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Abstract.Optical superoscillation enables far-field superresolution imaging beyond diffraction limits. However,
existing superoscillatory lenses for spatial superresolution imaging systems still confront critical performance
limitations due to the lack of advanced design methods and limited design degree of freedom. Here, we
propose an optical superoscillatory diffractive neural network (SODNN) that achieves spatial superresolution
for imaging beyond the diffraction limit with superior optical performance. SODNN is constructed by utilizing
diffractive layers for optical interconnections and imaging samples or biological sensors for nonlinearity. This
modulates the incident optical field to create optical superoscillation effects in three-dimensional (3D) space
and generate the superresolved focal spots. By optimizing diffractive layers with 3D optical field constraints
under an incident wavelength size of λ, we achieved a superoscillatory optical spot and needle with a full width
at half-maximum of 0.407λ at the far-field distance over 400λ without sidelobes over the field of view and with
a long depth of field over 10λ. Furthermore, the SODNN implements a multiwavelength and multifocus spot
array that effectively avoids chromatic aberrations, achieving comprehensive performance improvement that
surpasses the trade-off among performance indicators of conventional superoscillatory lens design methods.
Our research work will inspire the development of intelligent optical instruments to facilitate the applications of
imaging, sensing, perception, etc.
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1 Introduction
The Abbe–Rayleigh diffraction limit of traditional optical
equipment has always been an obstacle to the study of micro-
and nanoscale objects.1,2 Near-field microscopic imaging tech-
niques, such as contact photography3 and scanning near-field
imaging,4,5 capture evanescent fields by placing a probe or
light-sensitive material extremely close to the object to achieve
nanoscale resolution, which is not possible for imaging inside
biological samples or encapsulated micro- and nanostructures.
Far-field microscopic imaging technology is not restricted by
the above bottlenecks. Some typical far-field microscopic

imaging techniques, such as single-molecule localization (SML)
microscopy6,7 or stimulated emission depletion (STED),8,9 have
demonstrated the possibility of nanoscale imaging without
capturing evanescent fields. However, SML microscopy and
STED typically require intense beams to excite, deplete, or
bleach fluorophores in a sample that produces photobleaching
and phototoxicity in living samples.

Optical superoscillations are rapid subwavelength spatial
variations of light intensity and phase that occur in complex
electromagnetic fields formed by the precise interference of
coherent waves, which provide an advanced method for far-
field superresolution imaging beyond the diffraction limit.10,11

To generate optical superoscillation, complicated lens design
methods12–14 have been proposed. Additionally, Fresnel zone
plate (FZP) optimization design methods, including optimizing
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algorithms15–18 and optimization-free algorithms,19,20 have also
been developed. However, the existing superoscillatory focus-
ing-based imaging designs require a trade-off among perfor-
mance indicators and have limited performance as follows:
(1) strong sidelobes resulting in a small field of view
(FoV),12,15,20 (2) short working distances,13,15,16,19 (3) limited
depth-of-focus (DoF),15,17,18,21 and (4) chromatic aberration
caused by wavelength-dependent phase retardation,13,14,19,22

which dramatically limit their applications.
The performance limitations of the existing superoscillatory

imaging methods are mainly due to the optimization with two-
dimensional (2D) optical field constraints. These constraints
include limited modulation element numbers or only ring-struc-
tured phase modulation, which substantially limits the degree of
freedom in design space for optimizing performance. For exam-
ple, the conventional superoscillatory lens design methods, such
as the pinhole array mask11 or FZPs,17 require the following
steps. First, the prolate ellipsoid function or Strehl ratio is used
as the optimization function of the model. Then, the phase
distribution of the superoscillatory lens is optimized with the
constraints of full width at half-maximum (FWHM) of the
superoscillatory spot Iðxi;yiÞ at the 2D position of ðxi; yiÞ, and the
sidelobe intensity IP

ðxj;yjÞ
at a combination of the 2D positionsP

ðxj;yjÞ in the local FoV expressed by the distance r between
the superoscillatory spot and sidelobes. The above optimization
method can only achieve the design of a pinhole array mask
with a limited element number or a simple FZP with the ring-
structured phase modulation of 0 or 1, while the optimization
process requires a very complex formula decomposition process.

