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Image analysis for discrimination of cervical neoplasia
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Abstract. Colposcopy involves visual imaging of the cervix for pa-
tients who have exhibited some prior indication of abnormality, and
the major goals are to visually inspect for any malignancies and to
guide biopsy sampling. Currently colposcopy equipment is being up-
graded in many health care centers to incorporate digital image ac-
quisition and archiving. These permanent images can be analyzed for
characteristic features and color patterns which may enhance the
specificity and objectivity of the routine exam. In this study a series of
images from patients with biopsy confirmed cervical intraepithelia
neoplasia stage 2/3 are compared with images from patients with bi-
opsy confirmed immature squamous metaplasia, with the goal of de-
termining optimal criteria for automated discrimination between
them. All images were separated into their red, green, and blue chan-
nels, and comparisons were made between relative intensity, intensity
variation, spatial frequencies, fractal dimension, and Euler number.
This study indicates that computer-based processing of cervical im-
ages can provide some discrimination of the type of tissue features
which are important for clinical evaluation, with the Euler number
being the most clinically useful feature to discriminate metaplasia
from neoplasia. Also there was a strong indication that morphology
observed in the blue channel of the image provided more information
about epithelial cell changes. Further research in this field can lead to
advances in computer-aided diagnosis as well as the potential for
online image enhancement in digital colposcopy. © 2000 Society of Photo-
Optical Instrumentation Engineers. [S1083-3668(00)00401-9]
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1 Introduction
Colposcopy was developed in 1925 by Hinselmann to direc
the cervical biopsy placement to improve the correlation be
tween cervical cytology and histology.1 The transformation
zone of the cervix could be colposcopically identified after
5% acetic acid was applied to the cervix. Areas of abnormal
ity are defined colposcopically by:~i! the degree of whitening
after acetic acid solution application,~ii ! the roughness of the
surface contour,~iii ! the margins of the lesions, and~iv! the
vascular pattern and intercapillary distance. The correlation
between cytology and histology improved with colposcopi-
cally directed biopsies from less than 50% to almost 90%
when the entire transformation zone was visible in exper
hands. When the squamocolumnar junction could not be see
the colposcopically directed biopsy was not much better tha
cytology alone at a 60% correlation.2

There is agreement among colposcopists that, in genera
expert correlation between the colposcopic image and th
specimen histology ranges from 50% to 75%. This consider
cross agreements between all tissue types: normal, metapla
tic, all stages of cervical intraepithelial neoplasia~CIN 2/3!,
and cancer.3,4 Yet, in inexperienced hands, the colposcopic
impression correlates to the histologic specimen less tha
35% of the time, with the most difficulty encountered in dif-
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ferentiating benign epithelial changes from CIN 2/3.5

Digital imaging in colposcopy has facilitated the develo
ment of archival records for many clinical purposes: auditi
of cytology, colposcopy and histology correlations, qual
assurance of care, and monitoring disease regression and
gression with simple planar measurement tools.6–9 Although
the advance in digital imaging has been employed mainly
image archiving of patient records, the digitized colposco
images contain two important types of diagnostic informatio
tissue structure and color. Structural information appears
morphological features reflecting underlying tissue archit
ture, while color content, which is affected by tissue optic
absorption and scattering, reflects tissue biochemistry
substructure. Although this information could be quantifi
and enhanced via standard image processing technique
conventional use these images remain unprocessed. Thus
ease diagnoses are made off-line from pathological exam
tions of biopsied tissue samples obtained during colposco
Digital imaging colposcopy now allows the colposcopist
take advantage of the mature field of image analysis and
cessing, where image features, color patterns, and trends
be reliably detected and quantified.

Semiautomated image processing tools can be inco
rated into a computer coupled colposcope to aid the physic
once the appropriate metrics have been determined to qua
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Image Analysis for Discrimination
the important morphologic features. An example of this is the
the development of neural network algorithms using intercap
illary distance, lesion area, and perimeter to aid the less ex
perienced colposcopist in determining the most diseased ce
vical lesion for biopsy.10 This type of processing may be
especially useful in problematic diagnoses, where an objectiv
number can be assigned to the color or structural changes se
in the cervical tissue. While image analysis of the entire field
is possible, it is more illustrative and potentially useful to
perform analyses on regions of interest~ROI! that have been
defined within an image by the clinician. In this way, the
analysis is confined to that region as defined by the user, an
takes advantage of the knowledge of the user. If this approac
is not used, then the analysis is blind and must be able to de
with a larger range of problems such as intensity variation
across the image or depth of focus variations. The first stag
in such a development is to determine and test the most usef
measures to analyze and quantify regions of cervical tissue
within specified regions of interest.

