments and Results
6.1 Performance Analysis of Feature Subsets

Table 2 shows the features selected from the three feature sets
�statistical, spatial-frequency, combined� using each of the
feature selection schemes already described, as well as the
corresponding average Az values and standard deviations from
100 bootstrap runs. We begin by considering the spatial-
frequency-based features. To test whether there are statisti-
cally significant differences between the performances of the
feature subsets �subsets 6–10 in Table 2�, we applied a bal-
anced one-way analysis of variance56 �ANOVA� in conjunc-
tion with a multiple comparison test.57 Although there was no
clear winner; some feature combinations were statistically
better than others. For example, subsets 6 and 7 were statisti-
cally better than subsets 8 and 9 �p�0.05�. Feature subset 6
had the highest mean Az value of the spatial frequency based
features.

Features selected from the statistical feature set using SDA
�subset 1�, FSS �subset 2�, and POP �subset 5� were found to
be statistically better �p�0.001� than the best spatial-
frequency features �subset 6�. These results indicate that fea-
tures selected from the statistical feature set are more power-
ful in discriminating normal from cancerous images.
Statistical features selected using the NPM and PCA were
found to be statistically poorer than subsets 1, 2, and 5 �p
�0.01�. In looking at the features selected from the combined
feature set, it is observed that SDA �subset 11� actually iden-
tified the same features as subset 1. This indicates that the
combined feature set does not yield any significant improve-
ment in classification accuracy when compared to features
selected from statistical features alone. A multiple comparison
test revealed that there were no significant differences be-
tween subsets 1 �same as 11�, 12, and 15. Subsets 13 and 14
were found to be poorer when compared to other feature sub-
sets selected from the combined feature set �p�0.001�.

We observed a few interesting patterns in looking at the
best feature subsets—�1, 2, 5, 12, and 15�. There appears to be
two basic templates of four features that are commonly se-
lected �16,86,87,73� and �16,87,73,77�. These two templates
are consistently selected by two different feature selection
techniques, namely, FSS and SDA. To investigate the opti-
mum number of features needed for classification, we com-
pared the performance of features selected from the combined
feature set using FSS and SDA as we varied the number of
features selected from 1 to 7. We again accumulated Az values
from 100 runs of bootstrapped test data. Figure 3 shows the
group means and 95% confidence interval for the two feature
March/April 2008 � Vol. 13�2�6
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election methods as the number of features increases from 1
o 7.

According to these results, there are no statistically signifi-
ant increases in classification accuracy beyond four features
sing FSS and three features using SDA, as indicated by the
verlap in confidence intervals. Also evident from Fig. 3 is the
act that when coupled with feature 16, feature 86 is substan-
ially more effective than feature 87. To make a fair compari-
on between the two feature selection techniques, we
ompared the two sets of four features
�16,86,87,73� , �16,87,73,77�� to test for any statistically
ignificant differences between them. The mean Az values for
he set of four features selected using FSS and SDA were
.9738 and 0.9684, respectively, and were not significantly
ifferent �p=0.0687�. The subset �16,86,87,73� selected us-
ng FSS was the “best” set of features, as it provided the
ighest mean A value.

ig. 3 Performance of increasing number of features selected from the
ombined feature set using �a� FSS and �b� SDA.
z

ournal of Biomedical Optics 024021-
6.2 Performance Analysis of Different Classifiers
We used the �16,86,87,73� subset of features to compare the
performance of the following machine classifiers: LDA,
QDA, and k-NN. Specifically, for each classifier we collected
the output confidence scores from 100 runs of bootstrapped
test data and subjected these scores to ROC analysis using
LABROC4. The Az values generated by each experiment, in
addition to the two curve-fitting parameters calculated by LA-
BROC4, were tabulated. To obtain the optimal value for k for
the k-NN algorithm, we repeated the experiments for a range
of values from k=2 to 9. Although no particular value yielded
a statistically significant increase in classification accuracy,
we selected k=5, as it provided the highest mean Az value.
Table 2 shows the mean Az value and standard deviation ob-
tained for each classifier, along with their respective sensitivi-
ties at a specificity of 0.90.

