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Abstract. Pyramid wavefront sensors are planned to be a part of many instruments that are
currently under development for the extremely large telescopes (ELT). The unprecedented scales
of the upcoming ELT-era instruments are inevitably connected with serious challenges for wave-
front reconstruction and control algorithms. Apart from the huge number of correcting elements
to be controlled in real-time, real-life features such as the segmentation of the telescope pupil, the
low wind effect, the nonlinearity of the pyramid sensor, and the noncommon path aberrations
will have a significantly larger impact on the imaging quality in the ELT framework than they
ever had before. We summarize various kinds of wavefront reconstruction algorithms for the
pyramid wavefront sensor. Based on several forward models, different algorithms were devel-
oped in the last decades for linear and nonlinear wavefront correction. The core ideas of the
algorithms are presented, and a detailed comparison of the presented methods with respect
to underlying pyramid sensor models, computational complexities, and reconstruction qualities
is given. In addition, we review the existing and possible solutions for the above-named real-life
phenomena. At the same time, directions for further investigations are sketched. © 2020 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.6.1.010901]

Keywords: adaptive optics; pyramid wavefront sensor; wavefront reconstruction algorithms;
island effect; low wind effect; optical gain; nonlinearity; noncommon path aberrations.

Paper 19029V received Mar. 27, 2019; accepted for publication Feb. 26, 2020; published online
Mar. 13, 2020.

1 Introduction

Recently, the popularity of pyramid wavefront sensors (PWFS) has grown in the astronomical
adaptive optics (AO) community due to their advantages compared to other types of wavefront
sensors. The device is already utilized on existing telescope systems, such as the Large Binocular
Telescope (LBT),1–3 and is going to be used for wavefront sensing in many of the instruments on
the future extremely large telescopes (ELT)-sized telescopes.

Consequently, the development of wavefront reconstruction methods from pyramid sensor
data is also a topic of high interest. The goal of this review paper is to provide a comprehensive
overview of the research in the field of wavefront reconstruction from PWFS data.

In general, we distinguish between calibration- and model-based wavefront reconstruction
algorithms. Standard calibration-based approaches rely on the registration of the interaction
matrix (IM) of the system, which is the WFS response to poking the DM actuators. This
approach couples the wavefront reconstruction and the DM control steps. The actuator com-
mands are obtained by applying the (generalized) inverse of the IM to the vector of sensor data.
The procedure is often called matrix–vector-multiplication (MVM) by the community. In the
MVM approach using a synthetic IM, a physics-based mathematical model of the wavefront
sensor is employed.

Other model-based approaches are matrix-free and therefore can have reduced computational
complexities compared to MVM approaches. Among them are, for instance, Fourier-domain
methods, approaches based on the inversion of the Hilbert transform, or applications of math-
ematical algorithms from the field of inverse problems. Note that any linear model-based recon-
structor can be formulated as an MVM as well, which is, however, not preferable from the
computational point of view.
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The standard reconstruction approach is to derive an IM and compute its (generalized)
inverse, which is then applied to the sensor data. However, more recently new ideas that are
based on a throughout mathematical analysis of different pyramid sensor models have been
developed. They frequently use simplifications of the full pyramid sensor model, e.g., a trans-
mission mask model rather than the phase mask model. Subsequently, the pyramid model may be
further simplified using the roof sensor approximation as well as suitable linearizations.
Although these simplifications might be considered severe, numerical validation shows that
these reconstruction methods deliver accurate wavefront reconstructions.

One of the distinguishing criteria between the various algorithms is their applicability to
a pyramid sensor with or without modulation. While most of the algorithms are applicable with
the same computational load to the PWFS both with and without modulations, several of them
are not. For instance, an application of the algorithms that are based on the inversion of the
Hilbert transform is justified for the nonmodulated sensor data only. Some other algorithms have
an increased computational demand for the modulated pyramid sensor or display difficulties in
closing the loop, in particular in the nonmodulated scenario.

The PWFS is known to be a nonlinear device. If the wavefronts aberrations are small,
it behaves (almost) linear but with its range of linearity and sensitivity being inversely
related. The most common way to overcome the nonlinearity of the sensor is to increase
the linearity regime of the pyramid sensor by applying modulation at the costs of a reduced
sensitivity.4–7 However, as recently was shown for telescope pupils fragmented by thick
structures of the mirror support, the usage of a very low to no modulation is highly desirable.
These sensor regimes provide the most sensitive measurements of piston jumps between
the pupil segments, which are crucially important for accurate wavefront reconstruction
of segment piston modes. Due to its enhanced sensitivity, the interest in applications of
the nonmodulated PWFS is growing, which requires the development of nonlinear wave-
front reconstruction algorithms expected to yield high-quality improvements for this type
of sensor.

Moreover, a large part of the sensor’s nonlinearity is generated by the sensing environment
itself. For instance, a pyramid sensor working in the visible and in bad atmospheric conditions is
highly nonlinear with any amount of modulation. The high spatial frequency residuals that can-
not be compensated are in this setting so large that they reduce the sensitivity of the pyramid
sensor, a phenomenon known for years as the optical gain of the sensor.8,9 For astronomical
observations with the PWFS in its nonlinear regime, a development of nonlinear methods able
to compensate automatically for the reduced optical gain of the sensor is therefore of high
importance.

Taking into account linear and nonlinear wavefront reconstruction methods for pyramid sen-
sors, we provide in this paper a comparison of all relevant approaches with respect to underlying
models, quality performance, and computational complexity. The performance of the methods is
demonstrated in the context of an extreme adaptive optics (XAO) system and a single conjugate
adaptive optics (SCAO) system, both planned for the ELT being built by the European Southern
Observatory (ESO).

The paper is structured as follows. Section 2 provides an overview on the PWFS, describing
its physical principles as well as its main characteristics.

Section 3 contains a review of various modeling approaches for the pyramid sensor.
Geometrical and Fourier-optics models including amplitude (or transmission) mask and phase
mask approaches are described. Section 4 presents explicit analytical forward models and
approximations, both in the spatial and Fourier domains (FD).

A review of existing methods for wavefront reconstruction from PWFS data is given in
Sec. 5. A comparison of the algorithms with respect to the underlying models, quality perfor-
mance, and computational complexities is provided in Sec. 6.

Finally, Sec. 7 focuses on the studies of the algorithms’ performance under real-life features
such as the pupil fragmentation, low wind effect (LWE), the sensor’s optical gain, and the pres-
ence of noncommon path aberrations (NCPA). For each of the mentioned special features, the
existing solutions and techniques are reviewed as well as possible directions for further research
are sketched.
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2 Pyramid Wavefront Sensor

Section 2.1 describes the physics of the image formation and the mapping of wavefront aberra-
tions to intensity measurements of the pyramid sensor. Section 2.2 sketches the areas of appli-
cation and the extents to which the pyramid sensor has spread.

2.1 Physical Description of Pyramid Sensor

The principle of the pyramid sensor operation is based on the generalization of the Foucault knife
test. Figure 1 provides a scheme of the pyramid WFS. First, the incoming light is focused by
a lens onto the prism apex. Let Φ∶R2 → R denote a phase screen (in radians) coming into the
telescope. The complex amplitude ψ aper∶R2 → C corresponding to this phase screen Φ reads as

EQ-TARGET;temp:intralink-;e001;116;593ψ aperðx; yÞ ¼ Mðx; yÞ · exp½−i · Φðx; yÞ�; ðx; yÞ ∈ R2: (1)

Here, M∶R2 → R denotes the aperture mask defined as

EQ-TARGET;temp:intralink-;e002;116;547Mðx; yÞ ¼
�
1; ðx; yÞ ∈ Ω
0; otherwise;

(2)

where Ω denotes the telescope aperture with a circular central obstruction.
Next, the main component of the device, a four-sided glass pyramidal prism, is placed in the

Fourier plane of the lens. The prism is described by its phase mask Π shown in Fig. 2. The action
of this phase mask on the focused light is described by the so-called optical transfer function
(OTF)

EQ-TARGET;temp:intralink-;e003;116;442OTFpyrðξ; ηÞ ¼ exp½−i · Πðξ; ηÞ�; (3)

which introduces certain phase changes according to the prism design.
Finally, another lens forms an intensity image on the detector. The complex amplitude ψdet

coming to the detector plane is a convolution of the incoming complex amplitude ψ aper with the
point spread function (PSF) of the glass pyramid

EQ-TARGET;temp:intralink-;e004;116;361ψdetðx; yÞ ¼
1

2π
ðψ aper � PSFpyrÞðx; yÞ: (4)

Fig. 1 Scheme of the optical setup of a pyramidWFS. The circular modulation path is shown in the
dashed line.
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The pyramid PSF is, in its turn, defined as the inverse Fourier transform (IFT) of its OTF

EQ-TARGET;temp:intralink-;e005;116;507PSFpyrðx; yÞ ¼ F−1fOTFpyrð·; ·Þgðx; yÞ: (5)

The intensity Iðx; yÞ in the detector plane is then defined as

EQ-TARGET;temp:intralink-;e006;116;462Iðx; yÞ ¼ ψdetðx; yÞ · ψdetðx; yÞ: (6)

In fact, the four facets of the pyramid split the incoming light in four beams, which propagate
in slightly different directions. Most of the light falling onto detector is concentrated in the four
pupil images denoted as Iij, i; j ¼ f0;1g. Note that by varying the parameters of the second lens,
one can adjust the spatial sampling of the pupil subimages. Inside each of the four subimages Iij,
the intensity is distributed slightly differently, due to the different optical paths for each of the
beams. This inequality in the intensity distribution serves as a starting point for restoring the
wavefront perturbations. According to the standard data definition, reminding the quad cell, the
two measurement sets sx and sy are obtained from the four intensity patterns as

EQ-TARGET;temp:intralink-;e007;116;330

sxðx; yÞ ¼
½I01ðx; yÞ þ I00ðx; yÞ� − ½I11ðx; yÞ þ I10ðx; yÞ�

I0
;

syðx; yÞ ¼
½I01ðx; yÞ þ I11ðx; yÞ� − ½I00ðx; yÞ þ I10ðx; yÞ�

I0
; (7)

where I0 is the average intensity per subaperture

EQ-TARGET;temp:intralink-;e008;116;244I0ðx; yÞ ¼
I00ðx; yÞ þ I01ðx; yÞ þ I10ðx; yÞ þ I11ðx; yÞ

4
: (8)

Explicit forward models relating the incoming wavefront Φ with the sensor data sx, sy are
considered in Sec. 3. Therein, various existing models, exact and approximate, are given together
with a historical context allowing one to give a glance on the development of the understanding
of how the pyramid sensor data are related to the incoming wavefront.

A dynamic circular modulation of the incoming beam allows to increase the linear and the
dynamic range of the pyramid sensor7 and at the cost of a reduced sensitivity. The modulation
can be accomplished in several ways: either by oscillating the pyramid itself,10 with a steering
mirror,11,12 or using a static diffusive optical element.12,13 The circular modulation path of the
focused beam on the pyramid apex is shown with a dashed circle in Fig. 1. Moreover, it was
noticed that the uncorrected high-frequency aberrations can act as a “natural”modulation for the
lower modes in the corrected field.14

Fig. 2 Phase mask Π (in arbitrary units) corresponding to a four-sided pyramid sensor.

Shatokhina, Hutterer, and Ramlau: Review on methods for wavefront reconstruction. . .