In this study, three tissue types in particular have been
examined including mature squamous epithelium~MSE!, im-
mature squamous metaplasia~ISM!, and cervical intraepithe-
lial neoplasia grade 2/3~CIN 2/3!. The goal of the study was
to take a sample of representative tissue images, and dete
mine some simple metrics which would be capable of dis-
criminating between them based upon the information from
the colposcope color image. To this end, we examined th
color information in the red, green and blue~RGB! pixel in-
tensities and intensity variations, as well as some simple tex
ture detecting features including spatial frequency analysis
fractal dimension, and Euler number. These analyses are th
first steps in designing a computer-aided colposcopy worksta
tion that can serve as a useful tool and guide for the practicin
colposcopist. Additionally, the analysis of typical cervical tis-
sue features including multiple optical wavelengths and mul
tiple spatial frequencies may potentially lead to an improved
understanding of the morphology of cervical tissue lesions.

2 Methods
2.1 Patients
Women between the ages of 18 and 65 were recruited for th
study if they had been referred to colposcopy. Referral to
colposcopy was based on abnormal cytology,@two consecu-
tive Pap tests showing atypical squamous cells of undete
mined significance~ASCUS!, or one Pap test showing atypi-
cal glandular cells of undetermined significance~AGUS!, low
grade squamous intraepithelial lesion~LSIL!, high grade
squamous intraepithelial lesion~HSIL! or squamous cancer#
or an abnormal visual exam at routine screening. All women
underwent the standard colposcopic procedure. The cervi
was visualized and 5% acetic acid was applied continuousl
for three to four minutes to the surface, allowing adequate
time for the most dense acetowhite lesions to appear. Th
squamocolumnar junction and the transformation zone wer
identified; and then the abnormal lesions were analyzed. Th
first image was captured at a 43 magnification giving a pan-
oramic view of the entire cervical field at maximal acetowhit-
ening. Subsequent images were taken at 103 and 163 of the
area of most concern focusing either on margins or vascula
ture patterns that are most easily seen at higher powers. Ac
-
-

n

d

l

l
,

r-

-
,
e
-

-

-
-

tic acid was reapplied to the cervix when the transient
etowhitening started to fade. The images in this study were
taken between 1 and 3 min after application of acetic acid
provide a uniform whitening affect across all the image
Color filter images were taken when contrasting images w
visible, but generally the green filter darkened the digital i
age so much that the details of the lesion were obscu
Lugol’s solution was applied to the cervix after all acetic ac
images were taken. This iodine based solution stained
mature cervical squamous epithelium mahogany brown,
the immature or neoplastic epithelium a mustard yellow
variegated pattern. Lugol’s is used clinically to distinguish t
borders of a lesion clearly from the normal mature cervi
epithelium, as it obscures whitening and vessel patterns
panoramic colposcopic image was taken at 43 with Lugol
staining, however these images were not used in this stud
we believed the acetowhitened images to be more usefu
the current analysis.

Images were interpreted after all patient images were ta
and biopsy confirmation had been received for suspici
sites. For this study, nine patients with biopsy confirmed n
plasia were included in the study, with biopsy results includ
in Table 1.

2.2 Colposcope
The colposcope is a Carl Zeiss 1-FC system ZMS-506-II w
magnifications of 43, 63, 103, 163, and 253 illuminated
by a fiberoptic 12 V/100 W halogen light with 203 eye bin-
oculars. A DAGE-MTI DC-330 three channel charge-coupl
device color video camera, automatically white balanced, w
mounted to the colposcope allowing real-time video disp
of the examination. Although this video system is not co
monly used in Colposcopy Clinics because of its cost,
parts to assemble it were standard. Images were capture
an integrated video frame grabber and video display card
ing the RGB video signal at 24 bit resolution. ColpoShot
the custom-designed software copyrighted by TeleCompu
Solutions, Inc.~Hanover, NH! which integrates the unique

Table 1 Details of biopsy pathology results from the nine abnormal
colposcopy patients in this study. These same specimens correspond
to specimen numbers 1–9 in Figures 2–5.

Specimen Pathologic diagnosis

1 Focal adenocarcinoma in situ

2 CIN II

3 CIN II/III

4 CIN II/III

5 CIN II/III

6 CIN II/III

7 CIN II/III

8 CIN III

9 CIN III
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 73
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Pogue, Mycek, and Harper
image into the patient’s medical record. Unlimited images can
be taken of any one patient. The images are stored in~JPEG!
format with minimal compression.