The linear and quadratic classifiers were found to be sta-
tistically superior to the 5-NN algorithm, whereas no statisti-
cal difference was found to exist between the LDA and QDA.
As frequently asserted,58 a simpler classifier design can be
expected to perform better on a validation set, we chose the
LDA classifier as our preferred approach for this application.
The current results pertaining to the LDA classifier indicate
that about 2% of patients exhibiting abnormal cell character-
istics were incorrectly classified as normal when 10% of pa-
tients exhibiting normal characteristics were incorrectly iden-
tified as abnormal, the operating point on the ROC curve
being �TPF,FPF�= �0.98,0.10�.

6.3 Human Performance Analysis
To compare performance of the computer-aided system with
human classification accuracy, we conducted an observer
study using the ROC study protocol. To characterize human
observer consistency, we randomly repeated 30% of the data
set and randomly rotated these repeated data by 90, 180, or
270 deg. The resulting set of 166 images included 128 origi-
nal images and 38 repeated images with random orientation.

The images were reviewed by four human observers. Two
of the observers �observers 1 and 2� were researchers with
experience looking at confocal microendoscope images. The
other two �observers 3 and 4� were MDs with experience
looking at histopathologic images of ovarian cancer patients.
The observers were asked to rate each image using a numeri-
cal scale from one to six: �1� definitely cancerous, �2� prob-
ably cancerous, �3� possibly cancerous, �4� possibly normal,
�5� probably normal, and �6� definitely normal. The images
were displayed in random order on a CRT monitor. All ob-
servers except observer 1 were blinded to the distribution of

Table 2 Comparison of performance of LDA, QDA, and 5-NN
algorithm.

Classifier Az Std. Dev. Sensitivity Specificity

LDA 0.9738 0.0177 0.98 0.90

QDA 0.9656 0.0227 0.97 0.90

5-NN 0.8742 0.0600 0.67 0.90
March/April 2008 � Vol. 13�2�7
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ancer versus normal samples in the data set. The observers
ere not allowed to change their assigned diagnosis during

he test. Prior to reviewing, the observers were “trained” with
set of eight images that were representative of the visual

istribution present in each class.
Table 3 shows the results from the study. The total accu-

acy was computed by calculating the ratio of the number of
orrect responses to the total number of images. For the table,
consistency” and “classification consistency” differ in the
ense that, one is a measure of the consistency with which the
bserver provided the exact same label �1,2 ,3 ,4 ,5 ,6� when
resented with the same image at a different orientation, and
he other measures the consistency with which the observer
rovided the same classification �normal /cancer� when pre-
ented with the same image at a different orientation. Ratings
f �3 and �4 were considered to be classified as cancerous
nd normal, respectively.

Fig. 4 Comparison of machine performance with human observers.

Table 3 Results of hu

Characteristic Observer 1

Accuracy 83.73%

Sensitivity 55.17%

Specificity 99.07%

Positive predictivity 96.97%

Negative predictivity 80.45%

Consistency 60.53%

Classification Consistency 89.47%

Az value 0.8474
ournal of Biomedical Optics 024021-
We also computed the Az value for each observer. To make
a fair comparison with machine performance, we removed the
observer ratings from images that had been rotated. The dis-
crete confidence ratings �for 128 images� from each observer
were then individually subjected to ROC analysis using LA-
BROC4. The corresponding ROC curves for the human ob-
servers are compared to the machine performance �LDA� in
Fig. 4. To generate the ROC plot for machine performance,
we averaged the ROC curve-fitting parameters previously col-
lected. Clearly, as demonstrated by Tables 2 and 3 and Fig. 4,
the performance of the automated linear discriminant classi-
fier is superior to the performance of human observers in this
study.

6.4 Effects of Gray-Level Quantization
We also investigated how gray-level quantization affects the
classification performance. To accomplish this, we reverted
back to the original database of images and recomputed the 90
statistical features at various quantization levels from 3 to
8 bits /pixel. Subsequently, we selected a set of four features
from each set of 90 features. The FSS strategy was used for
selection because of its effectiveness in prior experiments.
The performance of each feature subset was estimated using
ROC methodology and bootstrap error estimation. Table 4

Table 4 Mean Az value and standard deviation for each feature sub-
set versus the number of quantization bits.

Bits Features Az Std.Dev.