J. Astron. Telesc. Instrum. Syst. 010901-4 Jan–Mar 2020 • Vol. 6(1)



2.2 Pyramid Sensor Features, Applications, and Modern Challenges

Since the PWFS was introduced by Ragazzoni in the 1990s,10 it has gradually gained more and
more attention from the scientific community. Multiple theoretical studies, numerical simu-
lations,13,15–19 and laboratory investigations in optical test benches20–25 have demonstrated
numerous advantages of the PWFS over the standard Shack–Hartmann wavefront sensor
(SH-WFS). Among those are the ability to achieve an enhanced and adjustable sensitivity,
improved signal-to-noise ratio (reduced noise propagation), an improved robustness to spatial
aliasing, and an adjustable pupil sampling. The mentioned advantages of the pyramid sensor
lead to significant improvements in the closed-loop performance of AO systems compared to
systems equipped with the SH-WFS. For instance, in astronomical AO systems, the PWFS
has been reported to provide higher Strehl ratios as well as higher guide star limiting magni-
tudes,26 which results in an increased sky coverage19 and lower residual speckle levels for high
contrast imaging. Recently, it has been shown that all the advantages of the pyramid sensor are
kept even when significant levels of NCPA have to be sensed and corrected by an AO
system.19,27

In parallel to theoretical and laboratory studies, the advantages of the PWFS over the SH-
WFS were successfully demonstrated on sky.28–31 The PWFS was integrated into AO systems
such as SCExAO at the Subaru Telescope, MagAO at the Magellan Telescope, Adaptive Optics
module of Telescopio Nazionale Galileo (AdOpt@TNG), INO Demonstrator at the Mont
Megantic Telescope, and PYRAMIR at the Calar Alto Telescope. Nowadays, the pyramid sensor
is at the heart of high order, high contrast, and high precision wavefront sensing on the LBT,1–3,32

where it has provided outstanding operational results and set the new standard for the quality of
AO correction to be achieved with ground-based telescopes.

Currently, the next-generation instrumentation on the so-called Extremely Large Telescopes
(ELTs) with primary mirrors of 25 to 40 m in diameter is under development. Examples of the
new era ground-based telescopes under construction are the ESO’s ELT, the Giant Magellan
Telescope (GMT), and the Thirty Meter Telescope (TMT). The exceptional results achieved
with the PWFS on the current-generation telescopes have led to the decision to include the pyra-
mid sensor in the baseline for many instruments on the ELTs.

On the ESO’s ELT, the pyramid sensor is planned in the Natural Guide Star (NGS) SCAO
modes on the three first light instruments MICADO,33 HARMONI,34,35 and METIS,36 in the
NGS XAO mode on the planet imager EPICS,37 and in the postfocal laser tomography adaptive
optics (LTAO) module ATLAS.38

On the GMT, the PWFS is assumed to be used in the NGS SCAO mode39 and as truth sensor
in the LTAO system.40 Here, the pyramid sensor will measure the wavefront errors coming from
both the atmospheric turbulence and telescope aberrations, including the differential segment
piston errors and NCPA.39,40

On the TMT, the PWFS is planned in the NGS SCAO mode19 and as truth sensor in multi-
conjugate AO (MCAO) mode on the first light AO system NFIRAOS,41 as well as in the XAO
mode for the Planet Formation Instrument.42

While currently PWFS are mainly applied or planned to be applied with NGS, theoretical
analysis, numerical simulations, and on-sky demonstrations of its behavior with Laser Guide
Stars or extended sources provided very promising results,19,43–47 indicating advantageous per-
formance compared to the SH-WFS also in these settings.46

On the ELTs under design, the primary mirrors are so large that they need to be segmented,
which poses the key challenge of cophasing the segments in order to produce a single optical
surface. Here is another very valuable feature of the pyramid sensor: its ability to sense
differential pistons of a segmented mirror, which has been successfully demonstrated in the
laboratory,48 supported by numerical simulations,49 and validated on sky under seeing-limited
conditions.39 Moreover, it was found that among the available wavefront sensor types, the PWFS
takes the most sensitive measurements of differential pistons on the segments.50

Apart from astronomical applications, the PWFS is also applied in adaptive loops in
ophthalmology51–55 and microscopy.56,57

Pyramid sensor is known to be a nonlinear device (see Proposition 1 in Sec. 4). The non-
linearity manifests itself, in particular, in the reduced sensor response under certain conditions
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compared to the theoretically predicted one, which is known to the pyramid community as the
optical gain of the sensor. It has been acknowledged that, while optical gain is not an issue for
sensing in the near-infrared (NIR) under nominal seeing conditions, it becomes very pro-
nounced when sensing at shorter wavelengths and for worse seeing conditions. And, irrespec-
tively of the sensing wavelength, the optical gain will influence the reconstruction quality
achievable in the presence of spiders, the LWE, or NCPA since they push the pyramid sensor
toward its nonlinear regime. Clearly, the ultimate performance of ELT instruments will cru-
cially depend on the possibilities to cope with the sensor nonlinearity in an appropriate and
reliable way.

One of the possibilities to overcome the challenge of sensor nonlinearity consists of the appli-
cation of nonlinear wavefront reconstruction algorithms described in Secs. 5.6 and 5.7. First
investigation steps in this direction have been taken and need to be intensified.

Other options that involve a recovery of the sensor’s optical gain followed by a correspond-
ing tuning of the available linear methods or solutions based on the usage of additional optical
components are described in Sec. 7.3.

3 Modeling Approaches

In this section, the existing approaches to modeling of the pyramid-type wavefront sensors data
are reviewed. The description of various modeling approaches is given in the historical context,
which shows the development of understanding of how the sensor works. This perspective also
provides an outlook on possible further directions for improvement in the forward modeling of
the pyramid-type sensors. We restrict our considerations to sensor data sx only. For sy data, the
expressions are symmetrical.

3.1 Geometrical Approach

The first mathematical description of the pyramid sensor signal (providing an explicit relation
between the wavefront and the sensor data) was derived in the geometrical optics framework for
the modulated sensor case. Let α denote a modulation parameter (also called angle, amplitude, or
radius in the literature)

EQ-TARGET;temp:intralink-;e009;116;355α ¼ bλ∕D; (9)

where b is a positive integer and λ is the sensing wavelength. In Refs. 7 and 58, it was shown that
the signal sx of the pyramid WFS modulated with angle α is proportional to the slope of the
incoming wavefront Φ as

EQ-TARGET;temp:intralink-;e010;116;294sx ¼
λ

απ2
dΦ
dx

: (10)

Later this model was acknowledged as approximate and valid for low-order sensors with
large modulations.7 Reference was added here.

3.2 Diffractive Transmission Mask Approach

A bit later, within the more accurate diffraction theory framework, analytical models for pyramid
sensor with linear7 and circular11 modulation paths were derived using the roof sensor approxi-
mation, which assumes independency of the sensor response in x and y directions. Moreover,
these analytical models used the so-called transmission mask approximation, which assumes the
pyramidal prism to be sufficiently well described as a transmission-only mask object.59 In this
case, the OTF of the pyramid is approximated as a sum of four independent amplitude-only
Fourier-domain filters:59–62

EQ-TARGET;temp:intralink-;e011;116;100OTFpyrðξ; ηÞ ¼
X1
m¼0

X1
n¼0

Tmnðξ; ηÞ; (11)
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where the filters Tmn are the two-dimensional (2-D) Heaviside functions

EQ-TARGET;temp:intralink-;e012;116;723Tmnðξ; ηÞ ¼ H2d½ð−1Þm · ξ; ð−1Þn · η� ¼
�
1; ð−1Þm · ξ > 0; ð−1Þn · η > 0.

0; otherwise:
(12)

As a result, four independent beams of light fall onto detector forming four intensity patterns
Imn, m; n ∈ f0;1g

EQ-TARGET;temp:intralink-;e013;116;650Iðx; yÞ ≈
X1
m¼0

X1
n¼0

Imnðx; yÞ; (13)

with

EQ-TARGET;temp:intralink-;e014;116;594Imnðx; yÞ ¼ ψmn
det ðx; yÞ · ψmn

det ðx; yÞ; (14)

EQ-TARGET;temp:intralink-;e015;116;549ψmn
det ðx; yÞ ¼

1

2π
½ψ aperð·; ·Þ � F−1fTmngð·; ·Þ�ðx; yÞ: (15)

As such, the transmission mask approach does not take interference effects between
the four intensity patterns on the detector into account. This assumption is valid if the four
subbeams leaving the pyramidal prism reach the detector quadrants far enough from
each other.

Together with the first diffraction models, the duality of the pyramid sensor response with
respect to the incoming wavefront was discovered in the FD.7 As shown in Fig. 3, for the modu-
lated pyramid sensor, its response to low frequencies in the wavefront is mathematically
described as a linear filter in the FD, which corresponds to slopes measurements in the spatial
domain. For higher frequencies, the sensor response is represented with a constant, which in the
spatial domain corresponds to measuring the Hilbert transform of the wavefront.

In parallel, the transmission mask model for the nonmodulated sensor with the pyramidal
prism was derived.60 Later, the transmission mask models for pyramid sensors for linear and
circular modulations were obtained.63 Recently, all the diffraction models in the transmission
mask approximations have been rederived and reproven in a more rigorous mathematical frame-
work using the distribution theory.64 Also, a generalized framework for mathematical modeling
of various kinds of Fourier-domain filtering sensors has been developed.5,6 Such a framework
provides a common environment and allows to modify, compare, and explore types of sensors,
such as, the flattened PWFS65,66 or generalized pyramid sensors with an arbitrary number of
facets.67–69

Fig. 3 FD filter functions representing the pyramid and Shack–Hartmann responses to the incom-
ing wavefronts of a given spatial frequency. Reproduced from Ref. 7. Here, Fc denotes the WFS
cut-off frequency determined by the subaperture size d .
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3.3 Diffractive Phase Mask Approach

A more exact modeling approach is to consider the pyramidal prism as a phase mask object.59 It
is easily done numerically, and the phase mask forward simulations of pyramid-type wavefront
sensors have been implemented in AO simulation tools, such as OCTOPUS,70 YAO,71

COMPASS,72 PASSATA,73 and OOMAO.74 However, the phase mask model is connected with
cumbersome analytical derivations when trying to compute an explicit analytical relation
between the sensor data and the incoming wavefront. A final analytical description of the
PWFS data in the phase mask model is yet to be developed.

Recently, other definitions of pyramid sensor signals have been explored. For instance, it was
suggested to use the four intensity patterns directly or other combinations of them.5,6,75–77 An
analytical comparison of the standard difference-like data definition [Eq. (7)] with the usage of
the four intensities directly showed that the former one provides an improved linearity with
respect to the incoming wavefront. Therefore, in usage with linear reconstruction algorithms,
the standard data definition is to be preferred. However, in case of pyramid imperfections, the
extension of the sensor data definition by introducing other combinations of the four intensities
was demonstrated to provide benefits for the reconstruction quality.

4 Approximate Transmission Mask Models

The modeling approaches reviewed (in the most general way) in Sec. 3 provide a number of
explicit mathematical relationships connecting the incoming wavefront Φ with the sensor data
sx, sy:

EQ-TARGET;temp:intralink-;e016;116;457½sx; sy� ¼ PiΦ; i ¼ 1;2; : : : ; (16)

with Pi being accurate or approximate operators representing the action of pyramid sensor on the
wavefront. The final aim of such forward modeling is to obtain a relationship

EQ-TARGET;temp:intralink-;e017;116;401½sx; sy� ¼ P̃Φ; (17)

such that the operator P̃ satisfies the following two contradictory conditions in an optimal way.
First, the forward operator P̃ has to be still involved enough in order to describe the sensor with
an adequate accuracy. And second, the explicit mathematical expression of P̃ has to be simple
enough in order to be able to invert it with a reasonable amount of computations needed. At the
current stage of research, diffractive transmission mask modeling approach (with additional sim-
plifications) results in forward models around the balance point, allowing for fast and accurate
wavefront reconstruction. Such forward models are the topic of this section. The models will be
formulated as Propositions, and the corresponding proofs can be found in the provided
references.