2.3 Region of Interest Analysis
All digital images were stored as JPEG files on the compute
typically at 6403480 pixeldimensions, with 16 million col-
ors. Images were loaded into Adobe Photoshop software fo
separation of the RGB channels and selection of the specifi
regions. These regions of interest~ROI! were chosen from
each image for intensity and feature analysis in order to find
metric which would allow discrimination of different tissue
types. The ROI from colposcopic images with neoplasia and
immature squamous metaplasia were chosen specifically
correspond to the biopsy sites, while areas of mature squa
mous epithelium where chosen from arbitrary representativ
sites of the image.

2.3.1 RGB Values
The most obvious choice of parameters to examine in a colo
image are the raw red, green, and blue~RGB! pixel intensity
values within the regions of interest. Interpatient variability
combined with the automatic gain of most imaging systems
make the absolute intensity an unreliable parameter to use, s
that here the relative contribution of R, B, and G are exam
ined, which can also be called the chromaticity coordinate
@i.e., R/~R1B1G! is the relative red pixel intensity as a frac-
tion of 1#. Images were analyzed with Adobe Photoshop soft-
ware to separate RBG images of the ROI, and to count abso
lute RBG values along with standard deviations.

2.3.2 RGB Variations
Since variation of the intensity was observed significantly in
all regions of interest, this was tracked for each site. The
variation in the intensity was calculated as the standard devia
tion of the intensity divided by the absolute intensity of the
region, for RGB values separately. This provided a relative
variation measure over the region of interest. In this analysis
care was taken to make sure that the area of the region o
interest was roughly the same, so that the sample size wa
sufficient to minimize the error due to random fluctuations to
less than 1%~i.e., a minimum of 10 000 pixels in each ROI
image!.

2.3.3 Radial Frequency Analysis-Zeroth
Frequency Amplitude
One of the easiest methods to examine patterns in an image
to use the two-dimensional~2D! fast Fourier transform~FFT!
algorithm to provide quantitative numbers for the amplitude
of different spatial frequencies which compose an image. Fo
this Fourier analysis care was taken to ensure that the magn
fication of each image was similar~163! to ensure that the
effect of pixel size did not distort the results. The regions of
interest were chosen to coincide with the biopsy results for th
CIN 2/3 and the immature squamous metaplasia. The region
were cropped to96396 pixelsto increase the allowed use of
the FFT, rather than the slower full Fourier transform algo-
rithm. All calculations were performed in MATLAB using the
separated images from the red, green, and blue channels of t
RGB image. The resulting transformed image data was reor
74 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
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ganized so that the zeroth frequency was at the center of
image, and the 2D data was converted to a one-dimensi
array of data by summing spatial frequencies radially arou
the central~zeroth! frequency.11 The amplitudes at each spa
tial frequency were then displayed as logarithmic data. In
der to quantitatively compare the spatial frequency feature
the images, two particular frequency regions were examin
First the zeroth spatial frequency relative to the next follo
ing frequency was calculated for all three red, green, and b
channels of each image, which is the difference in logarithm
values between the zeroth and first spatial frequency am
tudes. This measure of the difference between zeroth and
frequencies is a metric of the amount of the image which
homogeneous~i.e., no changes in intensity!.

2.3.4 Radial Frequency Analysis-Slope of
Logarithmic Frequency Amplitude
The second analysis was carried out by calculating the sl
of the logarithm of spatial frequency amplitude as a functi
of spatial frequency. This slope was calculated within the f
quency range between the5th and the25th spatial frequencies
where the slope of log amplitude versus frequency was lin
in most cases. This slope is a measure of how complicated
image is, since more complex images tend to have a hig
slope in this range of frequencies. In essence this numbe
related to the fractal dimension of the image, since it is
measure of the increasing complexity contained within
image as a function of spatial frequency. However it sho
be noted that the method to calculate this number is q
different than the next method~following section! so that
there is no guarantee that the two numbers will agree.

