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Abstract. Unidirectional imagers form images of input objects only in one direction, e.g., from field-of-view
(FOV) A to FOV B, while blocking the image formation in the reverse direction, from FOV B to FOV A.
Here, we report unidirectional imaging under spatially partially coherent light and demonstrate high-quality
imaging only in the forward direction (A → B) with high power efficiency while distorting the image
formation in the backward direction (B → A) along with low power efficiency. Our reciprocal design features
a set of spatially engineered linear diffractive layers that are statistically optimized for partially coherent
illumination with a given phase correlation length. Our analyses reveal that when illuminated by a partially
coherent beam with a correlation length of ≥ ∼ 1.5λ, where λ is the wavelength of light, diffractive
unidirectional imagers achieve robust performance, exhibiting asymmetric imaging performance between
the forward and backward directions—as desired. A partially coherent unidirectional imager designed with
a smaller correlation length of <1.5λ still supports unidirectional image transmission but with a reduced
figure of merit. These partially coherent diffractive unidirectional imagers are compact (axially spanning <75λ),
polarization-independent, and compatible with various types of illumination sources, making them well-suited
for applications in asymmetric visual information processing and communication.
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1 Introduction
Controlling and engineering the properties and behavior of light
as a function of the wave propagation direction has been crucial
for various advancements in optical sensing and imaging,1,2 in-
cluding, e.g., unidirectional wave transmission systems. Common
strategies for unidirectional transmission include employing,
e.g., temporal modulation, the magneto-optical effect, nonlinear
materials, or multilayer spatial modulation of light.3–12 For
example, nonlinear optical materials with intensity-dependent
permittivity can be used to create nonreciprocal devices.3–7

As another example, the engineering of structural asymmetry
introduced by multilayer, lossy linear diffractive systems, de-
spite being reciprocal, can also be used to create asymmetric
wave transmission under spatially coherent illumination.8–12

These strategies have been used for the unidirectional transmis-
sion of waves, ensuring high-fidelity delivery of forward signals
while featuring losses and distortions for backward signals.
Nevertheless, these existing methods typically require high-
power beams or rely on spatially coherent illumination.

Partially coherent light, in general, helps mitigate image
degradation due to speckle noise, minimizes cross talk among
imaged objects, and is less susceptible to misalignments or
defects in the optical system. Some of these benefits make par-
tially coherent illumination particularly attractive for mobile
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microscopy,13–15 quantitative phase imaging,16 virtual and aug-
mented reality displays,17 and light-beam shaping,18 among
other applications.19

Here, we present unidirectional diffractive imagers that
operate under spatially partially coherent illumination, featuring
high image quality and power efficiency in the forward direction
(A → B), while distorting the image formation in the backward
direction (B → A) along with reduced power efficiency. Each
partially coherent unidirectional imager represents a reciprocal
and lossy linear optical device, designed through a set of spa-
tially engineered diffractive layers that are jointly optimized us-
ing deep learning.8,20–22 Our findings indicate that the degree of
the spatial coherence of the illumination, statistically quantified
with the phase correlation length (Cϕ), significantly impacts the
performance of the unidirectional imager. Specifically, unidirec-
tional diffractive imagers designed with a training correlation
length (Ctrain

ϕ ) greater than ∼1.5λ exhibit very good unidirec-
tional imaging behavior, accurately reproducing the input im-
ages with high structural fidelity and diffraction efficiency in
the forward direction (A→ B), while suppressing image forma-
tion in the reverse path (B → A). Diffractive unidirectional im-
agers designed for a smaller correlation length of <1.5λ still
maintain asymmetric image formation, however, with a reduced
figure of merit (FOM).

We validated the unidirectional imaging performance of
diffractive visual processors using different levels of spatial
coherence, even though they were trained with a specific phase
correlation length (Ctrain

ϕ ), demonstrating the resilience of parti-
ally coherent unidirectional imagers to unknown changes in the
spatial coherence properties of the illumination beam. We also
demonstrated the internal and external generalization of the
unidirectional imager designs across various image datasets,
further highlighting their resilience to unknown data distribution
shifts. With the unique advantages of being compact (with an
axial length of <75λ), polarization-insensitive, and compatible
with different types of partially coherent sources, including light-
emitting diodes, the presented unidirectional imager design offers
new capabilities for asymmetric visual information processing.

2 Materials and Methods

2.1 Forward Model of a Diffractive Visual Processor
under Spatially Coherent Illumination

The propagation of a coherent field from the lth to the ðlþ 1Þth
diffractive plane is calculated using the angular spectrum
method:23

ulþ1ðx; yÞ ¼ Pdulðx; yÞ ¼ F−1fFfulðx; yÞgHðfx; fy; dÞg; (1)

where Pd denotes the free-space propagation operation and
d represents the axial distance between two successive planes.
Ff·g and F−1f·g represent the two-dimensional (2D) Fourier
transform and the inverse Fourier transform operations, respec-
tively. The transfer function Hðfx; fy; dÞ is defined as

Hðfx; fy; dÞ

¼
(
exp

�
j2πd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∕λ2 − f2x − f2y

q �
; 1∕λ2 − f2x − f2y > 0

0; 1∕λ2 − f2x − f2y ≤ 0

;