According to the diffractive model in the transmission mask approximation, the nonmodu-
lated PWFS measures a combination of one-dimensional (1-D) and 2-D finite Hilbert transforms
of nonlinear functions of the phase.63,78 For the modulated pyramid sensor, the full theoretical
model becomes even more complicated. A comprehensive description of the full as well as
approximate forward models of pyramid and roof sensors for all modulation scenarios can
be found in Refs. 63 and 78.

Clearly, such forward models are mathematically difficult to invert. The model-based recon-
struction methods often work with simplifications of the full pyramid sensor starting from a
transmission mask model instead of the phase mask model.

Often, the pyramid model is further simplified using the roof sensor approximation, i.e.,
excluding the cross terms in the full pyramid model. The roof sensor operator [Eq. (18)] can
be linearized and the linear model [Eq. (19)] can be further simplified resulting in a one-term
operator [Eq. (20)]. The latter, in its turn, can be simplified using the infinite size telescope
assumption resulting in a simple convolutive operator [Eq. (21)]. Although the simplifications
leading to the one-term approximate models are rather significant, numerical validation shows
that many of the reconstruction methods built on that idea still perform very accurate wavefront

Shatokhina, Hutterer, and Ramlau: Review on methods for wavefront reconstruction. . .

J. Astron. Telesc. Instrum. Syst. 010901-8 Jan–Mar 2020 • Vol. 6(1)



estimation, see Table 4 in Sec. 6. In the remainder of this section, we will focus on the sim-
plifying assumptions and the respective approximate models. The corresponding proofs can
be found in the dedicated Refs. 7, 11, 63, and 64.

4.1 Roof WFS Approximation

The theoretical model of the PWFS becomes simpler when instead of the four-sided pyramidal
prism one assumes two orthogonally placed two-sided roof prisms.7,11,79 Due to the physical
decoupling of the prisms and their orthogonal placement with respect to each other, the two
signal sets sx and sy are independent and contain information about the phase Φ only in x- and
only in y-direction correspondingly.

Proposition 1. Under the roof sensor assumption, the PWFS data sfn;l;cgx are approximated by

EQ-TARGET;temp:intralink-;e018;116;579sfn;l;cgx ðx; yÞ ≈ 1

π

Z þBðyÞ

−BðyÞ

sin½Φðx 0; yÞ −Φðx; yÞ�kfn;l;cgðx 0 − xÞ
ðx 0 − xÞ dx 0; (18)

where the functions kfn;l;cg are defined as knðxÞ ¼ 1, klðxÞ ¼ sinc½αλðxÞ�, kcðxÞ ¼ J0½αλðxÞ�.
Here, the superscripts fn; l; cg denote the cases of no modulation applied, linear and circular
modulation of amplitude α ¼ bλ

D with a positive integer b; f−BðyÞ;þBðyÞg denote the bounda-
ries of the pupil images for a fixed y, αλ ¼ 2πα

λ , and J0 denotes the zero-order Bessel function of
the first kind.

4.2 Closed-Loop Approximation

An additional assumption of small wavefront distortions Φ ≪ 1, as expected in closed-loop AO,
allows to linearize the models of the pyramid sensor measurements.

Proposition 2. Under the closed-loop assumptions, the linearized roof sensor data are approxi-
mated by7,11,63

EQ-TARGET;temp:intralink-;e019;116;365sfn;l;cgx ðx; yÞ ≈ 1

π

Z
BðyÞ

−BðyÞ

½Φðx 0; yÞ −Φðx; yÞ�kfn;l;cgðx 0 − xÞ
x 0 − x

dx 0: (19)

4.3 One-Term Model

The energy distribution between the two terms in Eq. (19) is unequal, which, in case of small
wavefront perturbations, allows one to focus on the component with most of the energy by ignor-
ing the second term.

Proposition 3. Under the roof sensor, finite telescope size, and small wavefront perturbations
(closed loop) assumptions, the PWFS data are approximated as7,63

EQ-TARGET;temp:intralink-;e020;116;209sfn;l;cgx ðx; yÞ ≈ 1

π

Z
BðyÞ

−BðyÞ

Φðx 0; yÞkfn;l;cgðx 0 − xÞ
x 0 − x

dx 0: (20)

4.4 Infinite Telescope Approximation

Assuming an infinite telescope size BðyÞ → ∞, one can simplify the forward model further. This
assumption is equivalent to extending the wavefront Φ with zeroes outside the pupil
ΩyðxÞ ¼ ½−BðyÞ; BðyÞ�. Since the telescope pupil is finite anyway, this step does not change
the model itself but allows one to use new inversion equations.
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Proposition 4. Under the roof sensor, closed loop, and infinite telescope size assumptions, the
PWFS data are approximated as7,11,63

EQ-TARGET;temp:intralink-;e021;116;712

sfn;l;cgx ðx; yÞ ≈ 1

π

Z þ∞

−∞

χΩy
ðx 0ÞΦðx 0; yÞkfn;l;cgðx 0 − xÞ

x 0 − x
dx 0

≈
�
Φð·; yÞ � k

fn;l;cgð·Þ
π ·

�
ðx; yÞ; (21)

where � denotes the convolution operator. Here, ð·Þ denotes the silent variable over which the
convolution is performed.

4.5 Subaperture Discretization

So far the continuous model of the sensor data was considered, neglecting the finite sampling of
the sensor. What is measured in practice are the averaged data values over the subapertures of

size d. Following the approach in Ref. 7, the sensor data sfn;l;cgx are considered as discrete func-
tion values estimated in the (discrete) middle points fx; yg of WFS subapertures.

The discrete sensor data sfn;l;cgx are obtained from the continuous data sfn;l;cgx in the following

two steps. First, the continuous data sfn;l;cgx are averaged over the subapertures, which is math-

ematically represented by a convolution of sfn;l;cgx with a characteristic function χ½−1∕2;1∕2�ðxÞ,
defined as

EQ-TARGET;temp:intralink-;e022;116;460χ½−1∕2;1∕2�ðxÞ ≔
�
1; x ∈ ½−1∕2;1∕2�;
0; otherwise:

(22)

That is,

EQ-TARGET;temp:intralink-;e023;116;408sfn;l;cgx ðxÞ ¼
�
sfn;l;cgx ð·Þ � 1

d
χ½−1∕2;1∕2�

�
·
d

��
ðxÞ: (23)

Here, ð·Þ denotes the silent variable over which the convolution is performed. Note that from
definition Eq. (22), it follows that

EQ-TARGET;temp:intralink-;e024;116;344

sfn;l;cgx ðxÞ ¼ 1

d

Z þ∞

−∞
sfn;l;cgx ðx 0Þχ½−1∕2;1∕2�

�
x − x 0

d

�
dx 0;

¼ 1

d

Z
xþd∕2

x−d∕2
sfn;l;cgx ðx 0Þdx 0: (24)

In the second step, from the averaged data values sfn;l;cgx ðxÞ given at continuous space var-

iable x a set of discrete values fŝfn;l;cgx g ¼ fsfn;l;cgx ðxÞg is picked in the middle points x of the
subapertures. Mathematically, this step is represented by an application of the so-called sampling

function Td to the averaged data sfn;l;cgx ðxÞ

EQ-TARGET;temp:intralink-;e025;116;217ŝfn;l;cgx ðxÞ ¼ hTdðxÞ; sfn;l;cgx ðxÞi: (25)

The sampling function Td, also known as the Dirac comb, from the mathematical point of
view is a distribution, or a generalized function, and is defined as an infinite sum of the shifted
delta distributions

EQ-TARGET;temp:intralink-;e026;116;146TdðxÞ ≔
Xþ∞

k¼−∞
δðx − kdÞ ¼ 1

d
T

�
x
d

�
: (26)

Therefore, by an application of TdðxÞ to the averaged data sfn;l;cgx ðxÞ, we pick a discrete set of
values of sfn;l;cgx ðxÞ in a discrete set of points fxg ¼ fxj xd ∈ Zg representing the middle points of
the sensor subapertures.

Shatokhina, Hutterer, and Ramlau: Review on methods for wavefront reconstruction. . .

J. Astron. Telesc. Instrum. Syst. 010901-10 Jan–Mar 2020 • Vol. 6(1)



4.6 Fourier-Domain Representation

Apart from the analytical models relating the incoming wavefronts with the registered sensor
data in the spatial domain, also the Fourier-domain models provide a relationship between the
spectra of the quantities are of interest. In this section, the Fourier-domain representations of the
pyramid sensor data are summarized for the case of the linearized one-term roof approxima-
tion [Eq. (20)].

Note that due to the finite sampling (i.e., subaperture discretization) of theWFS, the spectrum
of the measured sensor data contains only certain (discrete) frequencies ξ sampled in the interval
½−ξcut; ξcut� with a sampling size ξstep ≔ 1∕D, determined by the telescope diameter D. The cut-
off frequency ξcut is determined by the sensor subaperture size d as ξcut ¼ 1∕ð2dÞ. In the modu-
lated case, let the parameter ξmod > 0 be defined as ξmod ¼ α∕λ ¼ b∕D, where b is a positive
integer. The parameter ξmod defines the frequency at which the transition between the two
regimes (slope versus phase mode) of the pyramid-type sensor happens, see Sec. 3.2 and
Fig. 3 therein for more details.

4.6.1 Spectrum of continuous data
Proposition 5. For each of the modulation scenarios, the spectrum of the continuous sensor data
is given as a product of the wavefront spectrum with a corresponding filter function gfn;l;cgpyr

7,63

EQ-TARGET;temp:intralink-;e027;116;498ðFsfn;l;cgx ÞðξÞ ¼ ðFΦÞðξÞ · gfn;l;cgpyr ðξÞ; (27)

where the Fourier-domain filters gfn;l;cgpyr , corresponding to the sensor without modulation, with
linear and circular modulation of radius α, respectively, are given as

EQ-TARGET;temp:intralink-;e028;116;440gnpyrðξÞ ¼ i sgnðξÞ; ∀ ξ ∈ ½−ξcut; ξcut�; (28)

EQ-TARGET;temp:intralink-;e029;116;396glpyrðξÞ ¼
�
i sgnðξÞ; jξj > ξmod;
iξ∕ξmod; jξj ≤ ξmod;

(29)

EQ-TARGET;temp:intralink-;e030;116;360gcpyrðξÞ ¼
�
i sgnðξÞ; jξj > ξmod;
2i
π arcsinðξ∕ξmodÞ; jξj ≤ ξmod:

(30)

4.6.2 Spectrum of averaged continuous data
Proposition 6. For each of the modulation scenarios, the spectrum of the averaged continuous
sensor data sfn;l;cgx is given as the pointwise product7,63

EQ-TARGET;temp:intralink-;e031;116;275ðFsfn;l;cgx ÞðξÞ ¼ ðFΦÞðξÞ · hfn;l;cgpyr ðξÞ; (31)

of the wavefront spectrum, evaluated at a discrete set of frequencies ξ, with the corresponding
discrete filter function hfn;l;cgpyr given as

EQ-TARGET;temp:intralink-;e032;116;217hfn;l;cgpyr ðξÞ ¼ gfn;l;cgpyr ðξÞ · sincðdξÞ: (32)

4.6.3 Spectrum of discrete data
Proposition 7. For any modulation scenario, the spectrum of the discretized sensor data ŝfn;l;cgx is

a convolution of the spectrum of the averaged continuous sensor data sfn;l;cgx with the sampling
function7,63

EQ-TARGET;temp:intralink-;e033;116;107ðF ŝfn;l;cgx ÞðξÞ ¼ ½Fsfn;l;cgx ð·Þ � Tðd ·Þ�ðξÞ: (33)

From now on, we do not distinguish between modulation scenarios anymore.

