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Abstract. Diffractive optical neural networks (DONNs) have exhibited the advantages of parallelization, high
speed, and low consumption. However, the existing DONNs based on free-space diffractive optical elements
are bulky and unsteady. In this study, we propose a planar-waveguide integrated diffractive neural network
chip architecture. The three diffractive layers are engraved on the same side of a quartz wafer. The three-layer
chip is designed with 32-mm3 processing space and enables a computing speed of 3.1 × 109 Tera operations
per second. The results show that the proposed chip achieves 73.4% experimental accuracy for the Modified
National Institute of Standards and Technology database while showing the system’s robustness in a cycle
test. The consistency of experiments is 88.6%, and the arithmetic mean standard deviation of the results is
~4.7%. The proposed chip architecture can potentially revolutionize high-resolution optical processing tasks
with high robustness.
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1 Introduction
Artificial neural networks (ANNs) are rapidly developing
and are widely utilized in many fields, such as computer vision,1

natural language processing,2 medical diagnosis,3 and decision-
making.4 Although ANNs have notably improved performance
at the algorithmic level, these tasks are fundamentally limited by
the energy consumption and computing speed of computers.5

Recently, optical neural networks (ONNs) have gained
increasing attention owing to their low power consumption,
low processing latency, and high computational bandwidth for
solving the above problems.6–14 Various ONN implementations
have been proposed, including coherent photonic integrated
circuits,15–21 phase-change materials,22–24 diffractive optical
processors,25–28 dielectric metasurfaces,29–31 and optical delay

lines.32 Among these ONNs, diffractive optical neural networks
(DONNs) have attracted increasing interest because of their
large computational scales.33 However, the existing DONNs
based on discrete diffractive optical elements (DOEs) are bulky
and unsteady.34–46

In this study, we propose a compact planar-waveguide inte-
grated DONN chip. The three diffractive layers are engraved on
the same side of a quartz wafer and enable high-precision align-
ment. Meanwhile, the optical field avoids noise in the transpar-
ent waveguide. A three-layer chip is designed with a 32-mm3

processing space. The compact architecture enables a computing
speed of 3.1 × 109 Tera operations per second (TOPS). The three-
layer chip achieves 73.4% experimental accuracy for the Modified
National Institute of Standards and Technology (MNIST) data-
base while showing the system’s robustness in a cycle test. The
consistency of the experiments is 88.6%, and the arithmetic
mean standard deviation of the classification results is 4.7%.
Furthermore, the chip can be combined with a complementary
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metal-oxide-semiconductor to achieve higher integration. This
work provides a novel high-density integration solution with high
robustness for high-resolution optical processing tasks.

2 Methods

2.1 Oblique Forward Propagation Model

For the mainstream DONNs, the forward propagation model is
based on the angular spectrum (AS) theory of diffraction and
fast Fourier transform. According to the AS theory, the diffrac-
tion field of a beam propagating in free space through a distance
z can be expressed as

Uoutðx; yÞ ¼ F−1fFfUinðx; yÞgHðξ; ηÞg; (1)

where Ffg and F−1fg are Fourier transform and inverse
Fourier transform, respectively. Uinðx; yÞ and Uoutðx; yÞ are
the complex amplitude distributions of the light field on the
input and output planes, respectively. Hðξ; ηÞ is a transfer
function, which can be expressed as

Hðξ; ηÞ ¼ exp

�
jkz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2ðξ2 þ η2Þ

q �
; (2)

where k ¼ 2π∕λ and λ is the wavelength in the air.
For the proposed chip architecture, the diffraction in wave-

guide space is considered. Reflections are introduced from the
l’th diffractive layer to the lþ 1’th diffractive layer to match the
waveguide space. The l’th diffractive layer with a transmittance
function of tðxi; yiÞ is obliquely illuminated with the incident
angle θ. i’th represents the neuron located at ðxi; yiÞ of layer
l. The center of the input plane is at the origin of the coordinate
system, whereas the regions of interest on the output plane are
not located in the origin. Consequently, it is necessary to set the
observation window after the oblique transmission during the
simulations. During one simulation, the diffracted field can be
expressed as