(2)

where j ¼ ffiffiffiffiffiffi−1p
and k ¼ 2π

λ . fx and fy denote the spatial
frequencies along the x and y directions, respectively. The lth

diffractive layer modulates the phase of the transmitted
optical field with a transmission function, tlðx; yÞ:

tlðx; yÞ ¼ exp½jϕlðx; yÞ�; (3)

where ϕlðx; yÞ denotes the learnable phase profile of the diffrac-
tive features located at the lth diffractive layer. The output inten-
sity Ôiðx; yÞ of a K-layer diffractive visual processor can be
written as

Ôiðx; yÞ ¼
����Pd

��YK
l¼1

tlðx; yÞPd

�
u0i ðx; yÞ

	����
2

: (4)

Here, u0i is the complex field at the input field of view (FOV):

u0i ðx; yÞ ¼
ffiffi
I

p
exp½jφiðx; yÞ�; (5)

where φiðx; yÞ represents the phase profile of the incident
optical field and I refers to the intensity profile.

2.2 Forward Model of a Diffractive Visual Processor
under Spatially Partially Coherent Illumination

To model the propagation of a partially coherent field, we define
the phase profile φiðx; yÞ of the incident field as24–26

φiðx; yÞ ¼ mod

�
2π

λ
Wðx; yÞ � Gðx; yÞ; 2π

�
; (6)

where λ is the wavelength of the illumination light. ‘�’ refers to
the 2D convolution operation. Wðx; yÞ follows a normal distri-
bution with a mean value of μ and a standard deviation of σ0,
i.e., Wðx; yÞ ∼ Nðμ; σ0Þ. Gðx; yÞ represents a zero-mean
Gaussian smoothing kernel with a standard deviation of σ,
defined by exp½−ðx2 þ y2Þ∕2σ�. We numerically tailored these
phase profiles to the desired correlation length by adjusting the
standard deviation, σ, of the Gaussian smoothing kernel. The
phase correlation length, Cϕ, of a partially coherent field was
approximated using the autocorrelation function, Rϕðx; yÞ, of
the phase profile, φiðx; yÞ:24,27,28

Rϕðx; yÞ ¼ F−1fjFfφiðx; yÞgj2g ¼ exp

�
− πðx2 þ y2Þ

Cϕ

�
: (7)

Using Eq. (7), for a given combination of μ, σ0, and σ values,
we numerically approximated Cϕ based on 2048 randomly se-
lected phase profiles, φiðx; yÞ. In this study, we used Cϕ values
ranging from ∼0.5λ to ∼3.0λ with increments of ∼0.5λ, corre-
sponding to σ values of ∼1.9λ, ∼2.4λ, ∼3.9λ, ∼4.5λ, and ∼5.0λ,
respectively. Figure S1 in the Supplementary Material provides
more information on the generation of these phase profiles with
the above-described parameters.

The time-averaged intensity Ôðx; yÞ of the diffractive visual
processor under spatially partially coherent illumination is
calculated as

Ôðx; yÞ ¼ hÔiðx; yÞi ¼ lim
Nϕ→∞

1

Nϕ

XNϕ

i¼1

Ôiðx; yÞ: (8)
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Due to limited computing resources, we used Ntest
ϕ ¼ 2048 in

the blind testing stage of each trained diffractive model.

2.3 Training Loss Function

The partially coherent unidirectional diffractive processors pre-
sented in this work aim to align the forward output intensity Ôfor

closely with the target intensity profile, I, while suppressing
the backward output intensity, Ôback. To optimize the design of
a partially coherent unidirectional diffractive imager, the loss
function is composed of a forward loss function LFðÔfor; IÞ
and a backward loss function LBðÔback; IÞ, i.e.,

LðÔfor; Ôback; IÞ ¼ LFðÔfor; IÞ þ LBðÔback; IÞ; (9)

where the forward loss function is composed of three parts:

LFðÔfor; IÞ ¼ α1NMSEðÔfor; IÞ þ α2½1 − PCCðÔfor; IÞ�
þ α3 exp½−ηðÔfor; IÞ�: (10)

Here, the normalized mean square error (NMSE) is used to
penalize the structural differences between Ôfor and target inten-
sity I, defined as

NMSEðÔfor;IÞ¼
1

NiNo
P

x;y jIðx;yÞj2
X
x;y

jIðx;yÞ−ςÔforðx;yÞj2;

(11)

where Ni and No refer to the number of pixels at the input and
the output FOVs, respectively. ς is a constant used to normalize
the forward output intensity to ensure that the NMSE is not
affected by the output diffraction efficiency, and it is calculated
by

ς ¼
P

x;y Iðx; yÞÔforðx; yÞP
x;y jÔforðx; yÞj2

: (12)

The Pearson correlation coefficient (PCC) measures the
linear correlation between the input intensity, I, and the forward
output intensity, Ôfor, resulting in a value between −1 and 1;
it is calculated by

PCCðÔfor; IÞ ¼
PðI − IÞðÔfor − M̂forÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðI − IÞ2 PðÔfor − M̂forÞ2

q ; (13)

where I and M̂for are the mean values of I and Ôfor, respectively.
The third term in Eq. (10) refers to a diffraction efficiency-

related loss function, which is used to increase the forward
diffraction efficiency, ηðÔfor; IÞ, which is calculated by