Shatokhina, Hutterer, and Ramlau: Review on methods for wavefront reconstruction. . .

J. Astron. Telesc. Instrum. Syst. 010901-11 Jan–Mar 2020 • Vol. 6(1)



5 Wavefront Reconstruction Methods Using Pyramid Sensor Data

The problem of wavefront reconstruction from pyramid sensor data is mathematically described
by the WFS equation

EQ-TARGET;temp:intralink-;e034;116;692s ¼ PΦþ η; (34)

where P stands for pyramid sensor operator, Φ denotes the incoming (residual) wavefront, s
denotes the sensor data s ¼ ½sx; sy�, and η represents the noise on the measurements.

Since the invention of the pyramid sensor, a considerable amount of various approaches were
developed and implemented for wavefront reconstruction from its data.80 Among the earliest are
the interaction-matrix-based matrix vector multiplication (MVM) approaches.70,81–87 Later, the
development of fast model-based linear reconstructors60,63,78,79,88–96 began and experiments with
nonlinear algorithms, including applications of learning approaches, were reported.4,60,77,97,98

The algorithms reviewed in this section are split into several groups according to the common
underlying model they invert or the common idea they employ for the reconstruction. Before
describing the reconstruction methods, we start with one more feature that distinguishes various
reconstruction approaches—the way the wavefront control is handled.

5.1 Coupled and Decoupled Control

Generally speaking, two approaches to AO loop control are to be distinguished. The traditional—
coupled—approach combines wavefront reconstruction and DM fitting into one step. A typical
example of such coupling is a calibration of an AO system. Calibration consists of registering a
DM-to-WFS IM M, which contains the WFS responses to the input shapes created with a con-
trollable DM. The DM shapes used as input for the WFS can be modal (spread all over the pupil)
or zonal (localized). Examples of modal shapes are Zernike polynomials or Karuhnen–Loeve
modes. As zonal shapes, the DM influence functions (IF) are typically used, which represent the
DM shape when a single actuator is poked.

Lots of experience (both theoretical and practical) have been accumulated with the coupled
AO control approach, especially with the modal control basis. In spite of the evidence of suc-
cessful operation of the PWFS (both with and without modulation) with the coupled modal
control under a variety of atmospheric conditions and AO systems configurations, in certain
(rather typical, nonspecial) cases there have also been reported difficulties in closing the loop
with a nonmodulated sensor. Moreover, the modal control is associated with the necessity to
identify and correct on the fly the so-called modal optical gains.8,27,99–103 Furthermore, the modal
basis is not as well-suited for pupils with spiders as the zonal approach, which allows signifi-
cantly more degrees of freedom in the representation of wavefront.49,69,104–107

An alternative—decoupled—approach to AO loop control considers the two steps: wavefront
reconstruction and DM fitting, separately and independently. In this situation, wavefront recon-
struction can be based on a synthetic calibration (using a numerical implementation of the sen-
sor’s forward model) done independently from the shapes a DM can produce. This approach is
more general since for choosing a basis for wavefront representation in the reconstruction step
one is not restricted to use only the DM IFs or the shapes that a DM can represent. Instead, one is
free to choose any other basis, and to explore various bases with respect to their ability to re-
present the expected wavefronts in an optimal way. For instance, in the case of a segmented pupil
mask (as for the ELT), it is clear that a zonal basis, due to its localization, should be better than a
modal basis in representing the wavefront jumps between the pupil segments, as expected during
the telescope operation due to the island and the LWE (see Secs. 7.1 and 7.2).

Moreover, in the decoupled paradigm, wavefront reconstruction can be based on the ana-
lytical inversion of the forward mathematical model of the WFS. In this case, the reconstruction
algorithm produces the wavefront itself and does not require any basis to be used for wavefront
representation. In both cases (synthetic IM registration and analytical inversion), no knowledge
on either the DM IFs or actuator positions is needed or used for wavefront reconstruction.
Instead, one attempts to reconstruct in the most accurate way the incoming wavefront shape
from the available WFS data. Due to the decoupling of WFS and DM, the grid of reconstruction
points can be arbitrary, in particular can be suited to WFS geometry (which is not the case in the
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coupled approach with nonregular DM actuator grids). Therefore, the reconstruction can be opti-
mized toward the WF sensor and atmospheric characteristics.

5.2 Interaction-Matrix-Based Reconstructors

The interaction-matrix-based methods are the widely used standard reconstructors employed on
existing telescope facilities. An extensive overview on numerous variants of these approaches
can be found in Ref. 49. The algorithms are generally applicable to pyramid sensors with and
without modulation. Inverting the IM scales as Oðn3aÞ83 and the MVM step as Oðn2aÞ with the
number na of active actuators. The computational complexity is demanding and makes the appli-
cation of MVMmethods challenging for large-scale AO systems having, e.g., ∼40; 000 actuators
to control in real-time.

It is important to understand that there does not exist a single interaction-matrix-based recon-
structor. Instead, many instances of this general method are available, with big differences
between them. For instance, the interaction-matrix-based control can be implemented in a
coupled (DM is involved in WFS calibration) or decoupled paradigm, as already explained
in Sec. 5.1. Based on the chosen paradigm, the registration of the system IM can be done
in several ways: by physical calibration using the real devices, pseudosynthetic (relying on both
the devices and computations), or completely synthetic (relying on computations only). Another
related point is the choice of basis for wavefront representation and control. While in the coupled
paradigm, the two bases are typically not distinguished, one is restricted to use a basis that can be
fitted by a deformable mirror (DM). On the contrary, in the decoupled approach, one can choose
two different bases for wavefront representation and DM control. This allows much more free-
dom and gives an ability to explore different bases with respect to their ability to represent typical
wavefronts in an optimal way. Therefore, when talking about any interaction-matrix-based
reconstructor, it is very important to understand the specific details of this particular instance
of the method.

In the coupled paradigm, the idea of interaction-matrix-based algorithms is built on the sim-
ple DM-to-WFS matrix relation between discrete sensor data s and the sought-after mirror actua-
tor commands a (which are related to the unknown incoming wavefront Φ) given as

EQ-TARGET;temp:intralink-;e035;116;374s ¼ Ma: (35)

The wavefront reconstruction is coupled with the DM in the sense that for the generation of
an IM one creates a certain (zonal or modal) shape with the DM, which is then sensed by the
wavefront sensor. In this approach, one is restricted to wavefront shapes, which can be repre-
sented by the DM, i.e., are a linear combination of the DM IF

EQ-TARGET;temp:intralink-;e036;116;294Φðx; yÞ ¼
Xna
i¼1

aiIFiðx; yÞ; (36)

or the DM modes

EQ-TARGET;temp:intralink-;e037;116;233Φðx; yÞ ¼
Xnc
j¼1

cjhmj ðx; yÞ; (37)

with

EQ-TARGET;temp:intralink-;e038;116;171hmj ðx; yÞ ¼
Xna
l¼1

mj
l IFlðx; yÞ; (38)

with actuator commands ðmj
l Þ. This results in
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EQ-TARGET;temp:intralink-;e039;116;735Φðx; yÞ ¼
Xnc
j¼1

cjhmj ðx; yÞ ¼
Xnc
j¼1

cj
Xna
l¼1

mj
l IFlðx; yÞ: (39)

In the coupled approach, a DM-to-WFS IM relates the sensor measurements ~s directly with
the command vectors

EQ-TARGET;temp:intralink-;e040;116;669s ¼ PΦþ η ¼ P
�Xna

i¼1

aiIFi

�
þ η ¼

Xna
i¼1

aiPðIFiÞ þ η ¼ ∶MIF~aþ η; (40)

or

EQ-TARGET;temp:intralink-;e041;116;608s ¼ PΦþ η ¼ P
�Xnc

j¼1

cjhmj

�
þ η ¼

Xnc
j¼1

cjPðhmj Þ þ η ¼ ∶Mm~cþ η: (41)

After registration of the DM-to-WFS IMM, the next step in the coupled approach consists of
a computation of the control matrix (CM) C as a stable (possibly, regularized) inverse of the IM
M. Thus, any procedure for finding the generalized inverse M† of the IM M [e.g., least-squares
pseudoinverse, regularized least-squares pseudoinverse, or inversion using a truncated singular
value decomposition (SVD)] can be seen as an interaction-matrix-based wavefront reconstruc-
tion approach. An overview on various existing approaches to the inversion of M is provided in
Ref. 49. One of the typical ways to invert the IM is to use the truncated singular value decom-
position ofM. This method allows to stabilize the inversion by rejecting the (high-order) modes
most susceptible to noise, i.e., having the smallest singular values.

Application of the CM to the sensor data provides in this case directly the DM commands to
be applied in the prechosen basis (modes or actuators).

In the decoupled paradigm, a synthetic noise-free computation of a WF-to-WFS IM Ms is
performed. At this step, one is free to choose for wavefront representation any suitable basis ðhjÞ,
j ¼ 1; : : : ; na

EQ-TARGET;temp:intralink-;e042;116;387Φðx; yÞ ¼
Xna
j¼1

djhjðx; yÞ: (42)

Here, two points can be taken into account. First, it is reasonable to make sure that the chosen
basis allows to (easily) incorporate the characteristics of the atmosphere for regularization when
inverting the WFS-to-WF IM. Second, one has to guarantee that reconstruction will be stable,
i.e., the condition number of the according IM has a reasonable value. An example of a good
basis is a set of bilinear functions on a regular grid of discretization points (can be viewed “arti-
ficial” actuators).49 The coefficients dj are in this case simply pointwise evaluations of the wave-
front Φ on the chosen discretization grid.

With the basis ðhjÞ, j ¼ 1; : : : ; na being chosen, the synthetic calibration can be performed

EQ-TARGET;temp:intralink-;e043;116;238s ¼ PΦ ¼ P
�Xnd

j¼1

djhj

�
¼

Xna
j¼1

djPðhjÞ ¼ ∶Ms~d: (43)

Then one computes a WFS-to-WF CM Cs by computing an (regularized) inverse ofMs. As a
next step, one reconstructs the vector of wavefront coefficients d as

EQ-TARGET;temp:intralink-;e044;116;163d ¼ Css: (44)

Next, having an accurate wavefront reconstruction on the chosen grid, one solves the DM
fitting problem
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EQ-TARGET;temp:intralink-;e045;116;735

Xna
i¼1

aiIFiðx; yÞ ¼
Xna
j¼1

djhjðx; yÞ: (45)

In this step, the actual DM actuator grid can be taken into account as well as a different basis
(any of the available modal or zonal options) for the DM control can be chosen. In a practical
implementation, the step can be easily combined with the WFR step, in order to save the total
amount of computations.

5.3 Fourier-Analysis-Based Methods

Now we consider the algorithms based on Fourier-domain analysis of the pyramid sensor data
presented in Sec. 4.6. These are the preprocessed cumulative reconstructor with domain decom-
position (P-CuReD), the convolution with the linearized inverse filter (CLIF), and several ver-
sions of the Fourier transform reconstructor (FTR).

5.3.1 Preprocessed cumulative reconstructor with domain decomposition

The P-CuReD63,94,108 is a two-step approach consisting of a data-preprocessing part and the
application of the CuReD,109–112 originally developed for Shack–Hartmann sensors. The method
is applicable to pyramid sensors with and without modulation.