Here, we propose constructing the superoscillatory diffrac-
tion neural networks, i.e., superoscillatory diffractive neural net-
works (SODNNs), that generate optical superoscillation in 3D
and achieve superresolution imaging beyond the diffraction lim-
its, as shown in Fig. 1(a). SODNN is constructed by utilizing
diffractive layers to implement optical interconnections and im-
aging samples or biological sensors to implement nonlinearity.
The conventional superoscillatory lens design methods usually
optimize the 2D superoscillatory spot with sidelobes around the
focus spot, as shown in Fig. 1(b). SODNN modulates the inci-
dent optical field to create optical superoscillation effects in 3D
space and generates the superresolved focusing spots or optical
superoscillatory needle, as shown in Fig. 1(c). The diffraction
limit of existing photonic neural network systems is due to train-
ing neural networks without exploring the superoscillatory ef-
fects. By constructing the large-scale SODNN that optimizes the
optical coefficients of a stack of diffractive layers to modulate
the optical field in 3D space, we can generate superoscillation
at any local regions without sidelobes across the FoV and with
long working distance, long DoF, and achromatic spots for high-
performance superresolution imaging.

2 Methods
The forward model of SODNN is based on angular spectrum
representation. The complex-valued coherent input optical field
Uλk at the wavelength λk ðk ¼ 1; 2;…; NÞ is transformed by
SODNN before the detection. We consider the diffractive modu-
lation layers of SODNN in this work with the complex trans-
form function of MλkðΔH; ziÞ that modulates the incident
optical field to the output optical field at the plane with a dis-
tance of zi. Here, ΔH represents the relative height map of
the diffractive elements in SODNN to generate optical path

difference and modulate the phase ϕλk of incident optical field,
which can be formulated as ΔH ¼ λkϕλk∕2πΔnλk with Δnλk
being the wavelength-dependent material refractive index. Then,
the output optical fields at the wavelength λk at the output
plane with a distance of zi can be formulated as U0

λk
ðziÞ ¼

MλkðΔH; ziÞUλk , and the detector measures the intensity distri-
bution of output optical fields that can be formulated as a non-
linear function such as the square of the complex optical field:
IλkðziÞ ¼ jU0

λk
ðziÞj2 ¼ jMλkðΔH;ziÞUλk j2. We optimize the rela-

tive height of diffractive elements at different modulation layers
with 3D optical field constraints across different wavelength
channels. The optimization of large-scale diffractive elements re-
duces chromatic aberration caused by wavelength-dependent
phase retardation, thereby enhancing the system’s robustness
to wavelength variations.23 For the multiwavelength SODNN,
the total intensity distribution of different wavelengths at the
output plane can be formulated as the superposition of detected
intensity distribution at each wavelength: IðziÞ ¼

P
λk
IλkðziÞ.

The SODNN is optimized with the 3D optical field con-
straints, which optimizes the shape of the superoscillatory focus-
ing spot within a certain distance range zi ∈ [f − Δf, fþ Δf]
before and after the focal plane with a focal length of f. The
ideal superoscillatory focusing spot Iðxi;yi;ziÞ at a position in
the 3D space with coordinates ðxi; yi; ziÞ at the output plane with
a distance of zi would have a maximized energy focused spot
Iðxi;yi;ziÞ and minimized light intensity sidelobes IP

j
ðxj;yj;ziÞ at a

combination of position coordinates
P

jðxj; yj; ziÞ. Taking the
ideal output light intensity as the optimization direction with
the entire 3D optical field constraints, the SODNN performs
the function of a neuromorphic photonic processor that utilizes
weighted optical diffractive interconnections of massively
diffractive neurons to achieve the desired optical superoscilla-
tory function. In addition, we further design the constraint to
maximize the energy transmission efficiency of superoscillatory
regions by minimizing the optical energy outside the superoscil-
latory regions. Therefore, the 3D optical field constraint optimi-
zation of SODNN can be formulated as