ηðÔfor; IÞ ¼
P

x;y Ôforðx; yÞP
x;y Iðx; yÞ

: (14)

The backward loss function in Eq. (9) contains two parts:

LBðÔback; IÞ ¼ β1fjPCC½clipðÔbackÞ; I�jg þ β2ηðÔback; IÞ;
(15)

where the clip function is used to clip a 10% maximum value of
the backward intensity, helping to avoid the unidirectional
imager concealing the input information in the backward output.
The first term in Eq. (15) is devised to block the backward out-
put image formation, while the second term is used to reduce the
backward diffraction efficiency. The weights α1, α2, α3, β1, and
β2 were empirically set to 1.0, 0.1, 0.05, 0.05, and 0.01, respec-
tively.

2.4 Performance Evaluation Metrics

To evaluate the performance of each unidirectional diffractive
imager, four different metrics are used:

(1) The PCC value between the forward (or backward) out-
put of the unidirectional diffractive processor and the ground-
truth image as defined in Eq. (13).

(2) The forward (or backward) diffraction efficiency as de-
fined in Eq. (14).

(3) Peak signal-to-noise ratio (PSNR) is used to quantify the
pixel-wise error between the forward (or backward) output im-
age and the target intensity, I. It is defined as

PSNRðÔfor; IÞ ¼ 10 lg

�
2552

NMSEðÔfor; IÞ

�
: (16)

(4) The FOM of a unidirectional diffractive imager is a
comprehensive performance merit used for quantifying multiple
factors of the unidirectional imaging capability of a partially
coherent diffractive processor. It is defined as

FOMðÔfor; Ôback; IÞ ¼
ηðÔfor; IÞ
ηðÔback; IÞ

þ PSNRðÔfor; IÞ
PSNRðÔback; IÞ

: (17)

When calculating the backward metrics, such as
PCCðÔback; IÞ, ηðÔback; IÞ, and PSNRðÔback; IÞ, we simply
replaced Ôfor with Ôback while keeping the other parameters
unchanged.

3 Results

3.1 Unidirectional Imager Design under Spatially
Partially Coherent Illumination

Figure 1(a) illustrates the concept of a unidirectional imager
under a spatially partially coherent, monochromatic illumina-
tion at a wavelength of λ. The processor is designed to imple-
ment a unidirectional imaging task: high structural similarity
and high diffraction efficiency for the forward operation
A → B [blue line in Fig. 1(a)] together with a distorted image
and reduced diffraction efficiency at the backward operation
B→ A [brown line in Fig. 1(a)]. We used four diffractive layers,
axially spaced by d in this design. Each diffractive layer con-
tains 200 × 200 diffractive features used to modulate the phase
of the transmitted optical field, with each feature having a lateral
size of 0.53λ and a trainable phase value covering ½0; 2π�. The
transmission functions of these diffractive features are opti-
mized using a training dataset composed of MNIST handwrit-
ten digits (see Sec. 2). An engineered loss function guides
the optimization of the unidirectional visual processor toward
achieving two primary goals: (1) for A→ B, it aims to minimize
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the structural differences between the output images and the
ground-truth images using the NMSE and PCC, while concur-
rently maximizing the forward diffraction efficiency; (2) for
B → A, the loss function maximizes the differences between
the backward output images and the ground-truth images and
simultaneously minimizes the backward diffraction efficiency
(refer to Sec. 2 for details).

For spatially partially coherent monochromatic illumination,
we used the phase correlation length, Cϕ, to quantify the degree
of the spatial coherence of the source.24,29 Figure 1(b) illustrates
some examples of the random phase profiles of partially coher-
ent illumination with different correlation lengths, varying from
∼0.5λ to ∼3λ; also see Sec. 2 and Fig. S1 in the Supplementary
Material for details. During the training of a unidirectional dif-
fractive imager, for each input object, we use Ntrain

ϕ different
random phase profiles that follow a given correlation length
Cϕ at the input plane; the time-averaged intensity of the result-
ing complex output fields for these Ntrain

ϕ different phase profiles
is then used to optimize the unidirectional imager performance
based on our training loss function. Details about the optical
model of a diffractive unidirectional imager, the training strat-
egy, and loss functions can be found in Sec. 2.

Figure 2(a) illustrates the layout of the partially coherent uni-
directional imager design with a compact axial length of ∼75λ,
which was optimized using Ntrain

ϕ ¼ 16 and Ctrain
ϕ ¼ 2.5λ. This

deep-learning-optimized diffractive design is composed of four
spatially engineered diffractive layers, which are displayed in
Fig. 2(b). We blindly tested this partially coherent unidirectional
imager using 10,000 handwritten digits never seen during the
training process; for each unknown input test object, 2048 ran-
dom phase profiles, each with a phase correlation length of 2.5λ,
were used to obtain the time-averaged intensity at the output
plane (i.e., Ntest

ϕ ¼ 2048—which remained the same throughout
our paper). We refer to this testing scheme as “internal gener-
alization” from the perspective of the spatial coherence proper-
ties of the illumination light, since we maintained the same
statistical phase correlation length in the testing stage as used
in the training, i.e., Ctrain