The first step, the data preprocessing, is based on an analytical FD relation between linear-
ized pyramid sensor data spyr (see Propositions 5–7) and Shack–Hartmann sensor data.
Approximating the pyramid sensor with the simpler one-term infinite size telescope roof sensor
model (see Propositions 2–4), this FD relation to SH measurements ssh is given as

EQ-TARGET;temp:intralink-;e046;116;438FfsshgðξÞ ¼ FfspyrgðξÞ · gsh∕pyrðξÞ: (46)

For the spatial frequency ξ, we consider the interval ½−ξcut; ξcut� with cut-off frequency ξcut ¼
1∕ð2dÞ for the subaperture size d. Since for the roof sensor, the measurements are decoupled for
x- and y-directions all these considerations can be made in 1d. The pyramid-to-SH transmission
filter gsh∕pyr is formulated as

EQ-TARGET;temp:intralink-;e047;116;356gsh∕pyrðξÞ ≔
FfsshgðξÞ
FfspyrgðξÞ

: (47)

As derived in Refs. 7 and 94, for the nonmodulated sensor, the transmission filter is repre-
sented as

EQ-TARGET;temp:intralink-;e048;116;290gnsh∕pyrðξÞ ¼ 2πdξ sgnðξÞ ∀ ξ ∈ ½−ξcut; ξcut�; (48)

for the circularly modulated sensor as

EQ-TARGET;temp:intralink-;e049;116;249 gcsh∕pyrðξÞ ¼
�
2πdξ sgnðξÞ; jξj > ξmod;

π2dξ
arcsinðξ∕ξmodÞ ; jξj ≤ ξmod;

(49)

and for the linearly modulated sensor as

EQ-TARGET;temp:intralink-;e050;116;193 glsh∕pyrðξÞ ¼
�
2πdξ sgnðξÞ; jξj > ξmod;
2πdξmod; jξj ≤ ξmod:

(50)

Converting the transmission filters into space-domain kernels by the application of the
IFT, i.e.,

EQ-TARGET;temp:intralink-;e051;116;123psh∕pyrðxÞ ¼ F−1fgsh∕pyrgðxÞ; (51)

and choosing a suited discretization approach one ends up with a representation of the kernels
having only few nonzero values. Thus, the data preprocessing, which is approximated as
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a row- and columnwise convolution of the measurements with the corresponding kernel, is com-
putationally cheap.

After the pyramid sensor measurements are transformed into SH-like data, the CuReD algo-
rithm is applied to the modified pyramid signal. Previously, the high-quality and high-speed
performance of the CuReD for SH sensors were demonstrated in numerous closed-loop end-
to-end simulations as well as on-sky tests.113,114

The two steps together provide an accurate wavefront reconstruction method with a linear
complexity of OðnaÞ. The P-CuReD is (to our knowledge) the fastest reconstruction method
available for pyramid sensors and gives quality results, which are comparable to or even better
than those obtained by interaction-matrix-based approaches.67,115

In the case of segmented pupils, the P-CuReD algorithm combined with a direct segment
piston reconstructor (DSPR)49,116 demonstrates excellent performance with almost no loss in
quality compared to the nonsegmented case.

5.3.2 Fourier transform reconstructor with Shack–Hartmann filter

The first approach to wavefront reconstruction from the pyramid sensor data by means of a
Fourier filtering88 consisted of the application of the algorithm originally developed for SH
sensors.117 The method assumed the pyramid sensor forward model [Eq. (10)] derived within
the geometrical optics framework, which is valid for large modulation amplitudes. Therefore, in
order to provide a reasonable reconstruction quality, the algorithm requires a large amount of
modulation being applied to the PWFS, which makes its response function linear and the sensor
itself very similar to the SH sensor. In order to guarantee a spatial periodicity, the pyramid sensor
signal has to be appropriately extended outside the pupil mask. The extended data are Fourier
transformed, and an inverse filter relevant for SH sensors is applied. The final DM commands are
obtained by taking the IFT of the filtered data spectrum.

The FTR has a computational complexity ofOðna log naÞ if the fast Fourier transform (FFT)
is used. A close correlation between SH and pyramid data is only valid for low-order WFSs in
case of a large amount of modulation being applied. Therefore, for high-order systems, the FTR
with the SH filter is outperformed by other methods.

5.3.3 Convolution with the linearized inverse filter

The CLIF63,91,92 is a spatial-domain algorithm based on the FD analysis of the PWFS data given
in Propositions 5–7. The CLIF method is applicable to the pyramid sensor with and without
modulation. Similarly to the P-CuReD, the algorithm assumes as forward model the linearized
one-term roof approximation [Eq. (20)] of the pyramid sensor. The idea of the algorithm is the
application of the inverse FD filter functions.

Let us recall that ~s indicates the discrete pyramid sensor data and ξ denotes a discrete set of
frequencies. According to the descriptions in Refs. 7 and 92, the discrete spectrum Ffŝxg of the
pyramid data ~sx evaluated at frequency ~ξ is a pointwise product of the wavefront spectrumFfΦg
with a filter h, i.e.,

EQ-TARGET;temp:intralink-;e052;116;226Ffs̃xgðξÞ ¼ FfΦgðξÞ · hðξÞ: (52)

The discrete filter h is given as

EQ-TARGET;temp:intralink-;e053;116;183hðξ̃Þ ¼ gpyrðξ̃Þ · sincðdξ̃Þ; (53)

for the pyramid filter functions gpyr introduced above.
In the CLIF method, the wavefront is reconstructed in the spatial domain by the convolution

with the kernel

EQ-TARGET;temp:intralink-;e054;116;115Φðx̃Þ ¼ ðs̃x � F−1fh−1gÞðx̃Þ: (54)

Since for the roof sensor approximation data in x-direction are independent from y-direction
and vice versa, the considered convolutions and Fourier transforms are in 1d. Data in both
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directions are handled separately, and the two obtained reconstructions are averaged afterward.
The CLIF method has a complexity of Oðn3∕2a Þ.

5.3.4 Fourier transform reconstructor with pyramid filter

In a next step, two versions of FTR with dedicated pyramid filters were developed in
parallel.91,92,118,119 Both of them are using the same idea and work with the correlation between
the spectra of the discrete pyramid sensor data and the incoming wavefront but have different
implementations. In Ref. 118, a first application of the FTR with an approximate pyramid FD
filter was presented for a low-order PWFS. The roof senor approximation and the linearized
operator were assumed there.

In parallel, in Refs. 91 and 92, a direct FD analog of the CLIF method was introduced, named
the pyramid Fourier transform reconstructor (PFTR). The reconstruction is performed in the FD
by the multiplication of the discrete pyramid sensor spectrum with the linearized roof inverse
filter h−1 (see Proposition 6)

EQ-TARGET;temp:intralink-;e055;116;554FfΦgðξ̃Þ ¼ Ffs̃xgðξ̃Þ · h−1ðξ̃Þ; (55)

and a subsequent IFT. In contrast to the CLIF, the computational complexity scales as
Oðna log naÞ if the FFT is used.

Finally, Ref. 119 introduces an iterative sensor data extension providing smoother recon-
struction on the pupil boundaries and presents first laboratory demonstrations of the FTR.

5.4 Hilbert Transform Methods

Now, we focus on algorithms that reconstruct the unknown wavefront Φ from sensor data sx
approximated by its Hilbert transform HΦ, H∶L2ðRÞ → L2ðRÞ, given as

EQ-TARGET;temp:intralink-;e056;116;413ðHΦÞðx; yÞ ≔ 1

π
p:v:

Z
R

Φðx 0; yÞ
x 0 − x

dx 0: (56)

Reconstructors based on the inversion of the Hilbert transform are generally only applicable
to a pyramid sensor without modulation. If we assume an infinite telescope size (see
Proposition 4), the nonmodulated pyramid sensor measurements can be approximated by the
Hilbert transform operator applied to the incoming phase written as

EQ-TARGET;temp:intralink-;e057;116;320sx ¼ HΦ: (57)

Thus, any attempts of inverting the Hilbert transform H can be utilized for reconstructing the
wavefront Φ from nonmodulated pyramid sensor data sx.

5.4.1 Hilbert transform reconstructor

The inverse of the Hilbert transform is given by its negative, i.e.,H−1 ¼ −H. The inversion itself
is based on the simple FD representation of the Hilbert transform given as

EQ-TARGET;temp:intralink-;e058;116;202FfHΦgðξÞ ¼ −i sgnðξÞFfΦgðξÞ: (58)

In the Hilbert transform reconstructor (HTR) algorithm, the inversion of the Hilbert transform
is performed in the FD as a multiplication of the phase spectrum FfΦgðξÞ with the correspond-
ing filter function i sgnðξÞ. The reconstructed phase spectrum is afterward converted to the spa-
tial domain by the application of a 1-D IFT. Using the FFT algorithm, the mentioned
reconstruction method has a computational complexity that scales as Oðna log naÞ.

The idea was first proposed in Ref. 79. Later, an adaption of the algorithm named the Hilbert
transform with mean restoration (HTMR) was introduced.93,95 It was observed that, when using
the HTR algorithm, the mean values of each row for reconstructions in x-direction and of each
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column for reconstructions in y-direction are zero, and therefore the continuity of the wavefronts
gets lost. The idea in the HTMR algorithm is to restore the mean values.

Compared to interaction-matrix-based results in closed-loop simulations for an XAO setting
on the ESO’s ELT, these approaches give a reduced quality. One reason may be that the aperture
mask has a strong influence on the sensor data. Hence, the assumption of an infinite telescope
size possibly violates the reconstruction performance for annular telescope pupils.

5.4.2 Two component reconstructor

Approximating the pyramid sensor by a linearized roof sensor [or, more precisely the one-term
assumption of it as in Eq. (20)] and considering the modulated filter functions [Eq. (28)], one
sees that the spectrum of the sensor data consists of two different components: the high-fre-
quency part, which is constant and given by i sgnðξÞ and the low-frequency part (almost) linear
in ξ. While the high spatial frequencies of the wavefront are represented in the pyramid sensor
data through the Hilbert transform, the low-frequency component is represented in the same way
as for the SH sensor, i.e., the signals are essentially the gradients of the incoming phases.

The idea of the two component reconstructor (TCR)96 is to consider these two parts sepa-

rately. For that reason, the sensor data sx are split into a high-frequency component shighx and a
low-frequency component slowx with respect to the threshold frequency ξmod. The high-frequency
part is reconstructed using the HTMR algorithm, and the low frequencies are estimated by the
application of the CuRe,109,110 a predecessor of the CuReD111 for SH sensors. Both reconstruc-
tions are then summed up to one final solution using two different gains, which are individually
adapted to both regimes.

The TCR has a computational complexity of Oðna log naÞ. After tests for an 8-m telescope
having 40 × 40 subapertures carried out in OCTOPUS, the development of the algorithm was not
continued in favor of more promising approaches.

5.4.3 Finite Hilbert transform reconstructor

Another wavefront reconstruction method for nonmodulated pyramid sensors is the finite Hilbert
transform reconstructor (FHTR).63 According to Proposition 3 in Sec. 4, the pyramid operator is
approximated by the finite Hilbert transform T∶L2f½−BðyÞ; BðyÞ�g → L2f½−BðyÞ; BðyÞ�g,
which is given as

EQ-TARGET;temp:intralink-;e059;116;335ðTΦÞðxÞ ≔ 1

π
p:v:

Z
BðyÞ

−BðyÞ

Φðx 0Þ
x 0 − x

dx 0; (59)

for a real valued interval ½−BðyÞ; BðyÞ�. In contrast to the HTR and HTMR, the algorithm now
takes finite telescope apertures into account.

