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Abstract. Cavernous nerves course along the surface of the prostate
gland and are responsible for erectile function. These nerves are at
risk of injury during surgical removal of a cancerous prostate gland. In
this work, a combination of segmentation, denoising, and edge detec-
tion algorithms are applied to time-domain optical coherence tomog-
raphy �OCT� images of rat prostate to improve identification of cav-
ernous nerves. First, OCT images of the prostate are segmented to
differentiate the cavernous nerves from the prostate gland. Then, a
locally adaptive denoising algorithm using a dual-tree complex wave-
let transform is applied to reduce speckle noise. Finally, edge detec-
tion is used to provide deeper imaging of the prostate gland. Com-
bined application of these three algorithms results in improved signal-
to-noise ratio, imaging depth, and automatic identification of the
cavernous nerves, which may be of direct benefit for use in laparo-
scopic and robotic nerve-sparing prostate cancer surgery. © 2010 Society
of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3481144�

Keywords: optical coherence tomography; prostate gland; cavernous nerve; pros-
tate cancer.
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Introduction

reservation of cavernous nerves during radical prostatectomy
or prostate cancer is critical for preserving sexual function
fter surgery. These nerves are at risk of injury during dissec-
ion and removal of a cancerous prostate gland because of the
lose proximity of the nerves to the prostate surface �Fig. 1�.
heir microscopic nature also makes it difficult to predict the

rue course and location of these nerves from one patient to
nother. These observations may explain in part the wide vari-
bility in reported potency rates �9 to 86%� following prostate
ancer surgery.1 Therefore, any technology capable of provid-
ng improved identification, imaging, and visualization of the
avernous nerves during prostate cancer surgery would aid the
reservation of the nerves and improve postoperative sexual
otency.

OCT is a noninvasive optical imaging technique that can
e used to perform high-resolution, cross sectional in vivo and
n situ imaging of microstructures in biological tissues.2 OCT
maging of cavernous nerves in rat and human prostate has
ecently been demonstrated.3–6 However, improvements in the
uality of the OCT images for identification of the cavernous
erves are necessary before clinical use.

For the present work, OCT images were acquired in vivo
sing a clinical endoscopic OCT system �Imalux, Cleveland,
hio� based on an all single-mode fiber common-path

nterferometer-based scanning system �Optiphase, Van Nuys,

ddress all correspondence to: Shahab Chitchian, University of North Carolina
t Charlotte, Department of Physics and Optical Science, Charlotte, NC 28223.
el: 704-687-8152; Fax: 704-687-8197; E-mail: schitchi@uncc.edu
ournal of Biomedical Optics 046014-
California�. An 8-Fr �2.6-mm-OD� probe was used with the
OCT system. The system is capable of acquiring real-time
images at 200�200 pixels with 11-�m axial and 25-�m
lateral resolutions in tissue.

The following study describes a step-by-step approach that
employs three complementary image processing algorithms
�Fig. 2� for improving identification and imaging of the cav-
ernous nerves during OCT of the prostate gland. In previous
work, a segmentation approach was successfully used to iden-
tify the cavernous nerves.7 However, it has proven challeng-
ing to image deeper prostate tissues with OCT. Therefore, the
segmentation system in the left branch of Fig. 2 is augmented
by the denoising and edge detection systems in the right
branch of Fig. 2. This edge detection system is later shown to
improve OCT imaging of deeper prostate tissue structures.

In the left branch of Fig. 2, 2-D OCT images of rat prostate
are segmented to differentiate the cavernous nerves from the
prostate gland. It should be noted that ultrasound image seg-
mentation of the prostate, which allows clinicians to design an
accurate brachytherapy treatment plan for prostate cancer, has
been previously reported.8 Various alternative segmentation
approaches have also recently been applied in retinal OCT
imaging.9–16 However, large irregular voids in prostate OCT
images require a segmentation approach different than that
used for segmentation of the more regular structure of retinal
layers. Therefore, to detect cavernous nerves, three image fea-
tures are employed: a Gabor filter, Daubechies wavelet, and
Laws filter. The Gabor feature is applied with different stan-

1083-3668/2010/15�4�/046014/6/$25.00 © 2010 SPIE
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ard deviations in the x and y directions. In the Daubechies
avelet feature, an eight-tap Daubechies orthonormal wavelet

s implemented, and the low-pass subband is chosen as the
ltered image. Finally, Laws feature extraction is applied to

he images. The features are segmented using a nearest-
eighbor classifier. N-ary morphological postprocessing is
sed to remove small voids.