2.3.5 Fractal Dimension
In an effort to describe the complexity of each image, t
fractal number of each ROI was calculated. The methodol
for this is described in Refs. 12 and 13 where a box count
method was detailed. The box counting method works
binary images~black and white only with no gray scale!, so
that the ROI in each case was converted from a blue p
image to a binary image by automating the program to cho
the threshold which produced 50% black and 50% white
the image. Initial measurements were also taken with thre
olding based upon the best value to preserve the texture o
image, however the former algorithm was used to prese
objectivity in the analysis. Briefly, the box counting metho
uses square box regions translated around the ROI to d
mine the number of areas where the box is homogenous
all black. Once the number of box areas are counted, then
size of the box is increased, and the process is repeated.
algorithm used here was programmed into MATLAB and t
fractal number was calculated using the equation below

Df5 lim
d→0

@ ln N~d !#/@ ln~1/d !# , (1)

whereN(d) is the number of squares required to cover t
details contained in the thresholded image to be analyz
where the square has each side of length,d. For simplicity, the
slope of the ratio in Eq.~1! was used as the fractal dimensio
If an image has no features, it has fractal dimensionD f50,
whereas the most complicated structures haveD f53.0. In
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Image Analysis for Discrimination
practice, the value ofd was varied over 1.5 orders of magni
tude, since fractal patterns need to be analyzed over order
magnitude for good accuracy.

2.3.6 Euler Number
Another measure of the complexity of an image is to cou
the number of arbitrary sized objects present in the imag
The MATLAB function to calculate the Euler number of the
image was used for this task.14 The Euler number is defined as
the number of objects in the image subtracted by the num
of holes in these objects.15,16 While this number is a measure
of the whole image, it is calculated in practice by analyzin
the 232 pixel patterns across the image systematically for
binary image. The procedure used for analysis of ROI was
take the blue pixel map only, and convert it to a binary~black
and white image only! by automatically choosing the thresh
old value which would convert the image to 50% black an
50% white on average. Then the MATLAB subroutine calcu
lated the Euler number from this image using232 pixels~or
bit quads! for analysis. Three types of pixel patterns ar
counted across the image:(p1) those with four zeros,(p2)
those with three ones and one zero, and(p3) those with two
zeros and two ones in a diagonal pattern only. From the
three patterns, the Euler number is calculated by

E51/4@np12np212np3# , (2)

wherenp1 is the number of232 pixel regions with pattern
p1, and similarly labeled forp2 and p3. Interestingly, this
analysis estimates the number of objects in the image min
the number of holes in the objects, but this type of analys
cannot be used to just measure the number of holes or obje
alone.15 In the case of colposcopy images, this number is us
ful since many of the relevant textures are circular with intr
cate patterns from blood vessels and glandular regions.

3 Results
The ROI of CIN 2/3 in the diseased cervical images were
chosen to correspond to the biopsy site results so that pat
logic confirmation of the disease state was known. The R
of mature squamous epithelium~MSE! were chosen randomly
from the images, within the homogenous tissue areas, and
ROI of immature squamous metaplasia~ISM! were chosen
from the biopsy confirmed sites in each image. Table 1 sho
the pathologic grade of the nine diseased cervical images u
in this study. All samples with immature squamous metapl
sia had similar biopsy results.

Figure 1 shows two typical colposcopic images, where t

Fig. 1 (a) Symptomatic cervical image displaying (A) mature squa-
mous epithelium, and (B) CIN 2/3 at the 12 o’clock position. (b) Nor-
mal cervical image displaying (A) mature squamous epithelium, (B)
acetowhitened immature squamous metaplasia, (C) glandular tissue.
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first displays a diseased region of CIN 2/3 above the squam
columnar junction, within the transformation zone; and t
second image has only ISM in the same region. While
images from all the patients varied considerably, these
images show one type of difference which is possible in
color and texture patterns of the image. The three catego
of tissue chosen for this study are shown in these two ima
To compare the features which can be analyzed in a typ
image, a closer image of the cervix in Figure 1~a! is shown in
Figure 2~a! at 163 magnification, and the red, green, and bl
fractions of the image were separated and are shown in
ures 2~d!, 2~g!, and 2~j!, respectively. These images are a
thresholded using an algorithm which was designed to p
duce 50% black and 50% white images~binary images!. The
resulting images from each channel provides unique patte
which are reflective of the tissue optical properties in th
particular wavelength range. These patterned images w
used for determination of the fractal dimension and the Eu
number. Alternatively, the original R, G, and B images can
Fourier transformed to produce 2D plots of the spatial f
quency amplitude. In Figure 2, the3rd column~c!, ~f!, ~i!, and
~l! shows the result of performing a 2D FFT of the cent
1283128 region of pixels from each image~a!, ~d!, ~g!, and

Fig. 2 A magnified image of the cervix in Figure 1(a) is shown in full
RGB in (a), with just the red channel in (d), just the green channel in
(g), and just the blue channel in (j). In the second column (b), (e), (h),
(k), the images have been segmented to provide 50% of black and
white by thresholding the corresponding image to the left of it. In the
third column (c), (f), (i), (l), the gray scale images in column one have
been Fourier transformed with a two-dimensional FFT algorithm. The
thresholding shown in the second column was used for fractal dimen-
sion calculation and Euler number calculation, while the Fourier
transformed images in column three were used to calculate the spatial
frequency distributions of the images.
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 75



t

f

s

-
ta

e
n
t

e
d

es

are
the
or

Pogue, Mycek, and Harper
~j!, respectively. These images are arranged so that the zero
spatial frequency is at the center of the image, and a radia
binning around this central location provides a linear array o
amplitudes at increasing spatial frequency.

