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Abstract. Since the concept of computational spectroscopy was introduced, numerous computational
spectrometers have emerged. While most of the work focuses on materials, optical structures, and
devices, little attention is paid to the reconstruction algorithm, thus resulting in a common issue: the
effectiveness of spectral reconstruction is limited under high-level noise originating from the data acquisition
process. Here, we fabricate a computational spectrometer based on a quantum dot (QD) filter array and
propose what we believe is a novel algorithm, TKVA (algorithm with Tikhonov and total variation regularization,
and the alternating direction method of multipliers), to suppress the impact of noise on spectral recovery.
Surprisingly, the new TKVA algorithm gives rise to another advantage, i.e., the spectral accuracy can be
enhanced through interpolation of the precalibration data, providing a convenient solution for performance
improvement. In addition, the accuracy of spectral recovery is also enhanced via the interpolation, highlighting
its superiority in spectral reconstruction. As a result, the QD spectrometer using the TKVA algorithm shows
supreme spectral recovery accuracy compared to the traditional algorithms for complex and broad spectra, a
spectral accuracy as low as 0.1 nm, and a spectral resolution of 2 nm in the range of 400 to 800 nm. The new
reconstruction algorithm can be applied in various computational spectrometers, facilitating the development
of this kind of equipment.
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1 Introduction
Spectral analysis plays a crucial role in scientific research and
industrial production.1–3 Mainstream spectral analysis is based
on spectrometers whose size must be reduced for portable ap-
plications and assembling in other systems. Traditional spec-
trometers face significant challenges in miniaturization and

portability due to their complex optical paths and reliance
on precision dispersion elements.4 In recent years, with the
continuous advancement of computer technology and optical
manufacturing, computational spectrometers have emerged as
a promising solution to overcome these challenges.5

The uniqueness of computational spectrometers lies in their
utilization of various encoding techniques to acquire spectral
data, followed by algorithmic reconstruction, and avoiding
the dependence on long optical paths and complex optical com-
ponents. The performance of computational spectrometers is
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highly dependent on the specificity of the spectral encoding
method and the robustness of the reconstruction algorithm.6–10

In terms of spectral encoding, a variety of techniques, such
as filter arrays,11–13 detector arrays,14,15 tunable filters,16,17 and
detectors18,19 have been proposed. Among these techniques,
the quantum dot (QD) filter array is a promising route for
computational spectrometers due to the finely tunable absorp-
tion spectrum via size and composition and ease of solution
processability.20–22 While most of the study on computational
spectrometers has been focused on spectral encoding, there have
also been some works dedicated to exploring reconstruction
algorithms with higher noise immunity. As a result, a limited
number of algorithms, such as least squares regression,23

Ridge regression,16 and Lasso regression,24 have been adopted.
Furthermore, the robustness of these algorithms needs to be im-
proved. Noise might emerge during the data acquisition process
due to variations of transmittance in the filter array, spectral
response in the detector array, or repeatability of tunable
filters/detectors. The noise affects the accuracy of spectral
reconstruction, imposing a higher requirement on the robustness
of the algorithms.25 The noise tolerance of the aforementioned
algorithms still needs improvement. For instance, ordinary least
squares regression has minimal noise tolerance, and Lasso re-
gression and Ridge regression also exhibit sensitivity to noise
perturbations.26 In response, new algorithms have been proposed
to enhance noise tolerance. For example, an ALM algorithm ob-
tained by combining total variation (TV) regularization with the
augmented Lagrange multiplier method improves the noise im-
munity of the algorithm to some extent, while reconstruction
performance decreases under a high noise level.26 Recently,
machine learning was also applied to pursue better robustness
of algorithms.27 Through processing the detected signals using
a pretrained denoising autoencoder network before employing
the reconstruction algorithm, the noise immunity of the spec-
trometer system is substantially improved. However, such an
algorithm was designed uniquely for its encoding structure and
therefore cannot be directly used quickly and inexpensively for
other computational spectrometers, but rather again requires
the entire process from database creation to model tuning and
training. Therefore, it is highly desirable to develop a robust
algorithm with a high level of noise tolerance and good migra-
tory properties.