3 16, 80, 38, 17 0.9168 0.0375

4 16, 77, 30, 58 0.9098 0.0413

5 19, 76, 34, 1 0.8558 0.0569

6 6, 80, 22, 66 0.9175 0.0341

7 14, 84, 7, 29 0.9505 0.0272

8 16, 86, 87, 73 0.9738 0.0177

erformance study.

bserver 2 Observer 3 Observer 4

0.72% 75.30% 70.48%

1.03% 68.97% 77.59%

0.56% 78.70% 66.67%

9.12% 63.49% 55.56%

8.78% 82.52% 84.71%

5.26% 68.42% 55.26%

9.47% 78.95% 81.58%

0.8856 0.8425 0.8296
man p

O

8

8

8

6

8

5

8
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hows the features selected at each quantization level along
ith the corresponding mean Az value and standard deviation
btained from 100 bootstrap runs.

The results show that as the number of bits of resolution
ecreases, the area under the ROC decreases until reaching a
rough at 5 bits /pixel, and then increases slightly. We per-
ormed an ANOVA in conjunction with a multiple comparison
est to evaluate whether one setting was statistically superior
o others. Figure 5 shows the 99.9% confidence intervals for
he mean of each group of Az values derived from the statis-
ical feature subsets as a function of the number of bits of
esolution. Clearly, 8 bits /pixel is statistically superior to the
ther values tested.

Discussion
.1 Selected Features
n general, the excellent classification performance indicates
hat texture is an appropriate image characteristic for distin-
uishing between cancerous and normal tissue. In terms of
patial-frequency-based texture features, the most commonly
elected of the 69 features was 117, which measures the mean
ourier energy within an annular ring with an inside radius of
54 /136�	 and outside radius of �57 /136�	. We denote this
eature as F��53,57�, where the subscript � indicates that the
ean was computed over the region in the parentheses. The

patial frequency 	 corresponds to a period of 2 pixels in the
mage, so F��53,57� is a narrow spatial frequency range cen-
ered on a spatial frequency with a period of approximately 5
ixels. Compared to other spatial-frequency-based features,

��53,57� has the highest individual discriminatory ability
ased on the Mahalanobis distance criterion. Other features
ith high individual discriminatory ability are F��45,49� and

��9,13�. Feature F��129,133� has negligible discriminatory
nformation by itself but it can be effective when combined
ith F��53,57�. Note that only three features calculated by

omputing the standard deviation of the Fourier energy within
n annular region were selected, namely, F
�113,117�,

�13,17�, and F
�117,121�. Spatial-frequency-based fea-

ures are effective in discriminating normal from cancerous
issue and an automated classification system based on these

ig. 5 Performance of a set of four features selected using FSS for
ifferent number of quantization bits in the SGLDM.
ournal of Biomedical Optics 024021-
features performs significantly better than the human observ-
ers. However, spatial-frequency based features are not as ef-
fective as statistical features.

In terms of statistical features, none of the first-order fea-
tures was effective for discrimination. The most commonly
selected second-order statistical feature was 16 �difference en-
tropy calculated at intersample distance 1, denoted as DEN1�.
It was routinely selected before other features because it pro-
vided the highest individual classification accuracy amongst
all 159 features. By itself, it accounted for nearly 85% of the
total Az value. Difference entropy is computed from the dif-
ference second-order histogram of the image, which repre-
sents the probability of occurrence of differences �i− j� in
gray-level values for 2 pixels separated by a distance d. As an
entropy measure, the feature measures the variation in the
distribution of the difference second-order histogram and
achieves a maximal value for a uniform distribution of prob-
ability. Figure 6 shows a class-conditional histogram of the
difference entropy feature. It indicates that on average the
difference entropy of cancerous tissue is lower than that of
normal tissue, which implies that the gray-level values had
larger variation on a local level in normal tissues than in can-
cerous samples. Intuitively, this makes sense as the regular
packing of cells in normal tissue tends to provide a more
uniform difference second-order histogram.

According to the results, the “best” set of features is
DEN1, DEN6, IMC16, IMC15. The information measure of
correlation �IMC1� feature is related to entropy and captures
aspects of the correlation in gray values i and j. An interesting
observation about this set of features is that they are strongly
correlated in pairs. DEN1 is strongly correlated to DEN6, and
IMC16 is strongly correlated to IMC15. Yet, when any of the
features is removed from the set, we observe a statistically
significant decrease in classification performance. This can be
attributed to the complementary nature of these features.
Guyon and Elisseeff59 demonstrated that highly correlated
features do not necessarily translate to “redundant” informa-
tion. They suggest that there are two contributions to feature
correlation: covariance in the same direction as the “target,”
which is not more informative, and covariance perpendicular
to the “target,” which is useful. Methods that prune features
based on the linear correlation coefficient without making this
distinction are simplistic and ignore the possibility that corre-
lated features may actually be useful.