ϕ ¼ Ctest
ϕ ¼ 2.5λ. Some of these blind

testing results are illustrated in Fig. 2(c). The first row in
Fig. 2(c) shows the input amplitude objects used for both the
forward and backward directions. The following two rows in
Fig. 2(c) show the forward output images and the backward
output images. To better illustrate the details of the backward
output images, the last row in Fig. 2(c) further displays higher

Fig. 1 Concept of a unidirectional diffractive imager with partially coherent illumination.
(a) Schematic of unidirectional imager under partially coherent, monochromatic illumination with
a wavelength of λ. The unidirectional diffractive processor reproduces the input object’s image in
the forward propagation direction (blue line from FOV A to FOV B), while suppressing the image
formation in the backward propagation direction (brown line from FOV B to FOV A). This design
includes four phase-only diffractive layers axially spaced by d , each containing 200 × 200 diffrac-
tive features that modulate the phase of the transmitted optical field. (b) Six sets of random phase
profiles of partially coherent illumination, each containing N test

ϕ phase profiles. Each set corre-
sponds to one specific correlation length, C test

ϕ , varying from ∼0.5λ to ∼3λ.
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contrast images of the backward direction B → A, covering
a lower intensity range. These visual comparisons clearly
demonstrate the success of the partially coherent diffractive
unidirectional imager design, reproducing the input images
in the forward direction while blocking them in the backward
direction—as desired. We also quantified the performance of
this unidirectional visual processor using various metrics, in-
cluding PCC, diffraction efficiency, and PSNR of the forward
and backward directions, as shown in Figs. 2(d)–2(f). These

metrics are calculated across 10,000 MNIST test objects, never
used in training. The PCC values for the forward and backward
are 0.9541� 0.0239 and 0.1464� 0.1005, respectively.
Furthermore, the forward diffraction efficiency, 85.59� 0.05%,
is about fourfold higher than the backward diffraction efficiency,
22.41� 0.03%, as shown in Fig. 2(e). A similar desired perfor-
mance is also observed between the forward PSNR and back-
ward PSNR (18.46� 1.84 and 8.79� 2.01, respectively), as
shown in Fig. 2(f).

Fig. 2 Performance of a partially coherent unidirectional imager. (a) Physical layout of a four-layer
unidirectional imager design. (b) Optimized phase profiles of the diffractive layers in a unidirec-
tional imager trained with N train

ϕ ¼ 16 and C train
ϕ ¼ 2.5λ. (c) Blind testing results of the unidirectional

imager with C train
ϕ ¼ C test

ϕ ¼ 2.5λ and N test
ϕ ¼ 2048. The first three rows display the input amplitude

objects, forward output images, and backward output images, all using the same intensity range.
For comparison, the last row displays the backward output images with increased contrast. Note
that both the forward propagation and backward propagation use the same input amplitude objects
as displayed in the first row. (d)–(f) Performance evaluation of the diffractive unidirectional imager
using 10,000 MNIST test images with PCC, diffraction efficiency, and PSNR metrics.
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3.2 Impact of Ntrain
ϕ on the Performance of Partially

Coherent Unidirectional Diffractive Imagers

To explore the influence of Ntrain
ϕ on the performance of partially

coherent unidirectional imagers, we trained seven diffractive
processors with different Ntrain

ϕ values ranging from 1 to 64

(see Fig. 3). All these diffractive models were trained and tested
using the same partially coherent illumination with Ctrain

ϕ ¼
Ctest
ϕ ¼ 2.5λ, and in our blind testing, we used Ntest

ϕ ¼ 2048.
We observed that the diffractive processors trained with a larger
Ntrain

ϕ exhibited improved asymmetric imaging performance
between the forward and backward directions, as quantified in

Fig. 3 Influence of N train
ϕ on the performance of partially coherent unidirectional imagers.

(a)–(d) Performance analysis of partially coherent unidirectional diffractive imagers with
C train

ϕ ¼ C test
ϕ ¼ 2.5λ, N test

ϕ ¼ 2048, and different N train
ϕ values ranging from 1 to 64. The perfor-

mance in each case was evaluated using 10,000 MNIST test images with PCC, diffraction
efficiency, PSNR, and FOM metrics. (e) Examples of the blind testing results with different N train

ϕ

values. The first three rows display the input amplitude objects, forward output images, and back-
ward output images, all using the same intensity range. For comparison, the last row shows the
backward output images with increased contrast.
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Figs. 3(a)–3(c). To better quantify the unidirectional imaging
capability of a partially coherent diffractive processor, we de-
fined an FOM by calculating the sum of the diffraction effi-
ciency ratio and the image PSNR ratio between the forward
and backward imaging directions (see Sec. 2). The resulting
FOM is reported as a function of Ntrain

ϕ in Fig. 3(d), which re-
veals that increasing Ntrain

ϕ improves the FOM of the unidirec-
tional imager up to Ntrain

ϕ ∼ 16, and beyond 16, the performance
differences among different designs diminish. Figure 3(e) fur-
ther presents the blind testing results for different Ntrain

ϕ values.
The first three rows of Fig. 3(e) display the input amplitude ob-
jects (used for both the forward and backward directions), the
forward outputs, and the backward outputs, respectively. The
last row in Fig. 3(e) also displays the backward outputs with
increased contrast. As desired, all the backward output images
of these diffractive models appear as noise with poor diffraction
efficiency. Based on these performance analyses, we conclude
that Ntrain

ϕ ¼ 16 is sufficient to design/train a partially coherent
diffractive unidirectional imager, and therefore, we adopted
Ntrain

ϕ ¼ 16 in subsequent diffractive models to speed up the
training process.