Against this backdrop, this study aims to enhance the toler-
ance of computational reconstruction spectrometers to noise,
thereby further improving their performance. We fabricated
a spectrometer based on a QD filter array and proposed a
new algorithm with supreme noise tolerance performance.
Benefiting from the robust algorithm, the QD spectrometer is
capable of accurately reconstructing spectral features even at
signal to noise ratio ðSNRÞ ¼ −3 dB, which is remarkably
better than the results based on previously reported algorithms.
Furthermore, the spectral accuracy and spectral recovery perfor-
mance can be substantially improved by interpolating the
precalibration data using the new algorithm. As a result, with
10× interpolation, the QD spectrometer here achieves an
extremely high spectral accuracy as low as 0.1 nm and a spectral
resolution of 2 nm in the 400 to 800 nm range, which represents
the highest spectral accuracy among QD spectrometers.

2 Results and Discussion
Figure 1 shows the fabrication process of the QD spectrometer.
Overall, we selected four different components of QDs for the

spectral encoding, including CdS, CdSxSe1−x, CdSe, and CdTe
QDs. Based on these components, a uniform and complete
coverage of the absorption peaks of the synthesized QDs in
the range of 400 to 800 nm was achieved by controlling the
growth time of the QDs after the hot injection. Subsequently,
the QD filter array was fabricated using electrohydrodynamic jet
printing on a quartz substrate, which allowed for the small size
and uniform distribution of individual QDs in the arrays.
Finally, the substrate with the filter array was mounted on top
of the CMOS image sensor using a UV-curable adhesive. A ro-
bust reconstruction algorithm with supreme noise tolerance per-
formancewas proposed to accomplish the spectral reconstruction,
which integrates Tikhonov regularization and TV regularization
techniques, along with the introduction of the alternating direc-
tion method of multipliers (ADMM).

The CdS, CdSe, CdSxSe1−x, and CdTe QDs were syn-
thesized in a seeded growth manner. For a given composition,
small QDs were formed by hot-injection synthesis with a highly
excessive Cd precursor; then the chalcogenide precursor was
added dropwise to promote continuous growth of the QDs.
The synthetic parameters were carefully controlled to maintain
the very distinguishable exciton peaks during the whole growth
process. Aliquots were withdrawn from the growth solution at
different intervals to obtain a series of QDs with increasing
sizes. Through the control of composition and size, we managed
to produce QDs with absorption peaks covering the visible light
range. Figure 2(a) shows some solution samples of the QDs. A
series of typical absorption spectra are shown in Fig. 2(b), and
all the absorption spectra of the QDs used in this work are
shown in Fig. S1 in the Supplemental Material. Typical trans-
mission electron microscope images of the four types of QDs
are shown in Fig. S2 in the Supplemental Material. In order
to avoid interference from QD photoluminescence (PL), a fluo-
rescence quencher was introduced to quench the PL,28 as shown
in Fig. S3 in the Supplemental Material. It is worth noting that
the seeded growth is an advisable strategy to synthesize a series
of QDs with different sizes. Figure 2(c) shows the absorption
peak wavelength as a function of sampling time for the four
types of QDs (two starting sizes were used for CdSe QDs),
demonstrating the convenience of material preparation for QD
spectrometers.