min
ΔH

� X
zi∈½f−Δf;fþΔf�

ðððIðxi;yi;ziÞ þ IP
j

ðxj;yj;ziÞÞ − ItargetÞ2

þMSEðIðx;y;zÞ∉ðxi;yi;ziÞÞÞ
�
; (1)

where Iðxi;yi;ziÞ is the intensity of the superoscillatory focusing
spot at the 3D position of ðxi; yi; ziÞ; IP

j
ðxj;yj;ziÞ is the intensity

of the sidelobes at the 3D positions of
P

jðxj; yj; ziÞ; Itarget is the
ground-truth label that represents the ideal superoscillatory out-
put; MSEðIðx;y;zÞ≠ðxi;yi;ziÞÞ represents the total energy of optical
intensity outside the superoscillatory regions with the mean
square error (MSE) function; zi ∈ [f − Δf, f þ Δf] is the range
of the 3D optical field constraint optimization space before and
after the focal plane with a focal length of f; and ΔH is the
relative height map of the diffractive elements.

For the design of SODNN in this work, we use the stochastic
gradient descent approach to optimize the network coefficients
on a desktop computer (Linux) with an Intel Xeon Gold 6226R
CPU at 2.90 GHz with 16 cores, and an NVIDIA GTX-3090Ti
GPU with 24 GB graphics card memory. The residual error of
network outputs with respect to ground-truth labels and the total
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optical energy outside the superoscillatory regions are calcu-
lated according to Eq. (1), which are used to perform the error
backpropagation to optimize the SODNN and the relative height
map ΔH of the diffractive modulation elements in SODNN.

3 Results

3.1 Numerical Evaluations

We first validate the effectiveness of the 3D optical field con-
straint optimization of SODNN in achieving superoscillatory

spots without sidelobes to realize a large FoV at the designed
long focal length f, as shown in Figs. 2(a) and 2(b). Each optical
diffractive element size was set to λ∕2 × λ∕2, where λ is the
wavelength of input coherent light, which is 632.8 nm. We de-
signed a one-layer SODNN with a modulation element number
of 2500 × 2500, corresponding to a network layer size of
0.79 mm × 0.79 mm. The selection of the above parameters
was determined according to the performance analysis of
SODNN, as discussed in Sec. 4.2. The proposed system forms
a superoscillatory focused spot with almost no sidelobes at a
long focal length f ¼ 250 μm ð∼400λÞ, with an FWHM of

Fig. 1 Training SODNN to optimize the diffractive elements with 3D optical field constraints.
(a) Utilizing diffractive modulation layers and free-space propagation to implement the weighted
optical interconnections, and imaging samples or biological sensors to implement nonlinearity.
SODNN can modulate the multiwavelength incident optical field to create optical superoscillation
effects in 3D superoscillatory regions. (b) The conventional methods optimize a 2D focus spot at
a specific focusing distance to achieve optical superoscillation with a large sidelobe. (c) The en-
larged 3D superoscillatory regions show that SODNN optimizes the 3D optical field in a certain
distance range to achieve superoscillation without the sidelobe.
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258 nm [∼0.407λ; this is shown in the middle of Fig. 2(a) and
the lower left of Fig. 2(b)]. Recent achievements of the super-
oscillatory lenses compared with SODNN are shown in Sec. 4.1,
which demonstrates the extraordinary performance of SODNN.