Furthermore, Fig. S2 in the Supplementary Material illus-
trates the numerical performance comparison of a diffractive
model trained with Ntrain

ϕ ¼ 16 and tested under different
Ntest

ϕ values, revealing similar performance results for Ntest
ϕ rang-

ing from 16 to 2048. In the rest of our blind testing analysis, we
used Ntest

ϕ ¼ 2048, since the testing time is negligible compared
to the training process.

3.3 Impact of Ctrain
ϕ on the Performance of Partially

Coherent Unidirectional Diffractive Imagers

In previous subsections, we analyzed the performance of parti-
ally coherent unidirectional diffractive imager designs with
Ctrain
ϕ ¼ Ctest

ϕ ¼ 2.5λ. To understand the impact of the Ctrain
ϕ

on the performance of unidirectional imaging, we trained six
additional diffractive visual processors under partially coherent
illumination with different correlation lengths ranging from
∼0.5λ to ∼3λ. Each diffractive visual processor was tested with
the same phase correlation length as used in the training, i.e.,
Ctrain
ϕ ¼ Ctest

ϕ (see Fig. 4). To evaluate the performances of these
diffractive visual processors in both the forward and backward
directions, we calculated various metrics, such as PCC, diffrac-
tion efficiency, PSNR, and FOM, using 10,000 MNIST test im-
ages [see Figs. 4(a)–4(d)]. Figure 4(b) shows a sharp decline in
the diffraction efficiency when illuminated by partially coherent
light with shorter phase correlation lengths, suggesting that, in
these cases, the optimization was empirically dominated by the
structural loss term rather than the diffraction efficiency-related
loss term. A visualization of the blind testing results is also
displayed in Fig. 4(e), where the first three rows depict the
input amplitude objects, the forward outputs, and the backward
outputs, respectively. For better comparison, the last row in
Fig. 4(e) also shows the backward output images with increased
contrast. Note that we use a reduced intensity range for diffrac-
tive models with smaller phase correlation lengths due to their
poor diffraction efficiency, as indicated by the red box in
Fig. 4(e).

According to the FOM values presented in Fig. 4(d) and the
visualizations in Fig. 4(e), partially coherent diffractive process-
ors exhibit a very good unidirectional imaging performance
(FOM ≥ 4) when trained with a larger correlation length of

Ctrain
ϕ ≥ 1.5λ, enabling unidirectional imaging with a large dif-

fraction efficiency in the forward direction while suppressing
image formation with a significantly reduced diffraction effi-
ciency in the opposite direction. However, for diffractive pro-
cessors trained with Ctrain

ϕ < 1.5λ, the unidirectional imaging
performance appears to diminish. Specifically, both the forward
and backward output diffraction efficiencies of these diffractive
models trained with Ctrain

ϕ < 1.5λ fall below 1%, accompanied
by a reduced FOM of ∼1 to 2 [Fig. 4(d)]. When illuminated with
partially coherent light with shorter correlation lengths, images
of the input patterns can be observed in both the forward and
backward outputs.

To further explore the design characteristics of diffractive
unidirectional imagers trained under different correlation
lengths ranging from 0.5λ to 3λ, Fig. 5 illustrates the phase pro-
files of the optimized diffractive layers of each design. We ob-
serve that the central parts of the diffractive layers trained using
Ctrain
ϕ ¼ 0.5λ and Ctrain

ϕ ¼ 1.0λ are relatively flat, which indi-
cates poor imaging performance, since these central parts are
crucial for image formation. In contrast, the diffractive layers
trained with larger correlation lengths, Ctrain

ϕ ≥ 1.5λ, exhibit a
completely different topology in each diffractive layer, indicat-
ing better learning/convergence and more effective utilization of
the independent degrees of freedom at each diffractive layer,
which is at the heart of better unidirectional imaging perfor-
mance achieved for these diffractive models trained with
Ctrain
ϕ ≥ 1.5λ, as also shown in Fig. 4.
So far, we used the same level of partial spatial coherence

during both the training and blind testing stages, i.e.,
Ctrain
ϕ ¼ Ctest

ϕ . Next, we explored the generalization performance
of a unidirectional diffractive imager under different levels of
partial coherence during the blind testing stage (see Fig. 6).
Each line in Fig. 6 depicts the performance of a unidirectional
imager design (trained using a specific Ctrain

ϕ ) with respect to
varying Ctest

ϕ values. These findings support our previous obser-
vations, revealing that the unidirectional diffractive imagers
trained with Ctrain

ϕ ≥ 1.5λ perform well, and these diffractive
designs do not necessarily overfit to a specific Ctrain

ϕ value,
exhibiting improved FOM as long as Ctest

ϕ ≥ 1.5λ; also see
Figs. S3–S5 in the Supplementary Material for some blind test-
ing examples further supporting these conclusions.