To prepare QD microfilters, the QDs were mixed with
organic polymers, and the electrohydrodynamic jet printing
technique was used to print them on a quartz substrate.
Subsequently, a QD filter array was obtained through solvent
evaporation and heat treatment. The native ligands on the
QD surface are oleate, making them soluble only in nonpolar
solvents, such as n-hexane and n-octane, whereas typical poly-
mers have low solubility in these nonpolar solvents. To address
this issue, we replaced the oleate ligand with a thiol ligand,
6-mercaptohexanol (MCH).29,30 Simultaneously, it was observed
that there was a slight change in the absorption peak of the QDs
after ligand exchange, as shown in Fig. 3(a). This demonstrates
that by controlling the duration and ligand concentration in the
ligand exchange process, we can further fine-tune the absorption
peak distribution of the QDs, achieving a more uniform spectral
encoding effect. In addition to treatment on QDs, the selection
of polymers must also meet certain criteria. First, the polymer
itself must be highly transparent to visible light to avoid unnec-
essary light flux loss. Furthermore, the polymer must have good
solubility in the chosen solvent and good compatibility with
QDs. This helps ensure the uniformity of the printed QD filter,
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avoiding light intensity loss caused by the optical structure
on the filter surface, thus eliminating influence on the final
encoding effect.31 After comparative analysis (Fig. S4 in the
Supplemental Material), we chose a binary solvent system of
dimethyl sulfoxide (DMSO) and butanol and used polyvinyl-
pyrrolidone (PVP) as the polymer. Figure 3(b) shows the printed
QD filter array, demonstrating the orderly distribution of the mi-
crofilters. We tested the height of the printed microfilters using
a profilometer, as displayed in Fig. 3(c), confirming that these
QD filters have a smooth surface morphology. The QD filter
array used for the spectrometer consists of a total of 256 micro-
filters, with an average size of 250 μm, a space of 70 μm, and
an array size of only 0.50 cm × 0.50 cm. This array size is the
smallest one reported to date. After obtaining the QD filter array,
we assembled it on top of a CMOS image sensor. Then, preca-
libration was performed by collecting the data at every 1 nm in
the range of 400 to 800 nm, producing transmission spectra of
every microfilter; Fig. 3(d) shows some of the transmission
spectra.

The CMOS camera was equipped with the QD filter array,
which, combined with a spectral reconstruction algorithm, can
work as a spectrometer.32 The incident light passes through the
spatially distributed 256 QD microfilters and is modified to
varying degrees at different wavelengths, and the resulting sig-
nals are captured by the camera. The problem of reconstructing
the input spectrum can be described as

minxkAx − IkL2

s.t. Ax ¼ I; (1)

where A is acquired before using the spectrometer, I is the signal
collected by the camera, and x is to be reconstructed and further
used to get the input spectral. The derivation of the mathematical
model is described in detail in the Supplemental Material.
A number of algorithms have been used for this problem.33,34

These algorithms can be categorized into two types: general
iterative algorithms and deep-learning algorithms. Compared to

Fig. 1 The strategy for fabricating the QD spectrometer. The absorption spectra of the QDs are
tuned via their size and composition, and the QD filter array is fabricated by the electrohydrody-
namic jet printing technique. The substrate with the QD filter array is assembled on top of a CMOS
image sensor to fabricate the spectrometer. A new reconstruction algorithm is proposed to
enhance the noise tolerance performance.
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general iterative algorithms, deep-learning algorithms usually
use an end-to-end structure that requires a large amount of real
data for data training.35–39 And, although the model obtained
after one training can directly solve the equation, on large-scale
manufacturing, it is obviously not cost-effective to train each
spectrometer individually. This places a high demand on the con-
sistency of the fabricated encoding arrays. The general iterative
strategy is usually based on the theory of compressive sensing
theory, which may be slightly inferior to deep learning in terms
of reconstruction effect, but relies on many fewer computational
resources and faces less practical difficulty. Therefore, in this
work, we adopted the general iterative strategy.

We initially used the Tikhonov regularization technique, com-
monly known as Ridge regression, for spectral reconstruction, as
employed in the majority of previous works.14,18,40 Due to the
inclusion of the regularization term, the influence of noise on
the reconstruction results during the iterative process is effectively
suppressed. Using this algorithm, we reconstructed several
monochromatic lights and compared the results with those
collected by a commercial spectrometer, as shown in Fig. 4(a).
For the monochromatic light, Ridge regression demonstrated
good reconstruction performance. However, when this algorithm
was applied to reconstruct broad spectra, the reconstruction
results were not satisfactory, as shown in Fig. 4(b).

To improve the broad spectrum reconstruction performance
of the algorithm, we considered the TV regularization technique
commonly used in the field of image processing.41 The essence

of TV regularization is to impose constraints based on the con-
tinuity of data, typically expressed as the first-order derivative of
the data in mathematical terms. This allows for a more suitable
application for spectra with complex features. We named this
model Ridgeþ TV and introduced the AdaDelta iterative strat-
egy for parameter control, with detailed calculation procedures
available in the Supplemental Material. As shown in Fig. S5 in
the Supplemental Material, the introduction of the TV regulari-
zation term significantly improved the spectral reconstruction
performance of the algorithm for the white LED spectrum.