The ROI analysis for relative red, green, and blue value
~also called the chromaticity coordinate! are shown in Figures
3~a!–3~c!, respectively. The data are plotted as sample num
ber in order to show all samples and the variance in the da
points. The unpaired students T test was used to determine
there was a statistically significant separation of the data be
tween different tissue types for all three RGB values. No
comparisons between any of the tissue types for any of th
three RGB values produced probability values of less tha
0.1, indicating that individual colors of the tissues were no
sufficient to discriminate between types.

The variation in the RGB values was examined in the sam
manner, for the same ROI areas. Graphs of the data for re
green, and blue are shown in Figures 4~a!–4~c!, respectively.

Fig. 3 Relative average intensity values as calculated for the region of
interest for each colposcope image sample, with the three graphs dis-
playing data for red pixel values in the top graph, green pixel values in
the middle graph, and blue pixel values in the bottom graph. All
numbers are the average of at least 104 pixels in an ROI.
76 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
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In this case the ability to discriminate between tissue typ
was improved, based on the students T test. TheP values for
the three different tissue types and three color variations
shown in Table 2. The results indicate that the variation in
RBG values are a reliable method for separating CIN 2/3

Fig. 4 Intensity variations calculated as the standard deviation of the
pixel values divided by the average pixel value. Graphs are (top
graph) red pixels, (middle graph) green pixels, and (bottom graph)
blue pixels.

Table 2 Calculated probabilities that the data sets do not have dif-
ferent mean values, using an unpaired students T test. (P , 0.05 is
considered statistically significant separation of data sets). Abbrevia-
tions are CIN=cervical intraepithelial neoplasia, ISM=immature squa-
mous metaplasia, MSE=mature squamous epithelium, and statistically
significant differences are denoted with an asterisk (* ).

Data sets
compared

P value
(R st. dev.)

P value
(G st. dev.)

P value
(B st. dev.)

CIN vs MSE 0.048 0.004* 0.002*

CIN vs ISM 0.4 0.44 0.51

ISM vs MSE 0.07 0.03* 0.03*
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Image Analysis for Discrimination
ISM from mature squamous epithelium, but that CIN 2/3 and
ISM cannot be reliably separated from each other in this man
ner. Interestingly, the green and blue channels provide th
best separation between tissues. Qualitatively the green cha
nel appears to emphasize blood vessel and glandular loc
tions, whereas the blue channel improves the resolution o
epithelial tissue layers and patterns.

The radial spatial frequency analysis was carried out for al
image ROIs for each of the R, G, and B channels separately
The typical results from a radial binning of the spatial fre-
quencies is shown in Figure 5~a! for mature squamous epithe-
lium, 5~b! for CIN 2/3, and 5~c! for ISM. The shapes of these
curves indicates that there is a pronounced peak at the zero
spatial frequency for all images, as expected, and that the CI
and SM data generally has a higher gradient in the amplitud
with increasing spatial frequency. The data is displayed a
logarithm of frequency amplitude versus spatial frequency

Fig. 5 Plots of the amplitude of the spatial frequency distribution from
the two-dimensional Fourier transform of the regions of interest in
each image for (a) CIN 2/3, (b) mature squamous epithelium, and (c)
immature squamous metaplasia. The spatial frequency amplitude was
calculated by radially adding frequencies around the central (zeroth)
frequency bin (as can be observed in the images of the 3rd column of
Figure 2).
-
-

f

.

h

number, in Figure 5. The peak value from these graphs at
zeroth frequency was calculated relative to the first spa
frequency amplitude, providing a measure of the difference
log values between the zeroth and first spatial frequency
plitudes. This calculation was carried out for all images a
for all R, G, and B channels, the results are plotted in Fig
6. An unpaired students T test was used to compare the
crimination of the calculated data, and theP values from this
comparison are shown in Table 3. This zeroth to first f
quency amplitude difference could be used to discrimin
between CIN 2/3 and MSE or between ISM and MSE us
either the green or the blue images, but not the red image