In the FHTR approach, the wavefronts are reconstructed by applying the inverse T−1 of the
finite Hilbert transform operator T to the data. One can either utilize the linearized pyramid
sensor model

EQ-TARGET;temp:intralink-;e060;116;228sxðx; yÞ ¼ ðTΦÞðx; yÞ −Φðx; yÞðT1Þðx; yÞ; 1ðxÞ ¼ 1 ∀ x; (60)

where the function 1 represents the constant function being equal to 1 and reconstruct iteratively as

EQ-TARGET;temp:intralink-;e061;116;185Φkþ1ðx; yÞ ¼ T−1½sx þΦk · ðT1Þ�ðx; yÞ; (61)

or simplify the pyramid sensor measurements further as

EQ-TARGET;temp:intralink-;e062;116;142sxðx; yÞ ¼ ðTΦÞðx; yÞ; (62)

and reconstruct just as
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EQ-TARGET;temp:intralink-;e063;116;735Φðx; yÞ ¼ ðT−1sÞðx; yÞ: (63)

In contrast to the classical Hilbert transform H with inverse H−1 ¼ −H, the inversion of the
finite Hilbert transform is not straightforward. However, the inversion of the finite Hilbert trans-
form is nowadays a well-studied problem with many different implementations of the equations,
depending on the boundedness of the involved functions on the boundaries of the considered
area of interest, e.g., those found in Refs. 120–122.

For the FHTR, the telescope aperture is mapped onto the interval ½−1;1�2, and the algorithm
uses the inverse introduced in Ref. 121 as

EQ-TARGET;temp:intralink-;e064;116;627ðT−1sxÞðx; yÞ ¼ −
1

π

Z
1

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

1 − x 02

s
sxðx 0; yÞ
x 0 − x

dx 0; (64)

for the operator in x-direction and a fixed y ∈ ½−1;1�, which results in a 1d-problem. The inte-
grals are understood in the p:v. (principal value) meaning in order to have well-defined operators
on L2.

With the computational complexity of Oðn3∕2a Þ, the algorithm takes an intermediate position
among the reviewed methods with respect to speed. Numerical closed-loop AO simulations in
OCTOPUS showed that the reconstruction performance of the FHTR is rather limited compared
to MVM or P-CuReD results.

5.4.4 Singular value type reconstructor

Another reconstruction idea for nonmodulated pyramid sensors with a complexity of Oðn3∕2a Þ is
comparable to the FHTR. Instead of the direct inversion equation of the finite Hilbert transform,
a different procedure for the inversion is employed. The approach uses the SVD of the finite
Hilbert transform operator T. Due to the noncompactness of the involved operator, the classical
theory for an SVD does not hold but the inversion procedure based on the decomposition is still
applicable. In order to point to this fact, the method is called singular value type reconstructor
(SVTR).89

As before, the pyramid data without modulation are represented by the finite Hilbert trans-
form of the incoming phase as in Eq. (62). Recall that in the FHTR approach the reconstruction is
obtained as

EQ-TARGET;temp:intralink-;e065;116;334Φðx; yÞ ¼ ðT−1sxÞðx; yÞ; (65)

where T−1 denotes the direct inversion equation of the finite Hilbert transform. For this algo-
rithm, the direct inversion equation is substituted and the Moore–Penrose inverse is expressed as
a singular value type expansion in a weighted Lebesgue space Lω

2 ð½−1;1�Þ. Utilizing its SVD
ðσk; fk; gkÞk≥0 with singular values ðσkÞk≥0 and singular functions ðfkÞk≥0 and ðgkÞk≥0, the wave-
front sensor operator is decomposed into

EQ-TARGET;temp:intralink-;e066;116;241Tfk ¼ σkgk; ∀ k ≥ 0: (66)

Based on the theory of analytical inversion using the SVD of an operator (e.g., Ref. 123), the
incoming wavefront is reconstructed using data in x-direction as

EQ-TARGET;temp:intralink-;e067;116;185Φðx; yÞ ¼
X∞
k¼0

1

σk
hsxð·; yÞ; gkiωfkðxÞ; (67)

where h·; ·iω indicates the inner product in the space Lω
2 ð½−1;1�Þ. Data in y-direction are handled

respectively. After detailed studies of the operator, it was found that the singular values in that
specific Lω

2 ð½−1;1�Þ-setting are all equal to 1 and the singular functions ðfkÞk≥0 and ðgkÞk≥0 are
weighted Chebychev polynomials on the interval ½−1;1�. In contrast to matrix-based SVD inver-
sion, this approach is completely matrix-free since the SVD of the simplified pyramid sensor
operator is calculated analytically.
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A numerical analysis of the SVTR showed that the method slightly outperforms the FHTR
but its quality performance does not reach that obtained of, e.g., the P-CuReD or CLIF. In addi-
tion, it was experienced that this method is better suited for smaller subaperture sizes as, for
instance, those in XAO systems.

5.5 Linear iterative methods

Several iterative reconstructors, both in the deterministic and Bayesian framework, have been
applied to the problem of wavefront reconstruction from pyramid sensor data.

5.5.1 Deterministic methods

The common idea of these reconstruction methods is the application of iterative algorithms,
which are well known in the mathematical community related to inverse problems. In order
to reconstruct the incoming wavefront from pyramid sensor data, the following algorithms have
been used:

• steepest descent (SD),78,90

• steepest descent-Kaczmarz algorithm (SD-K),78,90

• conjugate gradient for the normal equation (CGNE),63,78,90

• linear Landweber iteration for pyramid sensors (LIPS),78,90

• linear Kaczmarz–Landweber iteration for pyramid sensors (KLIPS).78,90

Although the methods are iterative, the real-time computational complexity is reduced due to
the possibility of precomputing the most time-consuming parts having the knowledge on the
system parameters. All proposed algorithms scale as Oðn3∕2a Þ and are applicable to pyramid
sensors with and without modulation.

Several of the algorithms mentioned in Sec. 4 reconstruct two versions of the wavefront, one
in x-direction and another one in y-direction. These are averaged in order to obtain one final
reconstructed wavefront. Kaczmarz versions of the algorithms allow to connect the reconstruc-
tion in x- and y-directions. Here, the two data sets are used cyclically. As a consequence, on the
one hand computation time is saved, and on the other hand higher reconstruction performance is
expected.

The basic [Eq. (62)] for the iterative approaches is identical to that used in the reconstructors
based on the finite Hilbert transform inversion, i.e.,

EQ-TARGET;temp:intralink-;e068;116;311sxðx; yÞ ¼ ðTΦÞðx; yÞ: (68)

CGNE is based on the normal equation

EQ-TARGET;temp:intralink-;e069;116;271T�TΦ ¼ T�sx; (69)

which constitutes a self-adjoint and positive definite problem for the operator T�T with T�

denoting the adjoint operator. It is known that the CG-iterates converge to a solution of the
considered inverse problem, utilizing the fewest number of iterations. In general, for wavefront
reconstruction from pyramid sensor data, a rather fast convergence was experienced when using
iterative methods. Together with a warm restart technique, less than six iterations were necessary
for all proposed algorithms in the setting tested in Ref. 90. Utilizing more iterates still improves
the reconstruction quality, but since further iterates provide only slight quality improvements, the
cost-and-quality balance indicates the optimal number of iterations. The warm restart in these
methods means that as initial value for the current iteration the reconstruction of the last time step
is chosen, which yields an accelerated convergence.

For the SD method applied to pyramid sensors, the least-squares functional

EQ-TARGET;temp:intralink-;e070;116;112JðΦÞ ¼ kTΦ − sxk2L2
→ min; (70)

is minimized by starting at an initial guess Φ0 and searching the minimum in direction of the
negative gradient of the functional JðΦÞ [Eq. (70)]. Hence, the iterative process is written as
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EQ-TARGET;temp:intralink-;e071;116;735Φiþ1 ¼ Φi þ τidi; (71)

EQ-TARGET;temp:intralink-;e072;116;701di ¼ −J 0ðΦiÞ; (72)

for i ∈ N0 and a properly chosen step size τi, e.g., the classical SD step size, the minimal gradient
step size, or several variants of the step sizes introduced by Barzilai and Borwein.124–127

Choosing a fixed step size τi ¼ β in the SD approach reduces to the standard LIPS. The
normal Eq. (69) is transformed into the equivalent fixed point equation

EQ-TARGET;temp:intralink-;e073;116;643Φ ¼ Φþ T�ðsx − TΦÞ; (73)

which results in the iteration123,128

EQ-TARGET;temp:intralink-;e074;116;600Φiþ1 ¼ Φi þ βT�ðsx − TΦiÞ; i ∈ N0: (74)

For the relaxation parameter β chosen according to 0 < β < kTk−2, the iterates converge to a
solution of Eq. (62).

If data in x- and in y-directions are not considered independently but cyclically in the iteration
process, the Landweber algorithm [Eq. (74)] translates to

EQ-TARGET;temp:intralink-;e075;116;528Φi;1 ¼ Φi;0 þ β1T�
xðsx − TxΦi;0Þ; (75)

EQ-TARGET;temp:intralink-;e076;116;484Φi;2 ¼ Φi;1 þ β2T�
yðsy − TyΦi;1Þ; (76)

EQ-TARGET;temp:intralink-;e077;116;462Φiþ1;0 ¼ Φi;2; (77)

and coincides with the KLIPS. Here, Tx and Ty indicate the corresponding operators in x- and y-
directions. The SD-K for pyramid sensors shares the same idea as the KLIPS. Here, we apply SD
in x-direction for even time steps and SD in y-direction for odd time steps, resulting in a reduced
computational load.

Note that for noisy data, the problem is regularized by the number of iterations applied in the
methods presented above.

Among the investigated iterative methods, the CGNE is prominent for pyramid sensors due
to the low number of iterations the algorithm requires and the KLIPS because of its slightly
higher quality performance. All algorithms provide similar reconstruction quality that is slightly
under the quality achieved with, e.g., the P-CuReD. Especially for the nonmodulated sensor, the
iterative methods yield highly precise estimations of the reconstructed wavefront.

5.5.2 Finite element-wavelet hybrid algorithm for pyramid sensor

Recently an application of the finite element-wavelet hybrid algorithm (FEWHA)129–131 to pyra-
mid sensor data has been reported.116 FEWHA is a wavelet-based iterative method for wavefront
reconstruction and atmospheric tomography. The method relies on pseudo-open loop control,
which allows one to use atmospheric statistics as a regularization. The algorithm calculates the
Bayesian maximum a posterior (MAP) estimate

EQ-TARGET;temp:intralink-;e078;116;221ΦMAP ¼ arg min
Φ

kC−1∕2
Φ Φk2 þ kC−1∕2

η ðs − PΦÞk2; (78)

using a preconditioned conjugate gradient method that is coupled with a multiscale strategy.
Here, CΦ and Cη denote the prior wavefront and noise covariance matrices, and P denotes the
forward wavefront sensor operator in case of SCAO. Note that the FEWHA is applicable for
MCAO systems, in which case P denotes the tomography operator. For the discretization of the
turbulent layers, the method utilizes a finite element and a wavelet basis simultaneously.

Originally, FEWHAwas designed for gradient data provided by the Shack–Hartmann sensor.
Therefore, an adaption is needed when the method is applied to pyramid sensor data. To dis-
tinguish from the SH-WFS case, we named the method P-FEWHAwhen it is applied to PWFS
data. The first approach was to apply the data preprocessing from the P-CuReD algorithm,
i.e., the pyramid sensor data are transformed into Shack–Hartmann-like data.63,94,108 In this
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version, the overall complexity of the P-FEWHA scales linearly as OðnÞ with the number of
unknowns.

Another version of the P-FEWHA has also been recently formulated for the linearized one-
term roof forward model [Eq. (20)]. The complexity of this approach scales as Oðn3∕2Þ.

5.6 Nonlinear Iterative Methods

In principle, the relation between the incoming wavefront and the pyramid sensor signal is non-
linear. In this section, we consider nonlinear reconstruction approaches.