It can be found that optimizing the SODNN only at a de-
signed focal length f [that is Δf ¼ 0 in Eq. (1)], SODNN
can maintain the morphology of the superoscillatory focus spot
and avoid the appearance of sidelobes at the designed position;
once it exceeds this distance, the sidelobes will appear immedi-
ately accompanied by smaller FWHM and weaker superoscil-
latory focusing spot intensity. For example, at four different

focal lengths f − 2Δf, f − Δf, f þ Δf, and f þ 2Δf where
Δf ¼ 0.25 μm, we found that the sidelobes appeared and the
FWHM was reduced to 206 nm (∼0.325λ), 246 nm (∼0.388λ),
246 nm (∼0.388λ), and 206 nm (∼0.325λ), respectively, as
shown in Figs. 2(a) and 2(b). For the out-of-focal planes, the
intensity of the sidelobes increases exponentially with respect to
the central spot as the central spot size decreases, demonstrating
the high quality of optical sectioning of the SODNN for imaging.

In order to maintain the profiles of superoscillatory light
spots within a long DoF range, that is, to form a superoscillatory
light needle, we optimize the shape of the superoscillatory

Fig. 2 Optical superoscillatory spots and optical needle design of SODNN. The FWHM (a) and the
output (b) of superoscillatory spots at the designed focal length and distributions offsetting the
designed focal length with the collimated input optical field. (c) The optical superoscillatory needle
within a DoF of 6 μm with uniform light intensity and consistent FWHM. (d) The 3D distributions of
the output optical superoscillatory needle. (e) The output of the slices of the optical superoscillatory
needle.

Chen et al.: Superresolution imaging using superoscillatory diffractive neural networks

Advanced Photonics 056004-4 Sep∕Oct 2024 • Vol. 6(5)



focusing spot within a certain distance range ½f − 6Δf; f þ 6Δf�
before and after the focal length f, as shown in Figs. 2(c)–2(e).
Each optical diffractive element size was set to λ∕2 × λ∕2,
where λ ¼ 632.8 nm. We evaluate the performance of one-
layer SODNN by setting the modulation element number to
1500 × 1500, corresponding to the network layer size of
0.47 mm × 0.47 mm. We set the range of the 3D optical field
constraint optimization space zi ∈ ½f − 6Δf; f þ 6Δf�, where
f ¼ 100 μm and Δf ¼ 0.5 μm. We found that an optical
superoscillatory needle was formed within a long DoF of
6 μm [∼10λ, see Fig. 2(d)]. The optical superoscillatory needle
was further tested by selecting seven positions in the range
½f − 6Δf; f þ 6Δf� with 2Δf as the sampling interval [see
the slices of the optical superoscillatory needle in Fig. 2(e)
and the FWHM in Fig. 2(c)]. It can be found the optical super-
oscillatory needle has uniform light intensity and consistent
FWHM (250� 3 nm) in the designed DoF.

Based on our earlier studies,23,24 we further demonstrate the
multiwavelength SODNN to solve the chromatic aberration
problems caused by wavelength-dependent phase retardation,

as shown in Figs. 3(a) and 3(b). In this design, three different
parallel wavelength channels [i.e., blue, green, and red light
with the wavelengths of 473 nm (λ1), 532 nm (λ2), and
632.8 nm (λ3), respectively] are used to generate multiwave-
length superoscillatory light spots focused at the same focal
length. Each optical diffractive element size was set to
λ3∕2 × λ3∕2. We also designed a one-layer SODNN by
setting the modulation element number to 2500 × 2500, corre-
sponding to the network layer size of 0.79 mm × 0.79 mm.
The proposed system forms multiwavelength superoscillatory
focused spots with almost no sidelobes at a long focal length
f ¼ 250 μm ð∼400λ3Þ, with the FWHM of 259, 221, and
199 nm, respectively, produced by red light, green light, and
blue light, shown in Fig. 3(a), respectively. Using the integrated
multifocus and multiwavelength design approach proposed
above, we further design a multiwavelength multifocus SODNN,
shown in Fig. 3(b), which can realize 3 × 5 superoscillatory
focusing spot arrays under red, green, and blue light channels.
The 3 × 5 superoscillatory focusing spot arrays were produced
by red light, green light, and blue light with the FWHM of 267,