While the zeroth spatial frequency is related to the hom
geneous regions of the image, the higher spatial frequen
~above zero! are related to the more complex features of t
images. Based upon the data in Figure 5, it was hypothes
that the slope of the log~amplitude! versus spatial frequency

Fig. 6 Calculation of the amplitude of the logarithm of the zeroth
spatial frequency relative to the next higher frequency for each of the
Fourier transformed regions of interest, showing results from (a) the
red channel, (b) the green channel, and (c) the blue channel. The
typical changes between the zeroth frequency and the next highest
frequency can be seen in the plots of Figure 4.
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 77
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would be a good indicator of the complexity of the images.
The slope of the log~amplitude! versus spatial frequency was
calculated for all of the images using red, green, and blue
images for all ROI sections, using the frequency range be
tween 5 and 25~see Figure 5 as a reference!. The data from
this analysis is plotted in Figure 7, and the results from a
students T test comparison is used to calculate probabilities o
different distributions~Table 4!. Again, the results indicate
that this analysis can be used to differentiate between CIN 2/
and MSE or between ISM and MSE, but not between CIN 2/3
and ISM, using only the blue and green channels.

The fractal dimension was calculated for each tissue typ
with automatic segmentation of the images. The calculation
was carried out on all three R, G, and B channels using binar
~black and white! versions of each image which were ob-
tained by thresholding to provide 50% white and 50% black
in each image. One set of typical thresholded binary image
for the R, G, and B channels separately, is shown in Figure 2
in the third column. The calculated fractal dimension numbers
are plotted in Figure 8. Statistical analysis indicated that the
fractal number was insufficient to discriminate between any o
the tissue types~P.0.05for all comparisons!, so that a table
of values is not provided here.

The Euler number was calculated for each tissue ROI with
automatic segmentation of the images, and the data is plotte
in Figure 9. Each of the R, G, and B channels were used aga
for this analysis, as in the fractal dimension, using binary
images thresholded in the manner described in Figure 2. Th
students T-test comparison between the data sets is shown
Table 5. In this case, the Euler number cannot be used t
discriminate between CIN 2/3 and MSE or between ISM and
MSE. The ability to separate CIN 2/3 and ISM was significant
here (P50.013). A further improvement in separating the
data sets is possible with a different level of thresholding use
in the images; however it is difficult to objectively determine
which level of thresholding provides the best separation be
tween calculated Euler number for differentiating ISM and
CIN 2/3. To address this question, thresholding was done a
all possible values for all blue channel images, and the Eule
number was calculated as a function of the fraction of the
image which appeared white~ranging between 0% and
100%!. The results for this analysis for all CIN 2/3 tissue
samples are shown in Figure 10~a! and for all ISM tissue
samples are shown in Figure 10~b!. A comparison of the data
in the two graphs indicates that there is maximal deviation

Table 3 Calculated probabilities that the data sets do not have dif-
ferent mean values, using an unpaired students T test to compare the
data of the amplitude of the zeroth frequency bin from the FFT of each
ROI, as plotted in Figure 6. Abbreviations are as in Table 2, and
statistically significant differences are denoted with an asterisk (* ).

Data sets
compared

P value
(R zero freq.)

P value
(G zero freq.)

P value
(B zero freq.)

CIN vs MSE 0.27 0.016* 0.015*

CIN vs ISM 0.44 0.87 0.79

ISM vs MSE 0.65 0.052* 0.056*
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Fig. 7 Plots of the calculated slope of the logarithm of the spatial
frequency amplitude with frequency for all three channels (a) red, (b)
green, and (c) blue. The slope was calculated between the 5th and
25th frequency channels on plots as shown in Figure 4, using linear
regression.

Table 4 Calculated probabilities that the data sets do not have dif-
ferent mean values, using an unpaired students T test to compare the
data of the slope of the log amplitude of the spatial frequencies, as
plotted in Figure 7. Abbreviations are as in Table 2, and statistically
significant differences are denoted with an asterisk (* ).

Data sets
compared

P value
(R freq. slope)

P value
(G freq. slope)

P value
(B freq. slope)

CIN vs MSE 0.17 0.022* 0.009*

CIN vs ISM 0.91 0.97 0.40

ISM vs MSE 0.16 0.020* 0.004*
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between the two sets of values between threshold values
approximately 0.2 to 0.5.