Uoutðx; yÞ ¼ F−1fFftðxi; yiÞ expðjkwx sin θÞgHðξ; ηÞg; (3)

where kw ¼ 2π∕λw and λw is the wavelength in the waveguide
space. In Eq. (3), a default setting is that the coordinates ðx; yÞ
on the output plane are the same as the coordinates ðxi; yiÞ cor-
responding to the input plane. Reflections during transmission
will cause the phase change. According to previous research,47–49

we assume that the phase changes π at the reflecting interface.
Therefore, the propagation in the waveguide space can be con-
structed through multiple diffractions and reflections.

2.2 Chip and Target Fabrication

The input targets are fabricated using laser direct writing on a
soda glass substrate. The glass substrate is first cleaned using
acetone and isopropyl alcohol. Using electron beam evaporation,
the clear substrate is coated with a layer of chromium (Cr) with
a thickness of a few hundred nanometers. After spin-coating
positive photoresist and a prebake process, the handwritten digit
patterns are exposed using laser direct writing. The exposed resist
is removed using a developer, and the uncovered Cr is removed
with chrome mordant. Any remnant resist is cleaned using
acetone and isopropyl alcohol. Finally, 50 amplitude-encoded tar-
gets with a total of 10 categories are fabricated. Each category
randomly selects five test targets in the MNIST test data set.

The phase value of each neuron is limited to 0 to 2π. The
neuron phase value Δφ is converted into a relative height
map Δh [Δh ¼ λΔφ∕ð2πΔnÞ], where Δn is the refractive index
difference between the substrate and air. The chip layers are fab-
ricated onto a quartz wafer. After spin-coating photoresist and
exposure, the exposed resist is stripped using a developer. Then,
a magnetic neutral loop discharge etching is applied, which is
followed by an oxygen plasma sizing treatment. This process is
repeated until the chip layer structures are achieved. A more
detailed description of the fabrication process is provided in
the Appendix.

3 Results
The schematic of existing free-space DONNs is shown in
Fig. 1(a). Discrete DOEs are independently distributed in free
space, rendering the entire system bulky and unsteady. Moreover,
the beams may be susceptible to the free-space noise. For a com-
parison, the schematic of the proposed chip is shown in Fig. 1(b).
The DOEs are fabricated on the same quartz wafer. A reflective
coating is fabricated on the back of the transparent substrate.
The beam containing the target information is transmitted in
the transparent waveguide space through diffractions and reflec-
tions. The output beam is received by a charge-coupled device
(CCD) at the detection plane, and its intensity distribution is
obtained. To fabricate the chip, all diffractive layers are inte-
grated on the same surface. It enables high-level alignment be-
tween cascaded layers. Therefore, the chip design can achieve
a compact and stable optical processing architecture.

A phase-only three-layer chip is designed for the classifi-
cation task. To match the fabrication capability, the chip struc-
ture parameters are as follows. Each diffractive layer is
2 mm × 2 mm, which contains 250,000 (500 × 500) diffractive
neurons. Each neuron unit is 4 μm in size. The horizontal inter-
val of cascade layers is 1 mm. The transparent substrate thick-
ness is 2 mm. The incidence angle of air is 60 deg. Therefore,
the waveguide space for the beam propagation is only 32 mm3.
The chip is trained using 55,000 amplitude-encoded handwritten
digits. After training, the designed chip classifier tests 10,000
amplitude-encoded handwritten digits. The simulation classifi-
cation accuracy is 75.4%. Some simulation results are shown
in Fig. 2.

Subsequently, a three-layer chip is fabricated. The phase
values of the diffractive layers are discretized to simplify
fabrication. We construct the experimental optical path. In the

Fig. 1 Schemes of (a) existing DNNs and (b) the proposed chip.
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experiment, a He–Ne laser (25-STP-912-230, Melles Griot,
Rochester, New York, United States) is collimated by lens1
and lens2. The wavelength of the He–Ne laser is 632.8 nm,
and the power is 5 mW. A pinhole is used as a filter. The
collimated beam illuminates the input plane. The intensity dis-
tributions in the output plane are detected by a CCD (DFK
33U×174, Sony, Minato, Tokyo, Japan). The fabricated device
without reflective coating is shown in Fig. 3(c).