Fig. 6 Class-conditional histogram for feature 16.
March/April 2008 � Vol. 13�2�9
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Scatter plots of DEN1 versus DEN6 and IMC16 versus
MC15 are shown in Figs. 7�a� and 7�b�, respectively. These
lots show that even though two features are correlated, they
re able to increase classification performance. The profile of
hese features is unlike that of truly redundant features, where
here is often no variation in the direction perpendicular to the
lass center line �i.e., the covariance is in the same direction
s the class center line�. In contrast, in our case, the second
rincipal direction of the covariance matrices of these features
s perpendicular to the class center line. Therefore, the com-
ined effect of these features leads to greater separation in the
igher dimensional feature space.

The results show that no statistically significant improve-
ent in classification accuracy is observed using the com-

ined feature space. In fact, SDA selects the exact same set of
eatures from the combined set as when considering the sta-
istical features alone. Furthermore, in all subsets, statistical
eatures are selected ahead of spatial-frequency-based fea-
ures, indicating that statistical features are more powerful
han spatial-frequency-based features for this application. The

ig. 7 Scatter plot of �a� features 16 and 86 and �b� features 87 and
3.
ournal of Biomedical Optics 024021-1
results also show that four statistical features are useful for
this classification problem, and that classification accuracy is
not significantly improved using more than four features.

Features selected using PCA and the NPM performed rela-
tively poorly when compared to features selected using SDA
and FSS. One possible explanation for the poor performance
of PCA is that PCA does not necessarily capture components
that are useful for discrimination. Rather, it finds components
that are useful for representing data in a least-squared error
sense.48 In other words, the top five principal components
may be useful for accurately capturing the variation in the
feature space, but may not be the directions that are necessary
to distinguish between the two classes.58 This inability of
PCA to capture the between-class variance could account for
the relatively large variance in Az values �see Table 2�. In
contrast, FSS and SDA seek features that are efficient for
discrimination. The Wilks lambda and the Mahalanobis dis-
tance metrics used in FSS and SDA, respectively, naturally
capture the property of separating different classes, while at
the same time keeping each cluster as tightly packed as pos-
sible. For the nonparametric method, we selected features that
were optimized for the 7-NN algorithm and subsequently
measured performance using a linear discriminant classifier. It
is fair to say that the selected features were not designed to be
linearly separable as the k-NN algorithm can work equally
well for any arbitrary distribution. This argument offers one
explanation for the relatively small difference and large vari-
ance �see Table 2� in performance for features selected using
the nonparametric approach.

An issue of relevance to features derived from the SGLDM
is the bit depth of the images. At high bit depth, the SGLDM
is sparse. As the bit depth decreases, the sparsity of the
SGLDM decreases. The results show that the classification
performance decreases as the bit depth decreases from 8 bits,
reaching a minimum at a bit depth of 5 bits, and then perfor-
mance increases with a further decrease in bit depth. Another
observation is that the best features selected at each bit depth
are different. It is encouraging that the overall performance
changes gradually with bit depth and is always better than the
performance of the human observers. The significant change
of features selected as bit depth changes is an interesting find-
ing and something that should be more carefully investigated
to understand the source of this behavior.

7.2 Classification Performance
The ideal most-unbiased approach for designing an automated
classification system is to have separate large data sets for the
three steps of feature selection, classifier design, and perfor-
mance evaluation. However, as is the case here, it is often
difficult or impossible to obtain sufficient data to implement
this approach. Leave-one-out has been the recommended60

technique for evaluating classifier performance on small data
sets as it provides almost unbiased estimates of the true error
rate. While the leave-one-out estimator is nearly unbiased, its
variance is high for small sample sizes. This large variance
proves to be problematic and tends to dominate error estima-
tion. In this study we used the bootstrap error estimator, which
is reported to be superior to leave-one-out on small data
sets.61 The technique is a low-variance estimator that provides
pessimistically biased error estimates.
March/April 2008 � Vol. 13�2�0
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The test performance of a simple linear classifier is gener-
lly better than that of more complex classifiers when the
raining sample size is small.36,62 As is often the case in bio-

edical applications, the data set of images used in this study
s relatively limited. That is why we chose to use a linear
iscriminant function to compare performance of feature sub-
ets. Furthermore, the linear discriminant is an optimal rule
or classification if the class-conditional distributions are mul-
ivariate normal with a common covariance matrix.