5.6.1 Landweber method

Due to the nonlinear relation between the wavefront and the sensor data (see Proposition 1 in
Sec. 4), the application of the nonlinear Landweber process or the nonlinear Landweber–
Kaczmarz process is suggested, which results in the nonlinear versions of the LIPS and
KLIPS.98

As a simplification of the pyramid sensor model, the algorithms are concentrated on the
nonlinear roof sensor operator equation

EQ-TARGET;temp:intralink-;e079;116;517sx ¼ RðΦÞ; (79)

where R represents the nonlinear roof sensor. Similarly to the linear LIPS [Eq. (74)], but now in
a nonlinear setting, the iteration procedure is given as

EQ-TARGET;temp:intralink-;e080;116;462Φiþ1 ¼ Φi þ R 0ðΦiÞ�½sx − RðΦiÞ�; i ∈ N0: (80)

The term R 0ðΦiÞ� represents the adjoint of the Fréchet derivative at Φi. The concept of the
nonlinear KLIPS is analogous to that one of linear KLIPS, i.e., applying the nonliner Landweber
process cyclically to data in x- and y-directions.

As for their linear versions, rather accelerated convergence is experienced for closed-loop AO
with PWFSs using the nonlinear iterative methods. The idea of the nonlinear algorithms is appli-
cable to both wavefront sensor types with and without modulation. The computational load
scales as Oðn3∕2a Þ. Concerning the quality performance of the algorithms, differences between
the nonmodulated and modulated sensor were observed. For the nonmodulated sensor, which is
known to suffer from higher nonlinearity influences, the algorithms provide accurate wavefront
estimation outperforming their linear versions and almost all other wavefront reconstruction
methods for nonmodulated pyramid sensors, or at least reach comparable quality. The situation
is different for the modulated sensor. Closed-loop simulations with a pyramid sensor of modu-
lation 4 λ∕D show that the linear LIPS and KLIPS outmatch their nonlinear alternatives.
Furthermore, there exist several reconstruction approaches as, e.g., the P-CuReD or interac-
tion-matrix-based methods that give even more precise wavefront estimates. Therefore, the usage
of the nonlinear algorithms is suggested for the nonmodulated sensor and linear methods for the
application to modulated pyramid sensor data in closed-loop AO at least as long as no perturbing
effects as, for instance, NCPA are present.

Note that the above conclusions were drawn based on the simulations with sensing performed
in the K-band, where residual wavefronts are small enough so that the pyramid sensor is close to
the linear regime. The results comparing linear and nonlinear versions of the algorithms may be
different for sensing at shorter wavelengths. It is well known that in this case the uncompensated
residuals are much larger and make the sensor work far away from its linear regime.

5.6.2 Phase retrieval algorithm

Phase retrieval algorithms in their general form are iterative FDmethods for finding the unknown
phase, which satisfies a set of constraints for a measured amplitude, from a given complex signal.
In Ref. 4, phase retrieval is performed in the context of AO and aims at reconstructing the incom-
ing wavefront Φ from intensity measurements provided by a flat pyramid-like sensor type.
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The authors adapted two well-known algorithms, namely the Gerchberg–Saxton132 and the error-
reduction method,133 to be used in conjunction with a lenslet array placed at the focal plane,
which constitutes such a sensor. In the paper, the Gerchberg–Saxton algorithm outperforms the
error-reduction approach. The twin-image ambiguity problem represented with a lenslet array in
the pupil plane, in contrary to SH sensors, can be avoided. The phase retrieval is performed in
three Fourier planes and any confusion between an object and its complex conjugate can be
removed because of the subdivision at the focal plane. The authors proposed two different
choices for the starting value of the algorithm, either a zero phase or the reconstruction obtained
from a linear interaction-matrix-based approach. The second idea obviously brings higher recon-
struction performance. This means that an additive MVM step is executed, which supplementary
increases the computational load of ∼200 expensive phase retrieval iterates.

As reported in Ref. 4 in simulations on a circular pupil, the phase retrieval approaches yield
better reconstruction quality than an interaction-matrix-based MAP reconstructor at costs of
the computational complexity highly outnumbering even that of the MVM. The latter consti-
tutes the major drawback of these algorithms making them unfeasible for large AO systems
on ELTs.

5.6.3 Jacobian reconstruction

A nonlinear wavefront reconstruction algorithm named Jacobian reconstruction (JR) method
based on the full transmission mask model of the nonmodulated pyramid sensor has been pre-
sented in Ref. 60. The idea is related to an iterative approach utilizing the analytical model of the
sensor and Newton’s method for reconstruction.

If only one Newton iteration is applied, the procedure is linear, having a computational com-
plexity comparable to that of conventional MVM algorithms given by Oðn2aÞ. In the nonlinear
approach, one has to apply more Newton iterations, which dramatically increase the amount of
computations. The Jacobian matrices need to be recomputed at each step. The computational
requirements of the Jacobian matrix calculations increase to the fourth power of the Jacobian
resolution size, where the Jacobian resolution is at least as big as the size of the wavefront sensor
measurement grid in one direction. This results in 50 to 1000 times slower reconstruction speed
depending on the incorporated solver methods compared to, e.g., the linear approach.

The pyramid sensor model used for deriving this wavefront reconstruction method as well as
the numerical simulations does not take interference effects among the four images on the detec-
tor into account. Simulation results are obtained for an 8-m telescope having a nonmodulated
pyramid sensor with 40 × 40 subapertures. It is reported in Ref. 60 that in a closed-loop sim-
ulation the conventional MVM using Karhunen–Loève modes gives comparable results or is
slightly outperformed by the JR method with one iteration, i.e., its linear version, and that the
gain in performance when using additional Jacobi iterations was negligible. While correctly
calibrated linear interaction-matrix-based algorithms are powerful strategies for reconstructions
if a sensor is fully or almost linear, the JR method was experienced to be most useful at the
nonlinear regime of the pyramid sensor. In high turbulence, the AO performance of a conven-
tional calibrated MVM method is improved using a synthetic Jacobian-based reconstruction
matrix. According to Ref. 60, the JR method mainly reduces the residual energy at low spatial
frequencies, which is of particular importance for exoplanet detection. In addition, it was found
that the roof sensor is more linear than the pyramid, i.e., most of the nonlinearity properties are
present in the cross terms of the pyramid sensor model.

Note that this approach describes a nonlinear strategy for wavefront reconstruction.
Nevertheless, as mentioned in Ref. 60, most of the Strehl ratio improvement was achieved by
applying only one Newton iteration, which again results in a linear reconstructor. Enhancements
when using more iterations are negligible.

5.6.4 Quasi-Newton method

A nonlinear iterative reconstructor for pyramid sensors that utilizes the pyramidal phase mask
model including interference effects is presented in Refs. 77 and 97. The wavefront is estimated
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by solving an unconstrained nonlinear minimization problem using Newton’s method as in the
previously summarized JR method.

Contrary to the common definition using the intensity difference scheme, the pyramid oper-
ator is defined in Ref. 77 as the electromagnetic field in the detector plane. Although performing
wavefront reconstruction from PWFS data, which are related in a nonlinear way to the incoming
phase, the idea is based on the fact that the pyramid operator is indeed nonlinear with respect to
the incoming phase Φ but linear with respect to the electric field

EQ-TARGET;temp:intralink-;e081;116;651Ψ ¼ Ω · e−iΦ; (81)

where Ω describes the real-valued amplitude.
Newton’s method in its general form requires the Jacobian and the Hessian of the cost func-

tion. The Hessian is inverted iteratively by solving a system of equations using CG. A possible
avoidance of these computational expensive steps is found by a variety of quasi-Newton methods
that only need the gradient of the cost function. The quasi-Newton algorithm used in this
approach is the Broyden–Fletcher–Goldfarb–Shannon method. As an initial guess, the solution
of the linear least-squares approach is used. This means that the quality improvement relies on
two successive wavefront reconstruction processes at the price of computational complexity, as
in the phase retrieval iterative method. However, the algorithm applied to pyramid sensors is
efficient in the sense that most computationally demanding calculations can be computed offline.
The attempt in Ref. 77 examines the pyramid sensor without modulation, but it is mentioned that
for a modulated sensor, the computational expense of calculating the intensity and its derivatives
will increase.

Simulations were carried out for a nonmodulated pyramid sensor using a setting with param-
eters similar to the SCExAO/Subaru on a circular aperture. It was assumed that a first-stage AO
system has already removed many of the low order aberrations, i.e., there are wavefronts simu-
lated that already correspond to a given Strehl ratio such as 0.3.

The author compared linear least-squares with the initial guess chosen as a flat wavefront and
nonlinear least-squares with the solution of the linear problem as starting point for the iteration.
No straight conclusion can be drawn regarding which approach—linear or nonlinear—provides
a better reconstruction quality. Both methods have shown their advantages in different simula-
tions depending on the photon flux, the signal-to-noise ratio, and the height of the Strehl ratio
already obtained with the first-stage AO system if the nonlinear method is used.

Throughout the paper, we will name the reconstruction algorithm presented in Ref. 77 the
quasi-Newton method for pyramid sensors.

5.7 Learning Approach for Nonlinear Wavefront Reconstruction

An alternative way to phase reconstruction from wavefront sensor data is provided by the
machine learning framework. In contrast to model-based reconstruction approaches, in this envi-
ronment, one omits the need in the explicit knowledge of the exact optical model of the sensor.
Instead, one relies on specific learning algorithms able to build themselves a connection between
sensor signal and the phase to be reconstructed using a set of “training data” containing wave-
front shapes and corresponding pyramid sensor data. The trained algorithms are then capable of
making predictions when being exposed to new data. Such algorithms are able to restore and
invert the underlying nonlinear forward models. Recently, a first attempt at applying a neural
network for nonlinear wavefront reconstruction from pyramid sensor data has been reported.134

6 Complexity and Performance Comparisons

In this section, we provide a comparison of the above-mentioned algorithms in terms of their
numerical complexity and quality performance of closed-loop correction.

6.1 Complexity Comparison

In order to give a clear overview on the mentioned algorithms for wavefront reconstruction in
astronomical AO using PWFSs, we present Tables 1 and 2, where selected properties for all
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methods are listed. More precisely, we consider the distinguishing criteria already mentioned in
Sec. 1. The characteristics we recall are the pyramidal prism mask models on which the recon-
struction methods are based, i.e., phase or transmission mask, whether the algorithms are linear
or nonlinear, and if the attempts are based on the full pyramid sensor model, the roof sensor, or
the one-term assumption. In addition, we once more bring up the adaptability of the reconstruc-
tion processes to non- and modulated sensor data and the computational complexity of all
approaches.

6.2 Quality Comparison

To analyze the performance quality of the algorithms for the pyramid sensor, we simulate ESO’s
ELT currently under construction in Chile. Simulations are carried out for the METIS135 and the
EPICS136 instrument in a closed-loop setting. The reconstruction quality is quantified in terms of
the long-exposure (LE) Strehl ratio. The observing wavelength for the results presented in the

Table 1 Overview on the computational complexities of existing wavefront reconstruction meth-
ods for the PWFS. The methods are arranged from least to most demanding in terms of computa-
tional load.