To further improve the algorithm’s noise tolerance, we be-
lieved that the role of the regularization term needed to be better
utilized. The ADMM,42 evolved from the Douglas–Rachford
splitting method and Rockafellar’s method of multipliers, fig-
ures out problems by alternately optimizing primal and dual
variables, and updates the dual variables at each step using
the method of Lagrange multipliers. This process effectively
decomposes complex optimization problems into several sub-
problems for controlled resolution. Therefore, the ADMM was
introduced to further enhance control over the regularization
term. Moreover, the multistep iteration effect brought about by
the method of ADMM allows us to more intuitively observe
the impact of parameter changes during the iteration process
of spectral reconstruction. We named this algorithm TKVA
(algorithm with Tikhonov and TV regularization, and ADMM),
and the mathematical model for the reconstruction problem
becomes

Fig. 2 (a) A picture of some typical QD solutions. (b) Absorption spectra of selected QDs. (c) Plots
of QD absorption peak as a function of growth time in the seeded growth process for the QDs with
different compositions.
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Fig. 4 Spectral reconstruction results of the TKVA algorithm for (a) monochromatic light, (b) a
white LED spectrum, and (c) the xenon lamp spectrum. For comparison, the results of the
Ridge algorithm are presented.

Fig. 3 (a) Redshift of the absorption peak of QDs with the increase of the MCH ligand. (b) A picture
of the QD filter array, in which the scale bar is 0.50 mm. (c) Uniformity and surface profile of
the filter units. (d) Transmittance spectra of some filter units.
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minx L¼ γ2kxk2 þ λkykþ β
2
kz−Axþ Iþ a

β kþ α
2
ky−Gxþ b

αk
s:t: z¼ Ax− I; y¼ Gx; Ax¼ I; (2)

where γ is the Tikhonov regularization parameter, λ is the TV
regularization parameter, α and β are the two augmented
Lagrange penalty parameters of ADMM, and a and b are the
parameter correction terms, respectively. G is the gradient com-
putation matrix, which is matrix-multiplied with x to obtain TV
parameter y.

First, the spectral reconstruction performance of the TKVA
algorithm was evaluated. As shown in Figs. 4(a) and 4(b), the
TKVA algorithm not only exhibits excellent spectral recovery
for simple single peak spectra but also has supreme capability
for the broad spectrum compared to the conventional Ridge re-
gression algorithm. It is noteworthy that the TKVA algorithm
shows significantly improved spectral recovery for complex
broad spectra, such as the xenon lamp spectrum, as shown in
Fig. 4(c).

Then, the noise tolerance of the TKVA algorithm was inves-
tigated. In fact, in the simulated spectral reconstruction process,
the Ridge regression technique also demonstrated excellent
reconstruction performance for broad spectra. However, this
performance could not be retained in the actual measurement
process, evidently due to the influence of noise during the prac-
tical detection process. The sources of noise could stem from
the measurement process or from measurement errors during
the precalibration process. We simulated the influence of noise
by adding the noise to the incident spectrum and performed
the reconstruction accordingly. By manually adding noise and
comparing the simulated reconstruction results with the actual
reconstruction results, it was estimated that the SNR in the
actual measurement process was ∼10 dB. However, in certain

situations, the SNR could decrease to 0 dB or even lower due to
tremors, drastic environmental changes, etc.

The noise tolerance performance of the TKVA algorithm
was evaluated by introducing varying levels of noise. As shown
in Fig. 5(a), at an SNR of 10 dB, the TKVA, the Ridge+TV, and
the commonly used Ridge regression and Lasso regression dem-
onstrate good reconstruction results. However, as the SNR
gradually decreases, except for TKVA, overfitting becomes in-
creasingly prominent in other algorithms [Fig. 5(b)]. When the
SNR drops to −3 dB, as shown in Fig. 5(c), only the TKVA is
still able to accurately reconstruct the original spectral features.
In addition, the TKVA algorithm was also compared to the
ALM algorithm26 that was previously proposed to suppress
the noise influence. As a result, the TKVA still shows much bet-
ter noise tolerance performance than the ALM algorithm, as
shown in Fig. S6 in the Supplemental Material.