We randomly select 50 handwritten digits and fabricate them
using laser direct writing. The fabricated handwritten digits are
detailed in the Appendix. Some experimental results are shown
in Fig. 4. The ability to classify different handwritten digits is
assessed. Handwritten “1,” “8,” and “9” are chosen as the input
targets, as shown in Fig. 4(a). The experimental output intensity
distributions are shown in Fig. 4(b). The output intensity distri-
butions are normalized considering the energy perturbation of
the He–Ne laser. Then, we get the intensity ratios for 10 preset
regions. As shown in Fig. 4(c), the maximal intensity appears
at the preset region corresponding to the input handwritten
digit label.

Furthermore, a 10-cycle test is performed to validate the reli-
ability and stability of the three-layer chip. First, the chip is re-
moved from the experimental optical path, whereas the rest of
the experimental optical path remains unchanged. Subsequently,
the chip is re-installed into the experimental optical path. The
same test process is performed with the same test conditions
to complete the 10-cycle test. For each handwritten digit, we
calculate the arithmetic mean standard deviation of the intensity

ratio. The error bars are shown in Fig. 5. For 500 test results, the
arithmetic mean standard deviation of intensity ratio is 4.7%.
The experimental classification accuracy is 73.4% in
Fig. 6(b), and the experimental confusion matrix is shown in
Fig. 6(a2). The statistical consistency of the 10-cycle test is
88.6% in Fig. 6(c). This is because there are some smaller errors
(including rotational and deviation errors) between the input
plane and the chip during the cycle test. The effect of alignment
can be found in our previous work.40

Each layer of the designed three-layer chip contains 250,000
neurons. The cascaded layers are fully connected. The total
number of operations is 1.25 × 1011. The distance to complete
one above session is ∼12 mm. The time to complete one
above session is ∼4 × 10−11 s. Hence, the processing speed is
∼3.1 × 109 TOPS. In our previous free-space DONN work,40

the distance to accomplish the same interlayer propagation
was 10 cm. The propagation time of the proposed chip is about
one-ninth of that of the free space diffractive neural network.

4 Conclusion
In this work, we proposed a compact planar-waveguide inte-
grated diffractive neural network chip. Using micro-electro-
mechanical system (MEMS) technology, the designed chip
has realized a compact size of 32 mm3. Moreover, the compact
architecture enables a computing speed of 3.1 × 109 TOPS. The
experimental accuracy is 73.4% in a 10-cycle test of 50 hand-
written digits. The consistency of experiments is 88.6%. The

Fig. 2 Simulation classification for the designed chip. (a) Input digits. (b) Simulation results. (c)
Intensity distributions.
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Fig. 3 Schemes of the experimental setup and fabricated chip. (a) Schematic diagram of the ex-
perimental setup. (b) Photo of the experimental setup. (c) The fabricated chip. (d) Partial enlarged
view of the chip.

Fig. 4 Experimental classification for the designed chip. (a) Input digits. (b) Experimental results.
(c) Intensity distributions.
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arithmetic mean standard deviation is 4.7% for all 500 experi-
mental normalized intensity distribution ratios. It will achieve an
on-chip all-optical information processing unit with high align-
ment, high density, high reliability, and miniaturization, which
provides a novel solution for high-resolution optical processing
tasks with high robustness.