4 Discussion
The main goal of this study has been to determine the per
nent color features in digital colposcopy images which can b
used for semiautomated discrimination of different tissu
types and malignancies. While it is unlikely that feature
analysis can replace expert physician inspection of image
there is a role for feature analysis in objectively quantifying
the color changes and structural changes of certain regions
the image. This type of analysis can be important in sever
roles such as:~i! training new colposcopists,~ii ! confirmation
of the colposcopic impression,~iii ! aiding providers in remote
regions to make colposcopic impressions by telecolposcop
~iv! providing quantitative classification of the color and fea

Fig. 8 Calculated fractal dimension plotted for all the tissue samples
using the region of interest chosen and thresholded to provide 50%
white and 50% black binary images, using the data from (a) the red
channel, (b) the green channel, and (c) the blue channel. The typical
appearance of the images after thresholding can be seen in the 3rd
column of Figure 2. The box counting method was used to calculate
fractal dimension, as described in the text.
f

,

f
l

,

Fig. 9 Calculated Euler number for all of the image regions of interest
using (a) the red channel, (b) the green channel, and (c) the blue
channel. The Euler number was calculated from the thresholded bi-
nary images as shown in the 3rd column of Figure 2, and is defined as
the number of black objects minus the number of white holes within
the black objects.

Table 5 Calculated probabilities that the data sets do not have dif-
ferent mean values, using an unpaired students T test to compare the
data of Euler number, as plotted in Figure 8. Abbreviations are as in
Table 2, and statistically significant differences are denoted with an
asterisk (* ).

Data sets
compared

P value
(R Euler No.)

P value
(G Euler No.)

P value
(B Euler No.)

CIN vs MSE 0.74 0.32 0.062

CIN vs ISM 0.17 0.56 0.013*

ISM vs MSE 0.15 0.20 0.99
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 79



Pogue, Mycek, and Harper
Fig. 10 (a) Calculated Euler number for the immature squamous metaplasia ROI samples as a function of the level of thresholding in the image, for
blue channel images only. (b) Calculated Euler number for the CIN 2/3 ROI samples as a function of threshold value, for the blue channel only. A
comparison of the two graphs indicates that maximal difference between the two graphs would be between threshold values of 0.2–0.5.
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tures associated with malignant changes in the cervix, and~v!
potentially enhancement of the pertinent clinical features
through online image preprocessing. The type of color analy
ses completed here are similar to endoscopy studies whic
have shown promise in diagnosing colon polyps based upo
color changes in the RGB values from video images.11 Simi-
larly the feature analysis here using fractal dimension is base
upon other studies which showed that these can be represe
tative of malignancy based upon the complexity of the blood
vessel patterns developed.11–13 Enhancement of the pertinent
features of an image has also been demonstrated in endosco
by Nishioka and Mycek.17

In epithelial tissues, many diseases are characterized b
abnormalities having different blood volume content than nor-
mal mucosa. In the visible region of the electromagnetic spec
trum, hemoglobin in the blood is the major chromophore in
soft tissues, with two broad absorption bands in the visible
spectrum roughly corresponding to the wavelengths o
‘‘blue’’ and ‘‘green’’ colors of light.18 Therefore, when the
cervix is viewed under white light during endoscopy, the he-
moglobin underlying the epithelial cell layers absorbs most o
the incident blue light and green light, while scattering most
of the incident red light back to the camera. For this reason
the cervix looks generally pinkish-red in color and variations
in the local blood vessel density or epithelial cell layer thick-
ness appear as changes in color relative to normal tissu
Thus, glandular epithelium, which has only one layer of co-
lumnar epithelium overlying its vasculature usually appears
‘‘redder’’ than normal tissue. The islands of epithelial tissue
which are white upon the background of glandular and vas
cular tissue provide the patterns which can be interpreted wit
metrics such as the fractal dimension or the Euler number.

A study of the RGB color patterns in the three different
tissue types studied here disappointingly indicates that dis
crimination of immature squamous metaplasia from CIN 2/3
is difficult, and likely impossible, simply based upon the rela-
tive RGB values or even upon the variance in these values
80 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
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This finding is perhaps not surprising considering that
diagnosis of CIN 2/3 is based on a constellation of visu
clues that can be extremely different from patient to patie
However, some fundamental insight about these different
sues can be gleaned from these comparisons, in that the
channels of the images yield distinctly different informatio
about the tissue layers. For example, the blue light ima
discriminates surface cell tissue layers and also provides g
contrast between epithelial tissue and blood vessels, w
green light discriminates blood vessels very well from
other tissues, and red light provides much less contrast
tween blood and tissues. Based upon these observations
hypothesized that the blue light channel of the images wo
provide the best discrimination between CIN 2/3 and imm
ture squamous metaplasia. The ability to discriminate betw
features within the transition zone and the mature squam
epithelium may appear trivial to the experienced colposcop
however achieving this in a robust automated manner w
image processing is not always as trivial. Therefore the an
sis in Figure 3, and Table 2 indicates that the variance
either the green or blue channels over a region can be use
segment these two different tissue types. Since this is suc
easy feature to calculate, it can be a reliable and rob
method for future use.