In Fig. 6 and Figs. S4 and S5 in the Supplementary Material,
we also observe that none of these diffractive designs achieves
a decent unidirectional imaging FOM when tested with Ctest

ϕ ¼
0.5λ and Ctest

ϕ ¼ 1.0λ, i.e., when the phase correlation length of
the illumination beam approaches the diffraction limit of light in
air. This poor performance of the unidirectional imager designs
reported in Fig. 6 with Ctest

ϕ < Ctrain
ϕ ≥ 1.5λ is due to the fact the

diffractive layers shown in Fig. 5 for Ctrain
ϕ ≥ 1.5λ overfitted to

the relatively larger spatial coherence diameter of the illumina-
tion, failing external generalization and unidirectional imaging
for Ctest

ϕ ¼ 0.5λ and Ctest
ϕ ¼ 1.0λ. However, the failure of

the diffractive designs with Ctest
ϕ ¼ Ctrain

ϕ ¼ 0.5λ and Ctest
ϕ ¼

Ctrain
ϕ ¼ 1λ can be attributed to the lower spatial resolution

and relative sparsity of our training dataset, failing to cover
phase correlation lengths closer to the diffraction limit of light.
To better shed light on this, we trained two new diffractive
unidirectional imagers (Ctrain

ϕ ¼ Ctest
ϕ ¼ 0.5λ and Ctrain

ϕ ¼ Ctest
ϕ ¼

1.0λ) with higher resolution training image datasets featuring
random intensity patterns (see Figs. S6 and S7 in the
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Fig. 4 Influence of C train
ϕ on the performance of partially coherent unidirectional imagers.

(a)–(d) Performance analysis of partially coherent unidirectional diffractive imagers with different
Ctrain

ϕ values ranging from ∼3.0λ to ∼0.5λ, where C test
ϕ ¼ C train

ϕ . The performance in each case was
evaluated using 10,000 MNIST test images with PCC, diffraction efficiency, PSNR, and FOM
metrics. The two-star markers in (d) represent the diffractive models with C train

ϕ ¼ 0.5λ and
C train

ϕ ¼ 1.0λ, both of which were trained using a high-resolution image dataset composed of
random intensity patterns. (e) Examples of the blind testing results with different C train

ϕ values
ranging from ∼3.0λ to ∼0.5λ. The first three rows display the input amplitude objects, forward
output images, and backward output images. For comparison, the last row shows the backward
output images with different intensity ranges. Images with the same-colored frame share the
same intensity range.
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Supplementary Material as well as Sec. 2 for details). Figure
S6(e) in the Supplementary Material reveals that the diffractive
layers of this new unidirectional imager design (Ctrain

ϕ ¼
Ctest
ϕ ¼ 0.5λ) better utilize the independent degrees of freedom

at each layer, and avoid relatively smooth large regions at the
center of each layer, which indicates a better optimization of
the unidirectional imager. This improved performance is also
evident in the comparisons provided in Figs. S6(a)–S6(d),
Figs. S7(a)–S7(d), and Fig. 4(e) in the Supplementary
Material, where the FOM of unidirectional imaging increased

to 3.32 and 3.75, respectively, revealing improvements of
>2.2-fold compared to our earlier designs with Ctrain

ϕ ¼ Ctest
ϕ ¼

0.5λ and Ctrain
ϕ ¼ Ctest

ϕ ¼ 1.0λ. Figures S6 and S7 in the
Supplementary Material also report unidirectional imaging
metrics of these designs, i.e., PCC, diffraction efficiency, and
PSNR, which are calculated using 10,000 random test images,
further supporting the improved performance of these new de-
signs. These analyses underscore the crucial role of the training
image dataset in the performance of a diffractive unidirectional
imager, especially for a phase correlation length of ≤λ.

Fig. 5 Optimized phase profiles of the diffractive layers of different unidirectional imagers trained
with varying C train

ϕ - from ∼0.5λ to ∼3.0λ.
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3.4 External Generalization of Partially Coherent
Unidirectional Diffractive Imager Designs to
New Image Datasets

Next, we showcase the external generalization capabilities of
partially coherent diffractive unidirectional imager designs to
other datasets that had never been used before. For this analysis,
we used the EMNIST dataset30 containing images of handwrit-
ten English letters and a customized image dataset featuring
various types of gratings. Both of these were never used during
the training, which only used handwritten digits. These external
generalization test results shown in Fig. 7 are obtained using the
unidirectional imager design with Ctrain

ϕ ¼ Ctest
ϕ ¼ 2.5λ. The first

three rows in Figs. 7(a) and 7(b) depict the input amplitude

objects, the forward outputs, and the backward outputs, respec-
tively, all using the same intensity range. The last row shows the
backward output images with increased image contrast, clearly
confirming the unidirectional imaging capability and the suc-
cessful external generalization of the diffractive design to un-
seen input images from different datasets.

We also quantified the spatial resolution of this partially
coherent unidirectional imager (Ctrain

ϕ ¼ Ctest
ϕ ¼ 2.5λ) using

various resolution test targets with different linewidths that were
previously unseen (see Fig. 8). The minimum resolvable line-
width (period) by this unidirectional imager design was found
to be ∼1λ (∼2λ), as indicated by the results in Fig. 8. These
results further validate the successful external generalization
of the unidirectional imager design for general-purpose imaging

Fig. 6 The generalization performance of unidirectional diffractive imagers across various C test
ϕ

values, ranging from ∼0.5λ to ∼3λ, despite being trained with a specific C train
ϕ .