Fig. 3 Multiwavelength and multifocus SODNNs. (a) The superoscillatory spots under red, green,
and blue light channels with the FWHM of 259, 221, and 199 nm, respectively. (b) The 3 × 5 super-
oscillatory spot arrays under red, green, and blue light channels with the FWHM of 267, 222, and
199 nm, respectively. (c) The superoscillatory spots of the T-H-U pattern with the FWHM of 274 nm
and the superoscillatory spots of the heart-shaped pattern with the FWHM of 262 nm.
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222, and 199 nm, respectively. The comparisons of the proposed
SODNN with respect to the state-of-the-art achievements of
superoscillatory designs are also discussed in Sec. 4.1. Some
complex multifocus superoscillatory spots, such as heart-shaped
pattern and T-H-U pattern (the abbreviation of Tsinghua
University), are shown in Fig. 3(c) to demonstrate the superior-
ity of SODNN in terms of design flexibility and versatility. For
the above two multifocus arrays, we obtained the FWHM of
274 and 262 nm, respectively, beyond the diffraction limit
(0.61λ∕NA ¼ 456 nm).

3.2 Experimental Evaluations

We built the experimental setup to measure the SODNN’s super-
oscillatory focusing spot profiles, as shown in Fig. 4(a). A He–
Ne laser (25-STP-912-230, Melles Griot) with a wavelength of
632.8 nm and a power of 5 mW was collimated by lens 1 and
lens 2, and a pinhole was used as a filter. The collimated He–Ne
laser beam was used to illuminate the SODNN placed on the
multi-axis translation stage (NPXYZ100SGV6, Newport), which
was processed by two-photon printing technology (Moji Nano
Technology, China). Considering the error accumulation and
processing costs of large-scale devices in actual processing,
we designed two kinds of small-scale one-layer SODNNs with
the modulation element number of 200 × 200 corresponding to
each optical diffractive element size of 500 nm × 500 nm and
1-bit step height of 0 and 500 nm to verify the correctness of
SODNN. Figure 4(d) left and middle are, respectively, designed
to achieve single-focus focusing and a 2 × 2 multifocus array
focusing of superoscillatory spots, while Fig. 4(d) right is the
enlarged part of the processed 2 × 2 multifocus SODNN after
characterization by electron microscopy (EM). An Olympus
objective (100× magnification, NA = 0.9) was used to image
the light focused by the designed SODNNs. A tube lens with
focal length f ¼ 180 mm was used to form an image on a
CMOS camera (01-MOMENT, Photometrics).

Figure 4(e) left and Fig. 4(f) left are the numerical analysis
results of a single-focus superoscillatory focusing spot and 2 × 2
multifocus superoscillatory focusing spot array with a focal
length f ¼ 20 μm, at its design wavelength λ ¼ 632.8 nm.
The spot morphology is highly consistent with the experimental
measurement results shown in Fig. 4(e) middle and Fig. 4(f)
middle. For the single-focus superoscillatory focusing spot
and the 2 × 2 multifocus superoscillatory focusing spot array,
the FWHMs obtained by numerical analysis results are
307 nm [see Fig. 4(e) right] and 340 nm [see Fig. 4(f) right],
respectively. However, due to the systematic errors during the
optical processing, the experimentally measured FWHMs were
383 nm [see Fig. 4(e) right] and 392 nm [see Fig. 4(f) right],
respectively. By utilizing an in situ training algorithm, e.g.,
adaptive training methods,25,26 with the programmable diffrac-
tive layers, the system can adapt to a wide range of tuning errors,
preserving performance during deployment. These strategies
present a viable approach to enhance the robustness of
SODNNs. Although there was a slight gap with the numerical
results, the experimental results still exceeded the diffraction
limit (0.61λ∕NA ¼ 415 nm).