5 Appendix

5.1 Tensorflow-based Training

Here, a three-layer chip is constructed using an oblique forward
propagation model. Between two adjacent layers, the propagation

is completed by one reflection and two diffractions. At the de-
tect plane, we obtain the output intensity distribution. Then, the
mean square error is applied as the loss function. We aim to
maximize the intensity of interest regions while minimizing
the total intensity outside of all regions of interest. The trainable
parameters in the chip are the modulation values for each layer,
which are optimized using the backpropagation method of adap-
tive moment estimation (Adam) optimizer with a learning rate
of 10−4. To demonstrate the performance of the chip, we use
55,000 images in the MNIST data set for classification training.
The designed chip is implemented using TensorFlow framework
version 1.12.0 (Google Inc.) and Python (version 3.7.0). Using

Fig. 5 Cycle-test intensity results. (a) Intensity distribution of digit “1”. (b) Intensity distribution of
digit “8”. (c) Intensity distribution of digit “9.”

Fig. 6 Cycle-test consistency results. (a1) Simulation and (a2) experimental confusion matrices.
(b) Accuracy of the 10-cycle test. (c) Consistency of the 10-cycle test.
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a desktop computer (GeForce GTX 1660 graphical processing
unit, AMD Ryzen 5 3600X CPU @ 3.8 GHz, 32 GB of random
access Memory, and Microsoft Windows 10), a three-layer chip
is trained for ∼20 h for 20 epochs of optimization iteration.

5.2 Fabrication of the Designed Three-layer Chip

In this paper, we train the designed three-layer chip to be be-
tween 0 and 2π. During the training, the phases are continuously
distributed. To facilitate the actual processing, the trained phases
are classified into four heights: 0, π∕2, π, and 3π∕2. The de-
signed three-layer chip is processed on a SiO2 wafer. The etch-
ing depths for the SiO2 corresponding to the phases 0, π∕2, π,
and 3π∕2 are 1038, 692, 346, and 0 nm, respectively. The fab-
rication steps are shown in Fig. 7.

(1) Step 1: cleaning
A 2 in (1 in = 2.54 cm) 500-μm-thick SiO2 wafer that was

polished on both sides was selected. The SiO2 wafer was first
ultrasonically cleaned with guaranteed reagent acetone (99.8%)
and then transferred into guaranteed reagent isopropyl alcohol
(99.8%). After the organic cleaning, the SiO2 wafer was rinsed
with deionized water for several minutes and finally dried with
nitrogen gas. For further cleaning, we used an oxygen plasma
surface treatment system to clean any organic impurities on the
surface of the SiO2 wafer.

(2) Step 2: spreading photoresist
Before spin-coating the photoresist, we pretreated the SiO2

wafer with hexamethyl disilazane for 11 min. Based on the use
of a positive photoresist, we chose a spin speed of 4000 revo-
lutions per minute (rpm) for 30 s and soft bake at 95°C for 90 s.
Finally, the thickness of the photoresist was determined to be
∼900 nm, which is suitable for the following processing steps.

(3) Step 3: lithography and development
We carried out lithography and development for the first time

in step 3. In step 3, we first used a photomask. We then used

a Nikon Stepper i7 (Nikon, Tokyo, Japan) as our lithography
machine with an exposure time of 600 ms and a focus of −1.
Next, the exposed wafer was postbaked at 110°C for 60 s to
obtain a better development effect. Then, we developed the ex-
posed wafer with a specific developer for 60 s. The developed
wafer was then rinsed with deionized water for several seconds
and finally dried with nitrogen gas. Up to this point, we have
completed the first lithography and development step.

(4) Step 4: etching
We used a neutral loop discharge plasma etching system. For

the plasma etching process, we chose octafluorocyclobutane
(C4F8) and sulfur hexafluoride (SF6) as the etching gas at an
antenna RF power of 1200 W. For an etching time of around
36 s, we achieved an etching depth of 346 nm.

(5) Step 5: spreading photoresist
The etched SiO2 wafer in step 4 was ultrasonically cleaned

again. This is the second spin-coating process and is the same as
in step 2.

(6) Step 6: lithography and development
This is the second lithography and development process and

is the same as in step 3.
(7) Step 7: etching
This is the second etching process and is the same as in

step 4.
(8) Step 8: spreading photoresist
The etched SiO2 wafer in step 7 was ultrasonically cleaned

again. This is the third spin-coating process and is the same as in
step 2.