Fig. 7 Image dataset external generalization for the unidirectional imager with C train
ϕ ¼ C test

ϕ ¼
2.5λ. Blind testing results with EMNIST letters (a) and customized gratings (b), both of which
were never used during training.
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operation exclusively in the forward direction, despite being
trained solely using the MNIST image dataset. Additionally,
we calculated the average gradient of the image cross sections
to estimate the forward and backward point-spread functions
(PSFs) of the unidirectional imager, shown in Fig. S8 in the
Supplementary Material. Each line displayed in Fig. S8 in
the Supplementary Material was averaged over five evenly
spaced cross sections (along the x and y directions) within
the resolution test targets derived from the diffractive output im-
ages in Fig. 8. The sharp gradient peaks in the forward direction
and the flat gradients in the backward direction highlight the
asymmetric visual information processing of our unidirectional
imager, as desired, demonstrating a decent resolution in the
forward imaging direction while effectively blocking image in-
formation in the backward direction. Note that such gratings or
resolution test targets were never seen by the unidirectional
imager during the training process, and these presented results
reflect the external generalization performance. The resulting
imaging quality could be further improved by incorporating
higher-resolution targets into the optimization process.

4 Discussion and Conclusion
In this work, we introduced a unidirectional diffractive imager
that works under spatially partially coherent light, designed to
image in one direction with high power efficiency while block-
ing/suppressing the image formation in the opposite direction
with reduced diffraction efficiency. The presented unidirectional
imager comprises phase-only diffractive layers optimized by
deep learning, and it axially spans only <75λ, making it very
compact. Our analyses revealed that when the phase correlation
length of the illumination source exceeds ∼1.5λ, the partially
coherent unidirectional processor designs exhibit a very good
unidirectional imaging performance with an FOM of >4,
enabling high diffraction efficiency imaging in the forward
direction while inhibiting the image formation in the opposite
direction with reduced diffraction efficiency. However, diffrac-
tive processors trained with Ctrain

ϕ < 1.5λ show diminished
asymmetric transmission, with both the forward and backward
output diffraction efficiencies falling below 1% along with an
FOM of ∼1 to 2. As a mitigation strategy, we demonstrated that
this performance limitation can be addressed using a higher-

Fig. 8 Spatial resolution analysis for a unidirectional diffractive imager design with C train
ϕ ¼

C test
ϕ ¼ 2.5λ.
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resolution training image dataset, which improved the unidirec-
tional imaging FOM to >3.3 even for Ctrain

ϕ ¼ Ctest
ϕ ¼ 0.5λ.

Furthermore, we successfully demonstrated both the internal
and external generalizability of our unidirectional imager de-
signs across different image datasets.

Being a reciprocal optical design, the asymmetric informa-
tion transmission that is achieved by diffractive linear optical
processors is based on the task-specific engineering of the
forward and backward PSFs that are spatially varying;31–34 this
conclusion is true for spatially coherent, spatially incoherent,
or partially coherent diffractive optical processors. In general,
a diffractive optical processor can be trained, through image
data, to approximate any arbitrary set of spatially varying PSFs
between an input and output FOV. For example, under spatially
coherent illumination, with sufficient degrees of freedom within
the diffractive layers, a diffractive processor can approximate
any arbitrary PSF set, hðm; n;m0; n0Þ, where h is the spatially
coherent complex-valued PSF, and ðm; nÞ and ðm0; n0Þ define
the coordinates of the output and input FOVs, respectively.
Similarly, under spatially incoherent illumination, any arbitrary
spatially varying intensity impulse response, Hðm; n;m0; n0Þ ¼
jhðm; n;m0; n0Þj2, can be approximated through data-driven
learning.33 The loss function and the training image data are im-
portant for the accuracy, spatial resolution, and generalization
behavior of these linear transformations. For the context of uni-
directional imaging using lossy diffractive linear processors,
however, the goal is to engineer the forward and backward spa-
tially varying PSFs and make them “asymmetric,” suppressing
the image formation in the backward direction while maintain-
ing decent images in the forward direction. There is no unique
solution for this task, since infinitely many combinations of
hFðm; n;m0; n0Þ and hBðm0; n0;m; nÞ can be devised to achieve
a desired unidirectional FOM value, where hF and hB refer to
the spatially coherent PSF sets for the forward and backward
directions, respectively. It should be emphasized that spatially
incoherent and partially coherent diffractive unidirectional im-
agers can all be modeled through the behavior of hF and hB
under statistically varying illumination phase patterns (defined
by Cϕ) (see Sec. 2).