The fractal dimension is an obvious choice of a featu
which is well understood in image processing, and has de
tively been shown to be a reliable indicator of blood ves
pattern complexity.12,13In this analysis, the fractal pattern wa
not a useful method to discriminate between tissue typ
mainly due to the problems of automated thresholding of
images. The fractal analysis requires that RBG images
turned into thresholded binary images before the box coun
method can be applied. In our case, to be as objective
possible, the thresholding was done with each image prod
ing 50% black pixels and 50% white pixels automatically.
these images, variations in the light intensity produced co
plexity patterns even in the squamous epithelium regions
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the image. Thus light variations across the image can con
found the feature analysis of fractal dimension, making this a
less reliable metric to discriminate between tissues. This prob
lem is clearly an artifact which can be eliminated in future
work either through careful analysis of tissues which are only
in a certain field of the image, or through the use of online
image enhancing processors.17 One improvement to our
thresholding would be to use more sophisticated methods o
threshold choice, such as Max–Lloyd quantization, which is
used to separate the histogram of gray-scale values into tw
regions, and the threshold is chosen at the minimum betwee
these two regions. This latter method could provide a more
robust method for choosing the threshold level, assuming tha
the images are all bilobal in histogram gray-scale values.

Fractal dimension calculated by the box counting method
may also be related to the calculation of spatial frequency
slope, as calculated from the Fourier transformed data. How
ever there does not necessarily have to be a direct relatio
here since the former was calculated on thresholded image
whereas the FFT was completed on gray-scale images. Whi
neither of these two methods provided a clinically useful
method of separating CIN 2/3 regions from squamous meta
plasia, further exploration of the relative differences between
these two methods may elucidate which is the more robus
measure of fractal dimension calculation. It is still controver-
sial whether angiogenesis is a good predictive indicator o
cervical intraepithelial neoplasia19 so that at this time it is not
obvious if the fractal dimension as calculated from the vascu
lar pattern would be a good predictor. However in other tumor
sites there is clear evidence of angiogenesis marking carc
noma, so further investigation of this fractal number seems
warranted. Perhaps the most confounding problem for thi
analysis is that the potential fractal pattern of the vasculatur
is overlaid with larger regions of epithelial tissue, thus poten-
tially obscuring the blood vessel pattern.

The feature analysis obtained with the calculation of the
Euler number appears more promising for a metric which is
able to discriminate between all three tissue types compare
here. The separation of mature squamous epithelium from
CIN 2/3 or immature squamous metaplasia could be achieve
with this metric. The discrimination of CIN 2/3 from imma-
ture squamous metaplasia was not statistically significant(P
50.08) but is potentially an indicator that this can be a first
order method to categorize the complexity of the image. It is
not realistic to expect that an automated feature extractio
algorithm can always separate CIN 2/3 from immature squa
mous metaplasia, especially since this cannot always be don
by the experienced colposcopist unless biopsy confirmation i
used. The eventual goal of this work is to provide some ob
jective metric which discriminates between immature squa
mous metaplasia, CIN 1 and CIN 2/3 with at least equal to o
better specificity than standard colposcopy. This will be tested
in further work involving a larger cohort of patient images,
and confining the feature analyses used to those which hav
shown the most promise in this study.

5 Conclusions
The most important result of this study is that a feature analy
sis based method can distinguish between images from p
tients with CIN 2/3 versus images from patients with imma-
-

-

f

n

t

s
e

t

-

e

e

-

ture squamous metaplasia. In this analysis, comparisons w
made with images of squamous epithelium as well simply
provide a tissue type with much simpler features. While ma
of the methods tested were able to distinguish between SE
SM or SE and CIN 2/3, these are not useful methods
clinical use. The calculation of Euler number was the on
statistically significant way to differentiate between CIN 2
and SM. The CIN 2/3 images had a higher Euler number t
the SM images, as measured from the blue image only.
Euler number is a measure of the number of objects in
image, minus the number of holes in those objects. There
the CIN 2/3 images had a higher number of surface tis
objects on a background of darker blood tissue, for
samples used here. Further study of this feature analys
needed on a larger image data base to determine the sen
ity and specificity of this method.
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