As a next step to improve OCT imaging of the prostate
land, wavelet denoising is applied. Recently, wavelet tech-
iques have been employed successfully in speckle noise re-
uction for MRI, ultrasound, and OCT images.17–19 A locally
daptive denoising algorithm is applied before edge detection
o reduce speckle noise in OCT images of the prostate.20 The
enoising algorithm is illustrated using the dual-tree complex
avelet transform. After wavelet denoising, an edge detection

lgorithm based on thresholding and spatial first-order differ-
ntiation is implemented to provide deeper imaging of the
rostate gland. This algorithm addresses one of the main limi-
ations in OCT imaging of the prostate tissue, which is the
nability to image deep into the prostate. Currently, OCT is
imited to an image depth of approximately 1 mm in most
paque soft tissues. In the following sections, a segmentation
pproach is first described, followed by details of denoising
nd edge detection approaches.

Segmentation System
he input image is first processed to form three feature im-
ges. The prostate image is then segmented into nerve, pros-
ate, and background classes using a k-nearest neighbors clas-
ifier and the three feature images. Finally, N-ary morphology
s used for postprocessing. The generation of the feature im-
ges are first described, followed by descriptions of the clas-
ifier and postprocessing.

.1 Gabor Filter
he first feature image is generated by a Gabor filter with

mpulse response h�x ,y�,21

ig. 1 �a� Cross sectional diagram of the human prostate showing the l
urface. The dotted line indicates the route of dissection between the p
uring surgery. Arrows indicate the surgical dissection plane, and the
nder a superficial layer of fascia.
ournal of Biomedical Optics 046014-
h�x,y� = g�x,y�exp�j2��Ux + Vy�� , �1�

where

g�x,y� =
1

2��x�y
exp�−

1

2
� x2

�x
2 +

y2

�y
2�� . �2�

The Gabor function is essentially a bandpass filter centered
about frequency �U ,V� with bandwidth determined by �x ,�y.
The Gabor feature center frequency of �0.2,0.2� cycles /pixel
is applied with standard deviations of 3 and 6 in the x and y
directions, respectively, based on experimental observation of
minimum segmentation error.

2.2 Daubechies Wavelet Transform
The second feature is generated by the eight-tap Daubechies
orthonormal wavelet transform. The discrete wavelet trans-
form �DWT� converts a signal to its wavelet representation. In
a one-level DWT, the image c0 is split into an approximation

of the neurovascular bundles and their close proximity to the prostate
c capsule and the neurovascular bundle. �b� Image of human prostate

line indicates the position of the periprostatic neurovascular bundle

Fig. 2 Flow chart describing a step-by-step application of comple-
mentary image processing algorithms for OCT of the prostate nerves.
ocation
rostati
dashed
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art c1 and detail parts d1
1, d1

2, and d1
3 for horizontal, vertical,

nd diagonal orientations, respectively. In a multilevel DWT,
ach subsequent ci is split into an approximation ci+1 and
etails di+1

1 , di+1
2 , and di+1

3 . In the present work, the approxi-
ation part c1 is chosen as the filtered image for the second

eature.

.3 Laws Filter
he third feature is generated by the Laws feature extraction
ethod. Laws 2 mask h�x ,y�22 is convolved with the image to

ccentuate its microstructure. The microstructure image
�x ,y� is defined as

m�x,y� = f�x,y� � h�x,y� , �3�

here

h =
1

12	1 0 − 1

2 0 − 2

1 0 − 1

 . �4�

Then, standard deviation computation is performed after
he Laws mask filtering to complete the Laws feature extrac-
ion.