Spectral accuracy is a key figure of merit for spectrometers,
and this performance of the QD spectrometer based on TKVA
algorithm was evaluated. The computational spectrometer has to
be precalibrated before operation, in which we scanned the
monochromatic light with an interval of 1 nm. Theoretically,
a smaller interval is beneficial for attaining a higher spectral
accuracy, thus the 1 nm step might impose a constraint on the
maximum accuracy. To overcome this limitation and consider-
ing the continuity of spectral distribution, we performed spline
interpolation on the results obtained from the precalibration
process. We conducted 1×, 2×, 5×, 10×, and 20× interpolations
and reconstructed a simulated monochromatic light with a
minimum full width at a half-maximum of 0.8 nm. The
reconstruction results for different interpolation factors are
shown in Figs. 6(a) and 6(b) using the TKVA and the Ridge
algorithms, respectively. As the interpolation factor increases,
the TKVA algorithm shows better reconstruction performance

Fig. 5 Spectral reconstruction results of different algorithms at noise levels of (a) 10 dB, (b) 0 dB,
and (c) −3 dB.
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for the narrow monochromatic light. Although data oscillation
appears in the flat data regions at higher interpolation factors
due to overfitting, it has little impact on distinguishing the peak
[Fig. 6(a)]. In contrast, the improvement of the Ridge algorithm
is substantially limited [Fig. 6(b)]. The interpolation effect of the
ALM algorithm, which shows inferior reconstruction perfor-
mance than that of the TKVA algorithm at the same level of
interpolation, was also studied (Fig. S7 in the Supplemental
Material). These results indicate the unique advantage of the
TKVA algorithm on the enhancement of spectral accuracy. In
practice, we also used data scanned every 3 nm for 15× interpo-
lation for reconstruction and found that the spectral reconstruction
performance was not significantly affected (Fig. S8 in the
Supplemental Material). Therefore, the newly proposed TKVA
algorithm not only offers a convenient and effective way to im-
prove the spectral accuracy but also provides a route to reduce the
workload of the precalibration process through interpolation.

To evaluate the spectral reconstruction performance with the
help of interpolation, we reconstructed a complex and broad
spectrum (room light) without interpolation and with 10× inter-
polation, as shown in Figs. 6(c) and 6(d), respectively. After in-
terpolation, the recovery performance of the TKVA algorithm is
significantly improved, which not only exhibits more accurate
overall reconstruction but also captures small peaks in the spec-
trum. In contrast, the Ridge algorithm shows little improvement
via interpolation and exhibits much poorer reconstruction per-
formance. With a significant improvement in noise tolerance
and spectral recovery by interpolation, the TKVA algorithm
shows a relatively modest increase in usage of computing re-
sources; for example, under 10-fold interpolation, the TKVA
algorithm requires 0.025 s to reconstruct a single-peak spectral,
while the Ridgeþ TV algorithm needs 0.008 s.

Finally, we investigated the spectral accuracy of the TKVA-
based QD spectrometer with actual monochromatic light input;
the results are shown in Fig. 6(e). After calculation, the spectral

accuracy of the spectrometer in the 400 to 800 nm range reaches
as low as 0.1 nm, representing the highest level for QD
spectrometers.26,28,29,43,44 In addition, we investigated the influ-
ence of the number of QD filters on spectral reconstruction,
as shown in Fig. 6(f). As the number increases, the average spec-
tral resolution increases accordingly, which reaches a value of
2 nm, as shown in Fig. S9 in the Supplemental Material. After
the number reached 196, further increasing the number of the
filter results in a slight improvement in resolution, indicating
a limited number of filters are adequate to achieve a high spec-
tral resolution.