For imaging, we used a scanning mode with SODNN, where
the signal used to reconstruct the image is taken from the central
part of the CMOS camera. This imaging strategy is also com-
monly used in confocal microscopy.27,28 The experimental equip-
ment is shown in Fig. 4(a), where the commercial resolution

testing chart [TC-RT01, Technology Manufacture, Germany;
see Fig. 4(b)] is used as the target for measurement. The reso-
lution testing chart’s pattern structure is achieved by processing
metallic chromium (Cr) on a glass substrate (SiO2) with the
smallest line width of 0.152 μm. The 500-line pair pattern
that cannot be clearly imaged by a commercial Olympus objec-
tive [see Fig. 4(b)] can be clearly imaged through SODNN
[see Fig. 4(c)], demonstrating that SODNN has a performance
comparable to the commercial microscopy imaging system.
A more compact solution is to integrate SODNN with optical
fiber to form an endoscope, as described in Sec. 4.4.

4 Discussion

4.1 Comparisons with State-of-the-Art Methods

Table 1 compares several typical performance indices of super-
oscillatory design with the proposed SODNN in this work.
SODNN can achieve a long working distance with hundreds
of micrometers, while the other works can only achieve a short
working distance with only tens of micrometers. In terms of
working distance, SODNN has achieved an improvement by
an order of magnitude. SODNN can also achieve a DoF greater
than 6 μm, and the ratio of FWHM to Rayleigh diffraction limit
is less than 60%, which indicates its exceptional imaging capa-
bilities and overall performance.

4.2 Performance Analysis of SODNN

We evaluate and compare the network performance under differ-
ent modulation element numbers, i.e., K × K, with K ¼ 100,
200, 300, 500, 1000, and 2500 [Fig. 5(a)] when the number
of layers is fixed at 1, and the diffractive element size is
λ∕2 × λ∕2. We also evaluate the network performance under dif-
ferent layer numbers when the modulation element numbers are
fixed at 200 × 200 [Fig. 5(b)] and 300 × 300 [Fig. 5(c)] and the
diffractive element size is λ∕2 × λ∕2. We also analyze the effects
of changes in neuron size, i.e., the diffractive element size
was set to λ∕2 × λ∕2, λ × λ, 2λ × 2λ, and 4λ × 4λwhen the num-
ber of layers is fixed at 1 and modulation element number is
300 × 300 [see Fig. 5(d)]. We found that as the number of layers
increases and the number of neurons in each layer increases,
the FWHM of the superoscillatory spot without sidelobes will
gradually become smaller and stabilize at ∼0.407λ [Figs. 5(a)
and 5(c)]. It seems that the modulation element numbers have
a greater impact than the layer numbers on the FWHM by com-
paring Figs. 5(b) and 5(c). When the modulation element num-
bers are small, no matter how the layer numbers increased, the
FWHM of the superoscillatory spot without sidelobes cannot be
stabilized at ∼0.407λ. On the contrary, as the diffractive element
size increases, the FWHM of the superoscillatory spot without
sidelobes will gradually increase. The above results can guide
system design, such that under specific system parameters, e.g.,
a one-layer SODNN with enough modulation element numbers,
optimal performance comparable to a multilayer SODNN can be
achieved, which thereby greatly reduces hardware complexity,
system errors, and experimental difficulty and enhances robust-
ness during system installation and adjustment.

4.3 Reconfigurable SODNN for Superoscillatory Spot
Scanning

SODNN can modulate the incident optical field to create
optical super oscillatory effects in any 3D space and generate
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Fig. 4 Characterization of SODNN. (a) Schematic of the experimental setup. (b), (c) Imaging
results of the resolution testing chart by commercial Olympus objective and SODNN. (d) The
diffractive modulation layer of single-layer SODNNs for a single-focus (left) and 2 × 2 multifocus
(middle) with the layer profile characterized by scanning electron microscope, i.e., SEM (right).
(e) The numerical analysis results (left) and experimental results (middle) of the single-focus
SODNN. (f) The numerical analysis results (left) and experimental results (middle) of the 2 × 2
multifocus SODNN.
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Table 1 Comparisons of SODNNs with state-of-the-art superoscillatory methods.

Method
Wavelength

(nm)
Focal length

(μm)
DoF
(μm)

FWHM
(λ)

Ratio of FWHM/Rayleigh
diffraction limit (0.61λ∕NA)

Ambient
medium Refs.