.4 K-Nearest Neighbor Classifier and Postprocessing
he k-nearest neighbors algorithm �k-NN� is a method for
lassifying objects where classification is based on the k clos-
st training samples in the feature space. It is implemented by
raining, parameter selection, and classification steps, fol-
owed by the N-ary morphological postprocessing method for
liminating small misclassified regions.7

Wavelet Shrinkage Denoising
avelet shrinkage is denoising by shrinking �nonlinear soft

hresholding� in the wavelet transform domain. The observed
mage X is modeled as an uncorrupted image S and multipli-
ative speckle noise N. On a logarithmic scale, speckle is
onverted to additive noise X=S+N. The wavelet shrinkage
enoising algorithm requires the following four-step
rocedure,20

Y = W�X�, � = d�Y�, Z = D�Y,��, S = W−1�Z� , �5�

here operator W� . � relates to the wavelet transform, opera-
or d� . � selects a data-adaptive threshold, D� . ,�� denotes the
enoising operator with threshold �, and W−1 relates the in-
erse wavelet transform.

Fig. 3 Edge detecti
ournal of Biomedical Optics 046014-
3.1 Two-Dimensional Dual-Tree Complex Wavelet
Transform

In the proposed method, the dual-tree complex wavelet trans-
form �CDWT� calculates the complex transform of a signal
using two separate DWT decompositions. If the filters used in
one are specifically designed differently from those in the
other, it is possible for one DWT to produce the real coeffi-
cients and the other the imaginary coefficients. This redun-
dancy of two provides extra information for analysis at the
expense of extra computational power.

In the proposed CDWT, wavelet coefficients are calculated
from the Farras nearly symmetric wavelet.23

3.2 Shrinkage Denoising
Bivariate shrinkage with a local variance estimation
algorithm24 is applied for shrinkage denoising. After estimat-
ing the signal components of the noisy coefficients in the
wavelet domain, the inverse wavelet transform is taken to
reconstruct the noise-free image.

4 Edge Detection System
A block diagram of the edge detection system is shown in Fig.
3. After luminance thresholding on the input image f�x ,y�, a
first-order spatial differentiator of orthogonal gradient is per-
formed to produce the differential image g�x ,y� with accen-
tuated spatial amplitude changes. Morphological postprocess-
ing is then used to accentuate edges.

4.1 Luminance Thresholding
In this section, the glandular structure of the prostate is judged
present if the luminance exceeds the threshold level of the
background. The center of the glandular structures, below the
boundary, in the denoised prostate image represents the back-
ground threshold level, because the boundaries of these glan-
dular structures can be located at a superficial level.

4.2 Orthogonal Gradient Generation
After applying the threshold level to the denoised image
f�x ,y�, a form of spatial first-order differentiation is per-
formed in two orthogonal directions. In the discrete domain,
the gradient in each direction is generated by22

gr,c�x,y� = f�x,y� � hr,c�x,y� , �6�

where

em block diagram.
on syst
July/August 2010 � Vol. 15�4�3
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hr =
1

4	1 0 − 1

2 0 − 2

1 0 − 1

, hc =

1

4	− 1 − 2 − 1

0 0 0

1 2 1

 , �7�

re the row and column impulse response arrays for the
�3 Sobel orthogonal gradient operator.

The gradient amplitude is approximated by the magnitude
ombination

g�x,y� = �gr�x,y�� + �gc�x,y�� . �8�

.3 Morphological Postprocessing
orphological postprocessing for accentuating edges pro-

eeds by close operation. It is implemented by dilation fol-
owed by erosion.

Combined Algorithms
igure 2 shows the order of the combined algorithms. The
egmentation algorithm was applied to differentiate the cav-
rnous nerves from the prostate gland. This algorithm is inde-
endent of the denoising process. However, the edge detection
lgorithm to provide deeper imaging of the prostate gland
ased on thresholding and spatial first-order differentiation is
ependent on the denoising process. In other words, edges are
ensitive to the noise. First, the input image was denoised,
hen the edge detection was implemented. With a noisy im-
ge, threshold selection becomes a tradeoff between missing
alid edges and creating noise-induced false edges.

The algorithms were executed on a Core 2 Duo, 1.86-GHz
esktop personal computer. There were two parallel processes
f Fig. 2, 8-s denoising and edge detection and 10-s segmen-
ation. The total time for the combined processing algorithms
as 10 s.