In addition to the degree of coherence of the incident light
and the spatial features of the training image dataset, the perfor-
mance of a unidirectional imager design is also influenced by
several system properties, including the number of diffractive
layers (Fig. S9 in the Supplementary Material), the number
of trainable features in each diffractive layer, the wavelength,
the bandwidth of the source, the axial distance between succes-
sive layers (Fig. S10 in the Supplementary Material), and the
pixel pitch. Increasing the number of trainable parameters, such
as the number of layers and/or the number of diffractive fea-
tures, enhances the overall performance of the system, albeit
at the cost of longer training and fabrication/assembly time.
Furthermore, by physically adjusting the structure of the diffrac-
tive layers, the presented design can be specifically tailored to
perform unidirectional imaging with a desired magnification or
demagnification factor.12

To analyze the impact of the number of diffractive layers on
the performance of the unidirectional imager, we compared five
diffractive designs featuring varying numbers of diffractive
layers (K) ranging from 2 to 5, all illuminated with Ctrain

ϕ ¼
Ctest
ϕ ¼ 2.5λ (see Fig. S9 in the Supplementary Material).

The FOM for a K ¼ 2 diffractive unidirectional imager was
4.2, which increased to 6.3 for a K ¼ 5 unidirectional imager.

Additionally, the output visualization demonstrates that the for-
ward output of the K ¼ 5 unidirectional imager exhibits less
noise and higher image contrast than the K ¼ 2 unidirectional
imager, as shown in Fig. S9(e) in the Supplementary Material.
These results align well with our previous findings,31,32 indicat-
ing that increasing the number of diffractive layers significantly
enhances the performance of a diffractive optical system.

The layer-to-layer distance (d) was empirically set as 14.7λ
for all the reported designs. To assess the impact of d on the
performance of the unidirectional imager, we varied d within
a range of 8λ to 20λ (see Fig. S10 in the Supplementary
Material). As illustrated in Fig. S10(d) in the Supplementary
Material, increasing d from 8λ to 14.7λ resulted in a slight im-
provement in the unidirectional imaging performance, with the
FOM rising from 5.9 to 6.1. The output examples in Fig. S10(e)
in the Supplementary also indicate that increasing d to 14.7λ
yields a higher contrast forward output image compared to
the results with shorter distances, such as 8λ or 12λ.

To experimentally validate the presented concept, a partially
coherent illumination can be obtained by filtering an incoherent
source with a 2D aperture, which then illuminates the input ob-
ject plane. According to the van Cittert–Zernike theorem, the
spatial coherence diameter of this input light can be controlled
by the aperture size and the axial distance between the aperture
and the input object plane.13 Once the input field is modulated
by a diffractive unidirectional imager, the output intensity pro-
file under partially coherent illumination can be measured using
an image sensor array at the output FOV.

Finally, the unidirectional imagers introduced in this work
are highly compact, axially spanning <75λ, and they exhibit
significant versatility that can be adapted to various parts of
the electromagnetic spectrum; by scaling the resulting diffrac-
tive features of each transmissive layer proportional to the illu-
mination wavelength, the same design can operate at different
parts of the spectrum, including the visible and infrared wave-
lengths—without the need to redesign the diffractive layers of
the unidirectional imager. This adaptability is poised to facilitate
various novel applications in diverse fields, such as asymmetric
visual information processing and communication, potentially
enhancing privacy protection and mitigating multipath interfer-
ence within optical communication systems, among others.

5 Appendix: Training Details
The unidirectional diffractive imagers reported in this work are
designed for spatially partially coherent illumination at a
wavelength of λ ¼ 0.75 mm. The FOV A and FOV B (Fig. 1)
share the same physical size of 11.2 mm × 11.2 mm (i.e.,
∼15λ × 15λ), discretized into 28 pixel × 28 pixel. Each diffrac-
tive layer contains 200 × 200 trainable diffractive features,
modulating only the phase of the transmitted field. The axial
distance between any two successive diffractive planes of a uni-
directional imager is set to 11 mm, i.e., d ≈ 14.67λ, correspond-
ing to a numerical aperture of 0.96 within the diffractive system.

All the unidirectional diffractive imagers were optimized us-
ing a training dataset composed of 55,000 MNIST handwritten
digits, except for one diffractive processor illustrated in Fig. S6
in the Supplementary Material. To enhance their generalization
capabilities, we randomly applied dilation or erosion operations
to the original MNIST images using OpenCV’s built-in func-
tions, “cv2.dilate” or “cv2.erode,” respectively. After data aug-
mentation, the dilated, eroded, and original MNIST images were
combined into a mixed dataset. This dataset was then divided
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into training, validation, and testing sets, each containing
55,000, 5000, and 10,000 images, respectively, with no overlap.
Note that the unidirectional visual processor depicted in Fig. S6
in the Supplementary Material was trained using a higher-
resolution image dataset consisting of random intensity patterns
within an intensity range of [0, 1]. The total number of images in
this random image dataset is equivalent to that of the MNIST
dataset.

All the diffractive visual processors are trained using the de-
fault optimizer (optax) in JAX, with a learning rate of 0.001 and
a batch size of 32, over 50 epochs. All the models were trained
and tested on JAX (version 0.4.1), utilizing a GeForce RTX
4090 graphical processing unit from NVIDIA Inc. Training a
partially coherent diffractive unidirectional imager with four
diffractive layers typically takes ∼5 h.

Code and Data Availability
All the data and methods needed to evaluate the conclusions of
this work are presented in the main text and supporting infor-
mation. Additional data can be requested from the correspond-
ing author. The codes used in this work use standard libraries
and scripts that are publicly available in JAX.
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