Monochromatic superoscillatory design 640 10 — 0.289 64% Oil 12

810 10 — 0.45 85% Air 20

632.8 38 — 0.45 71% Air 21

Achromatic superoscillatory design 405 — — 0.457 67% — —

532 10 — 0.445 65% Air 17

633 — — 0.54 79% — —

Optical superoscillatory needle design 532 6 ∼5 0.34 81% Oil 18

405 55 ∼4.8 0.407 ∼65% Air 22

Monochromatic superoscillatory
design by SODNN

632.8 250 — 0.407 57% Air This work

Achromatic superoscillatory
design by SODNN

473 — — 0.420 59% — —

532 250 — 0.415 58% Air This work

632.8 — — 0.409 57% — —

Optical superoscillatory needle
design by SODNN

632.8 100 6 0.395 60% Air This work

Fig. 5 Performance analysis of SODNN. The FWHM of the output spot with respect to the modu-
lation element number (a), the layer number (b), (c), and the modulation element size (d).
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superresolved focusing spots. By training a series of SODNNs
and loading them into a reconfigurable device such as a spatial
light modulator (SLM), we can achieve dynamic scanning of
superoscillatory spots. We designed a series of SODNNs by set-
ting the modulation element number to 2500 × 2500 with the
element size λ∕2 × λ∕2 and λ ¼ 632.8 nm, which corresponds
to the network layer size of 0.79 mm × 0.79 mm with the focal

length f ¼ 250 μm. The FWHM remains at 258 nm (∼0.407λ)
and does not change with the position of the superoscillatory
spots. Figure 6 shows that SODNN can focus the superoscilla-
tory spots at even the four most edge locations of the detection
plane, which proves that SODNN can realize scanning at any
position on the detection plane. Considering a high-speed
SLM that works at 1000 frames per second and takes the

Fig. 6 Reconfigurable SODNN for superoscillatory imaging. The superoscillatory spot can raster
scan over the field for imaging by dynamically programming the modulation coefficients of diffrac-
tive elements.

Fig. 7 Integrating SODNN with optical fiber. (a) Schematic diagram of the endoscope designed by
integrating SODNN and optical fiber. (b) The imaging function is realized by utilizing the intensity of
reflected light produced by different transmittance structures, such as the metal structure produc-
ing a strong reflection (c) and the glass forming a weak reflection on the hypothetical observation
plane (d).
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FWHM as the scanning interval, the SODNN can achieve a
scanning range of 66.56 μm2∕s.

4.4 Integrating SODNN with Optical Fiber

A more compact solution is to integrate SODNN with optical
fiber to form an endoscope, as shown in Fig. 7(a), and collect
the reflection signal of the superoscillatory focusing spot from
the measured target to complete the imaging process. By using
Lumerical FDTD to arrange a hypothetical observation plane at
the input end of SODNN to capture the topography of the re-
flected light field, we found the metal structure produces strong
reflection [see Fig. 7(c)] with a normalized light intensity of 1;
the glass forms a weak reflection with the normalized light
intensity ∼0 [see Fig. 7(d)]. Using the binary change of light
intensity, we can also reconstruct the 500-line pair pattern of
the measured resolution testing chart [see Fig. 7(b)].

5 Conclusion
We proposed SODNNs that demonstrate unparalleled advan-
tages over other techniques for the realization of superoscilla-
tory spots and imaging beyond the diffraction limit. SODNNs
make it possible to flexibly design large FoV without sidelobes,
long working distances, long DoF, and achromatic optical
superoscillatory functions. SODNNs can work at any wave-
length, from microwaves to ultraviolet waves,29 which makes it
possible to obtain superoscillatory spots with a smaller FWHM
and further improve the resolution of SODNN imaging. We be-
lieve that this is a new cross-innovation in the fields of photonic
neural networks, superresolution microscopy, and metasurfaces
that will attract the attention of more scientists engaged in the
development of intelligent optical instruments.30–35
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