Results
he unprocessed time-domain �TD�-OCT images of the cav-
rnous nerves at different orientations �longitudinal, oblique,
nd cross sectional� along the surface of the rat prostate are
hown in Figs. 4�a�, 4�c�, and 4�e�. Histologic sections of the
avernous nerves were previously processed for
omparison.20

Figures 4�b�, 4�d�, and 4�f� show the images after denois-
ng using CDWT. The global signal-to-noise ratio �SNR� is
alculated as

SNR = 10 � log�max�Xlin�2/�lin
2 � , �9�

here Xlin is the 2-D matrix of pixel values in the OCT image
nd �lin

2 is the noise variance, both on linear intensity scales.25

he mean value of SNR for nine sample images before and
fter denoising was measured to be 26.65 and 40.87, respec-
ively. Therefore, a SNR increase of approximately 14 dB
as attained.

Figures 5�a�, 5�c�, and 5�e� show the same OCT images of
igs. 4�a�, 4�c�, and 4�e� after segmentation. The cavernous
erves could be differentiated from the prostate gland using
he segmentation algorithm. The error rate was calculated by:
rror= �number of error pixels� / �number of total pixels�,
here �number of error pixels�= �number of false positives
ournal of Biomedical Optics 046014-
+number of false negatives�. The overall error rate for the
segmentation of the nerves was 0.058 with a standard devia-
tion of 0.019, indicating the robustness of our technique. The
error rate was measured as a mean of error measurements for
three different sample images at different orientations �longi-
tudinal, cross sectional, and oblique�. A different image was
used for training. The error rate was determined by comparing
manually segmented images to the automatically segmented
images of the nerves. These manually segmented images of
the cavernous nerves were previously created according to
histologic correlation with OCT images.20 Figures 5�b�, 5�d�,
and 5�f� combine edge detection of the denoised images and
the segmentation results. Manual segmentation of the prostate
gland was implemented to calculate performance of the edge
detection algorithm. The overall error rate for the segmenta-
tion of the prostate gland was 0.076 with a standard deviation
of 0.022.

7 Discussion
The proposed edge detection approach was successful in ac-
centuating prostate structures deeper in the tissue, and the

Fig. 4 OCT images of the rat cavernous nerve: �a� and �b� longitudinal
section; �c� and �d� cross section; �e� and �f� oblique section. �a�, �c�,
and �e� show before; and �b�, �d�, and �f� show after denoising.
July/August 2010 � Vol. 15�4�4
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avernous nerves could be differentiated from the prostate
land using the segmentation algorithm. The glandular struc-
ure of the prostate could be observed to a depth of approxi-

ately 1.6 mm in Figs. 5�b�, 5�d�, and 5�f� in comparison
ith an approximately 1-mm depth in the unprocessed OCT

mages in Figs. 4�a�, 4�c�, and 4�e�. Overall, the edge detec-
ion technique enhanced structures deeper in the prostate
land, and the proposed image segmentation algorithm per-
ormed well for identification of the cavernous nerves in the
rostate.

It should also be noted that the rat model used in this study
epresents an idealized version of the prostate anatomy, be-
ause the cavernous nerve lies on the surface of the prostate,
nd is therefore directly visible. However, in human anatomy,
here can be an intervening layer of fascia �Fig. 1� between
he OCT probe and the nerves, making identification more
ifficult. Since one major limitation of OCT is its superficial
maging depth in opaque tissues, an important advantage of
hese image processing algorithms is that the final OCT image
hould be able to provide deeper imaging in the tissue and

ig. 5 OCT images of the rat cavernous nerve: �a� and �b� longitudinal
ection; �c� and �d� cross section; �e� and �f� oblique section. �a�, �c�,
nd �e� show segmented and �b�, �d�, and �f� show edge detected
mages.
ournal of Biomedical Optics 046014-
locate the cavernous nerve when it lies at various depths be-
neath periprostatic tissues.

8 Conclusion
The segmentation technique is applied to differentiate cavern-
ous nerves from the prostate gland in rat prostate. The wavelet
shrinkage denoising technique using a dual-tree complex
wavelet transform is used for speckle noise reduction, and by
using edge detection, deeper imaging of the prostate gland is
accomplished. These algorithms for image segmentation, de-
noising, and edge detection of the prostate may be of direct
benefit for implementation in clinical endoscopic OCT sys-
tems currently being studied for use in laparoscopic and ro-
botic nerve-sparing prostate cancer surgery.
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