Generally, the performance of the quadratic discriminant is
etter than that of a linear discriminant as any distribution that
an be achieved by a linear discriminant can also be achieved
y a quadratic discriminant, provided that the class-
onditional statistics are accurately estimated. In this study,
e found that the performance of the two techniques was

lmost identical. Perhaps this indicates the presence of a
early linearly separable space �see Figs. 7�a� and 7�b�	,
here a hyperquadric discriminant surface cannot improve

lassification performance.
The performance of the k-NN algorithm is often compa-

able to the performance of other statistical and neural
lassifiers.63 However, in this study, we found evidence to the
ontrary. We found that the algorithm performed significantly
orse than the linear and quadratic classifiers. In addition, the
erformance did not vary significantly as we varied the k
arameter. These results are consistent with the work of
eiss,64 who found that for the k-NN algorithm “the estima-

or �is	 overly pessimistic when the true error rate is relatively
ow.” He attributed this characteristic to the repetition of pat-
erns in the training set. Indeed, if a region of the feature
pace has been neglected due to resampling with replacement,
t seems plausible that test patterns from that region will be

isclassified.
We found that the success rate with which humans recog-

ized normal/cancerous images varied significantly between
0 to 85% �Table 3�. In addition, the performance of the ob-
ervers varied according to the amount of exposure they had
o the database of images. Observers 1 and 2 who had previ-
us experience with confocal microendoscope images per-
ormed better than observers 3 and 4 who were more knowl-
dgeable about ovarian pathology but less familiar with these
mages. This indicates that a learning curve must be overcome
or recognizing ovarian pathology in confocal microendo-
cope images. Overall, there was significant inconsistency in
he performance of the human observers. Part of this can be
xplained by the often confusing texture patterns observed in
hese images, which can perhaps be discerned effectively only
sing features such as difference entropy that are able to cap-
ure microvariations in these images.

The results of this study suggest that an automated classi-
cation system can outperform a human observer in recogniz-

ng ovarian cancer in confocal microendoscope images. Due
o the small sample size and use of the full data set during
eature selection, there is always a concern about overfitting
he data and overestimating the performance of the automated
lassifier. Another study with a larger independent data set
ill be required to fully validate the findings of this work.
nother important issue relates to the performance of the au-

omated classification system when one includes early stage
reinvasive lesions, preneoplastic lesions, and the broader
pectrum of benign changes occurring in the ovary. A multi-
ournal of Biomedical Optics 024021-1
class discriminant approach may be required to distinguish
among these various circumstances. It should be remembered,
however, that the goal of the automated classifier is to help
guide the physician in identifying pathology during an explor-
atory investigation with a dynamic high frame-rate imaging
technology. A high sensitivity to those conditions that warrant
more-detailed investigation or intervention is the principal re-
quirement and something that an automated system may be
able to achieve without requiring high specificity to the vari-
ous pathologic and nonpathologic conditions found in ovary.

8 Conclusion
In this study, the efficacy of statistical and spatial-frequency-
based features extracted from the confocal microendoscope
images for recognition of normal and cancerous ovarian tissue
were evaluated. Several feature selection techniques were
compared based on performance evaluated using a linear dis-
criminant classifier and ROC analysis. A set of four features
selected from the SGLDM-based texture features using for-
ward sequential search provided the highest classification ac-
curacy. The performance of this feature set was also tested
using the quadratic discriminant and k-NN classifiers. It was
found that the linear discriminant classifier using the best set
of SGLDM-based features was superior to the other classifi-
cation methods and significantly outperformed the human ob-
server. Classification performance using spatial-frequency-
based features, although not as high as that achieved using
SGLDM-based features, also outperformed the human ob-
server. Results of this study indicate that an automated image
recognition system may be effective in diagnosing pathologies
in a clinical setting and could assist physicians with diagnosis.
Although these results were obtained using a relatively small
data set, the study demonstrates the potential of computer-
aided diagnosis for recognizing ovarian pathologies in confo-
cal microendoscope images.
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