3 Conclusions
In summary, we demonstrate a high spectral accuracy QD spec-
trometer with excellent noise tolerance by developing a new
reconstruction algorithm. Seeded growth is adopted to produce
a series of QDs with increasing size, and the absorption peak of
all the QDs used is finely tuned by the combination of size and
composition in the range of 400 to 800 nm. The electrohydro-
dynamic jet printing technique is applied to fabricate the QD
filter array with a total number of 256, a filter size of 250 μm,
and a space of 70 μm. The filter array on a quartz substrate is
assembled on top of a CMOS image sensor to form the spec-
trometer. In order to enhance the noise tolerance performance,
a new algorithm, TKVA, was proposed, which integrates
Tikhonov regularization and TV regularization techniques, along
with the introduction of the ADMM. The TKVA algorithm
shows excellent noise tolerance demonstrated by good spectral
recovery even at a low SNR of −3 dB, outperforming previ-
ously reported algorithms. In addition to noise tolerance, the
TKVA algorithm offers a unique advantage compared to other
algorithms; that is, the spectral accuracy can be improved by
interpolation of the data obtained in the precalibration process.
In the meantime, the spectral reconstruction performance is
also significantly improved especially for complex and broad
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spectra, which is not observed for other algorithms. Through
interpolation, the TKVA can reduce the workload of the preca-
libration process while maintaining a high spectral recovery per-
formance. Based on the TKVA algorithm, the QD spectrometer
shows a spectral accuracy as low as 0.1 nm in the range of 400 to
800 nm, representing the highest level among QD spectrome-
ters. The supreme TKVA algorithm might find broad applica-
tions in different types of computational spectrometers.

4 Appendix: Materials and Methods

4.1 Chemicals and Reagents

Cadmium oxide (CdO, 99.99%), oleic acid (OA, AR), sulfur
powder (S, 99.9%), selenium powder (Se, 99.99%), 1-octadecene
(ODE, 90%), methanol (MeOH, 99.5%), acetone (CH3COCH3,
99.5%), dimethyl sulfoxide (DMSO, 95%), and thiol ligand
(MCH, 98%) were purchased from Aladdin. Trioctylphosphine
(TOP, 90%), tellurium granules (Te, 99.99%), tributylphosphine
(TBP, 98%), polyvinylpyrrolidone (PVP, GR), and cellulose
acetate (CA) were bought from Macklin.

4.2 Synthesis and Sampling of QDs

Initially, a mixture of CdO (6.4 g, 0.05 mol), OA (50 g,
0.177 mol), and ODE (150 g, 0.600 mol) was heated under
an inert gas protection to 250°C, resulting in the precursor
solution of Cd. Subsequently, the anion source was rapidly in-
jected into the reaction system. After maintaining for a certain
duration, the appropriately diluted anion precursor solution
was slowly injected into the reaction flask using a syringe pump
to promote the continuous growth of QDs. At specific time
intervals during the QD growth process, 5 mL samples of the
reaction solution were extracted until the complete collection of
all QD materials was obtained. The starting size of the QDs was
controlled by regulating the temperature of thermal injection
and the amount of precursor solution injected. Once all the
QD materials were collected, they were thoroughly washed and
purified multiple times using methanol and acetone.

4.3 Preparation and Printing of QD Inks

The purified QDs were dissolved in 10 mL of octane, and a
small amount of MCH solution (20 to 100 μL) was added.
After oscillation and centrifugation, the QDs with complete
ligand exchange were obtained. These QDs were dissolved in
a mixed solvent of DMSO and butanol. The concentration of
each type of QDs was adjusted to achieve similar absorbance
at 400 nm for all QDs. This step ensured that when all QDs were
printed on a quartz substrate, their overall transmittance re-
mained at a similar value. After the preparation of all QD inks,
they were printed on quartz slides using the electrohydrody-
namic jet printing technique, and the solvent was evaporated
using a hot plate. The printing equipment used is displayed in
Fig. S10 in the Supplemental Material.

4.4 Precalibration of the Spectrometer and Spectral
Reconstruction

Before operating the spectrometer, the RiðλÞ needs to be col-
lected first. Thus, in the precalibration process, spatially uniform
monochromatic light was input into a CMOS camera. The
wavelength was scanned from 400 to 800 nm, and a picture

was taken at each step (1 nm). Then, the substrate with a QD
filter array was assembled on top of the CMOS image sensor,
and the wavelength scan and taking a picture were repeated.
RiðλÞ was calculated based on the signals of the pixel under
a filter unit with and without the filter array. Then, the spectrom-
eter was ready for measurement and spectral reconstruction.
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