(9) Step 9: lithography and development
This is the third lithography and development process and is

the same as in step 3.
(10) Step 10: etching
This is the third etching process and is the same as in step 4.

(11) Step 11: cleaning
Some positive photoresist remained on the surface, so the sam-

ple was cleaned again. This cleaning process was similar to step 1.

Fig. 7 Fabrication steps for the three-layer chip.
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5.3 Simulation and Experimental Classification Results
for 10 Categories of Handwritten Digits

Here, we show the classification results for 10 different catego-
ries of handwritten digits. As shown in Figs. 8(a) and 9(a),

handwritten digits “0 to 9” are used as input targets. The corre-
sponding simulation and experimental classification results are
shown in Figs. 8(b), 9(b), 8(c), and 9(c). In a similar way, we
plot the error bars for the 10-cycle test in Figs. 8(d) and 9(d).

Fig. 8 Handwritten digit “0 to 4” classification for a three-layer chip. (a) Input digits. (b) Simulation
results. (c) Experimental results. (d) Intensity distributions.
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Fig. 9 Handwritten digit “5 to 9” classification for a three-layer chip. (a) Input digits. (b) Simulation
results. (c) Experimental results. (d) Intensity distributions.
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5.4 Influence of the Layer Number on Recognition
Accuracy

As shown in Fig. 10, the recognition accuracy of the chip is
increasing for the increasing number of layers. Furthermore,
the recognition accuracy was slightly changed from three to five
layers. Therefore, a three-layer chip is analyzed.

5.5 Comparison between Different Architectures on
TOPS

For optical diffractive neural networks, researchers have pro-
posed many different architectures. We choose architectures that
are similar to our work for better benchmarks. The comparison
between different works and our work is shown in Table 1.

On the one hand, our work can achieve a more compact, in-
tegrated architecture compared with separate architectures. The
computing power can be the same order of magnitude and can
be further increased by expanding the number of neurons of
phase layers.

On the other hand, our work has obviously higher computing
power compared with the one-dimensional (1D) integrated ar-
chitecture, and it can directly process the two-dimensional (2D)
input objects. Moreover, our work has scalability while retain-
ing stability.

5.6 Total Power Consumption of the Proposed Design

The experimental setup contains a He–Ne laser, a lens, a
pinhole, a square aperture, an input plane, a three-layer chip,
and a CCD. The He–Ne laser (light source) and CCD (detector)
are active devices, and the others are passive devices.

The power of the He–Ne laser is 5 mW. The working
current of the CCD is ∼720 mA at 5 V, and the power of
the CCD is ∼3.75 W. The total power consumption of our
scheme is ∼3.755 W.

5.7 Heights of the Steps of the Fabricated Devices

The corresponding step heights of the diffractive layer are
346 nm. We measured the heights of the fabricated device steps
using the confocal laser scanning microscope. The result of
a measurement is shown in Fig. 11.

Three-dimensional (3D) microscope characterization of
the step thickness of the proposed diffractive neural networks
is shown in Fig. 11. The measured step heights are 302,
341, and 320 nm. The measurement error for the multistep
photolithography-etching process is <30 nm. Although
this kind of measurement error cannot be avoided, it does
show a minor influence on the performance of diffractive
networks.

5.8 Experimental Fabricated Targets

The fabricated targets are shown in Fig. 12. All 50 amplitude-
encoded targets are randomly selected from the MNIST test
dataset.
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Table 1 Comparison between different architectures.

Dimension
Size of

neuron (μm)
Number of neurons

in one layer
Propagation
distance Accuracy (%) TOPS

Ref. 33 2D separation 400 200 × 200 12 cm 91.75 1.6 × 107

Ref. 40 2D separation 4 1000 × 1000 20 cm 84 6 × 109

Ref. 27 1D integration 2 186 500 μm 86.7 1.38 × 104

Our work 2D integration 4 500 × 500 1.2 cm 73.4 3.1 × 109

Fig. 10 Simulation classification accuracy for different num-
bers of layers for 10,000 test targets in the MNIST test data
set.
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