Algorithm Complexity

P-CuReD94 OðnaÞ

FTR88 Oðna log naÞ

PFTR92 Oðna log naÞ

HTR79,95 Oðna log naÞ

TCR96 Oðna log naÞ

P-FEWHA116 OðnaÞ — Oðn3∕2
a Þ

CLIF92 Oðn3∕2
a Þ

FHTR63 Oðn3∕2
a Þ

SVTR89 Oðn3∕2
a Þ

CGNE90 Oðn3∕2
a Þ

SD90 Oðn3∕2
a Þ

SD-K90 Oðn3∕2
a Þ

Linear Landweber iteration for PWFS (LIPS)90 Oðn3∕2
a Þ

Linear Kaczmarz–Landweber iteration for PWFS (KLIPS)90 Oðn3∕2
a Þ

Nonlinear Landweber iteration (LIPS)98 Oðn3∕2
a Þ

Nonlinear Kaczmarz–Landweber iteration for PWFS (KLIPS)98 Oðn3∕2
a Þ

IM inversion (MVM)70,81–87 Oðn2
aÞ

Phase retrieval iterative algorithm4 ≥Oðn2
aÞ

JR method60 ≥Oðn2
aÞ

Quasi-Newton method for PWFS77 ≥Oðn2
aÞ

Learning approach134 ≥Oðn2Þ
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following corresponds to λscience ¼ 2.2 μm (K-band). Table 3 provides an overview of the sim-
ulation parameters.

For an SCAO simulation, we consider an METIS-like case of ESO’s ELT having a primary
mirror diameter of 39 m of which only the inner 37 m are used for the instrument. The edges of
the real 39-m primary mirror are cropped such that it remains a circular pupil with roughly 30%
of the primary mirror being obstructed by the secondary mirror. Six telescope spiders being
50 cm thick are taken into account in two of the simulations. The end-to-end simulation software
generates a von Karman realization of median atmospheric conditions having 35 frozen layers at
heights between 30 m and 26.5 km. The Fried parameter is r0 ¼ 15.7 cm at λ ¼ 500 nm, and the
outer scale is L0 ¼ 25 m. The simulated screens are resolved with 0.05 m per pixel, which
results in 740 × 740 pixels on the aperture for a 37-m telescope. Sensing is performed in the
K-band at a wavelength of λ ¼ 2.2 μm. The data in OCTOPUS are simulated using the built-in

Table 2 Overview on existing wavefront reconstruction methods for the PWFS with respect to
underlying pyramid sensor models. The check marks in brackets mean that an according exten-
sion is possible and has already been considered in theory.

Algorithm

Pyramidal mask Linearity Sensor Modulation

Phase
Trans-
mission

Non-
linear Linear Pyramid Roof

One-
term Yes No

MVM ✓ ✓ ✓ ✓ ✓

P-CuReD ✓ ✓ ✓ ✓ ✓

FTR ✓ ✓ ✓

CLIF ✓ ✓ ✓ ✓ ✓

PFTR ✓ ✓ ✓ ✓ ✓

HTR ✓ ✓ ✓ ✓

TCR ✓ ✓ ✓ ✓

FHTR ✓ ✓ ✓ ✓ ✓

SVTR ✓ ✓ ✓ ✓

CGNE ✓ ✓ (✓) (✓) ✓ ✓ ✓

SD ✓ ✓ (✓) (✓) ✓ ✓ ✓

SD-K ✓ ✓ (✓) (✓) ✓ ✓ ✓

Linear LIPS ✓ ✓ (✓) (✓) ✓ ✓ ✓

Linear KLIPS ✓ ✓ (✓) (✓) ✓ ✓ ✓

P-FEWHA ✓ ✓ (✓) (✓) ✓ ✓ ✓

Phase retrieval ✓ ✓ ✓ ✓

JR method ✓ ✓ ✓ ✓ ✓ ✓

Quasi-Newton
method

✓ ✓ ✓ (✓) ✓

Nonlinear LIPS ✓ ✓ (✓) ✓ ✓ ✓

Nonlinear KLIPS ✓ ✓ (✓) ✓ ✓ ✓

Learning approach ✓ ✓ ✓ ✓ ✓
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model of a PWFS without modulation and with modulation 4 λ∕D on 74 × 74 subapertures,
i.e., the subaperture size is 0.5 m. The pyramid sensor measurements are read out 500 or
1000 times per second. The DM geometry corresponds to the hexagonal M4 geometry that
is planned for the ESO’s ELT. In OCTOPUS, a total number na ¼ 5190 of mirror actuators
are controlled.

For the XAO case, we simulate a variant of the EPICS instrument on the originally planned
42 m ESO’s ELT. The simulation parameters of the closed-loop setting are summarized in
Table 3. We have a central obstruction of 28% and do not take telescope spiders into account.
The phase screens are generated according to the von Karman statistics for nine atmospheric
layers at heights between 47 m and 18 km. The seeing conditions are median, the Fried param-
eter is equal to r0 ¼ 12.9 cm at λ ¼ 500 nm, and the outer scale corresponds to L0 ¼ 25 m. The
resolution of the incoming screens is given by 2000 × 2000 pixels on the pupil. Sensing is per-
formed in the visible at λ ¼ 0.7 μm. The data are provided by a non- and modulated PWFS on

Table 3 Overview of simulation parameters for the currently scheduled METIS and an EPICS-like
instrument.

Simulation parameters METIS-like simulation EPICS-like simulation

Telescope diameter 37 m 42 m

Central obstruction 30% 28%

Science target On-axis (SCAO) On-axis (XAO)

WFS PWFS PWFS

Sensing band λ K (2.2 μm) R (0.7 μm)

Evaluation band λscience K (2.2 μm) K (2.2 μm)

Modulation [0, 4] [0, 4]

Controller Integrator Integrator

Atmospheric model von Karman von Karman

Number of simulated layers 35 9

Outer scale L0 25 m 25 m

Atmosphere Median Median

Fried radius r 0 at λ ¼ 500 nm 0.157 m 0.129 m

Number of subapertures 74 × 74 200 × 200

Number of active subapertures 3912 out of 5476 28,796 out of 40,000

Linear size of simulation grid 740 pixels 2000 pixels

DM geometry ELT M4 model Fried

Telescope spiders Yes/no No

DM delay 1 1

Frame rate [1000, 500] Hz 3300 Hz

Photon flux [600, 10,000] ph/subap/frame 50 ph/subap/frame

Detector read-out noise 1 electron/pixel 2.8 electron/pixel

Background flux 0.000321 photons/pixel/frame 0 photons/pixel/frame

Simulation time 0.5 to 2 s ([500, 1000] iterations) ∼0.15 s (500 iterations)
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200 × 200 subapertures, each having a size of 0.21 m. The pyramid sensor measurements are
read out 3330 times per second. For XAO, we have to control a total number of na ¼ 29;618
mirror actuators of the DM positioned according to the Fried geometry.

The numerical results in Table 4 indicate that the optimal choice of the wavefront reconstruc-
tor heavily depends on physical parameters related to the telescope facility and the sensor device
such as subaperture size or the modulation amplitude of the pyramid sensor and on atmospheric
parameters. Definitely, the most advanced reconstruction approaches for telescope systems hav-
ing nonsegmented pupils are interaction-matrix-based methods, which in the past were and
nowadays are running in AO systems of ground-based observing facilities having mirror sizes
up to about 10 m, and therefore are those algorithms for which users have the most practical
experience. A benefit of MVM approaches and also of learning approaches is that the calibration/
training can be performed in realistic environments. Unfortunately, the MVM methods have

Table 4 Reconstruction quality of selected algorithms for the METIS (SCAO) and EPICS (XAO)
instrument of the ESO’s ELT using pyramid sensors with or without modulation. For the METIS
instrument, we used the currently in OCTOPUS implemented M4 geometry, the EPICS system is
considered on the Fried geometry. In addition, we took telescope spiders into account for two
simulation settings. The P-CuReD results for segmented pupils were obtained within the split
approach.49 The fields are left empty if no simulations were performed and “NA” means that the
method is not applicable to this setting.

Algorithm

Quality in end-to-end simulations (OCTOPUS) (LE Strehl ratios in the K-band)

SCAO SCAO SCAO SCAO XAO XAO

Modulation (λ∕D) Mod 0 Mod 4 Mod 0 Mod 4 Mod 0 Mod 4

Photon flux (ph/pix/it) 10,000 10,000 10,000 600 50 50

Frame rate (kHz) 1 0.5 1 0.5 3 3

Mirror geometry M4 M4 M4 M4 Fried Fried

Telescope spiders No No ✓ ✓ No No

IM inversion: modal ≈0.62137 0.888 0.85949 0.96

IM inversion: zonal 0.89 0.890 0.89449

P-CuReD 0.871 0.887 0.86564 0.87849 0.916 0.961

CLIF 0.88 0.94

PFTR 0.88 0.94

FHTR 0.779 NA NA 0.853 NA

SVTR 0.74064 NA NA 0.88464 NA

CGNE 0.84290 0.86090 0.90164

SD 0.84190 0.85890

SD-K 0.84190 0.85890

LIPS 0.84090 0.86090

KLIPS 0.84290 0.85890 0.89764

LIPS 0.85398 0.83498

KLIPS 0.85398 0.82698 0.90364
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a major drawback—their high computational complexity. While the computational load is
expected to be manageable at the time of future ELT launches for comparably small AO systems
such as in SCAO, achieving the speed required for large-scale AO systems is doubtful. As an
alternative, we suggest fast, model-based wavefront reconstruction algorithms. As such, the P-
CuReD is outstanding for its quality results, its speed, and its ease of usage in all performed test
cases. For the nonmodulated sensor, the nonlinear LIPS and KLIPS give promising quality
results. In particular in the XAO simulation and for the modulated sensor, the performance
of the linear CGNE approach must be emphasized.

The mentioned approaches were in particular tested on nonsegmented pupils for a PWFS
acting in its linear regime, e.g., in closed-loop AO. One reason for starting to investigate non-
linear approaches for wavefront reconstruction using pyramid sensor data was the presence of
large NCPA on ELTs which affect the nonlinearity issue of the pyramid sensor. For large NCPAs,
the linearity of the pyramid sensor may be violated and a usage of a nonlinear reconstructor may
become beneficial. However, we would like to mention that the results of the nonlinear LIPS and
KLIPS are rather preliminary. Detailed studies in the future shall bring a better understanding of
the nonlinearity effects of the sensor and, based on that, improvements of the methods
themselves.

Moreover, METIS simulations demonstrated that variants of zonal interaction-matrix-based
MVM approaches and the P-CuReD coupled with a DSPR provide (almost) differential piston-
free wavefront estimates for fragmented telescope pupils, a phenomenon that has an especially
big impact on ELT-sized telescopes.

7 Methods for Real-Life Features

The instruments for the ELTs are currently under design and a multitude of analytical, and sim-
ulation studies are undertaken for the analysis and comparison of various reconstructors with
respect to the expected performance under real-life conditions. Some of the features are specific
to ELTs, e.g., large support structures of the secondary mirrors (also known as spiders) causing
the island effect (or pupil fragmentation into disconnected domains). Others are common to all
instruments equipped with AO systems, e.g., NCPA. Yet others, while already being known at
currently operating telescope instrumentation systems, are expected to be especially pronounced
on ELTs due to their big sizes, such as the LWE. Another very important aspect for reaching the
ultimate goal of diffraction-limited imaging when employing a pyramid sensor is to take into
account its optical gain related to the sensor nonlinearity.

The brief enumeration above should in no way be perceived as an exhaustive or complete list
of issues that need to be analyzed but rather as a current status of the authors’ understanding of
those. There are, evidentially, much more engineering and technical aspects to be considered
when it comes to running an AO loop on a real telescope. We limit our considerations on purpose
to the mentioned real-life issues that, in our opinion, are closely related to the reconstruction
algorithms. Although in the following we consider the listed features in dedicated subsections,
we keep in mind that the interplay between them should not be ignored since they all will be
simultaneously present on the running telescopes and also because they are interrelated with
each other.

7.1 Island Effect

Besides central obstruction, on some ELTs the pupil will be additionally obstructed by rather
large support structures (also known as spiders) of secondary mirrors. This fragmentation of the
pupil into disjoint domains induces a discontinuity in sensor data. Because of such data frag-
mentation, most of the available wavefront reconstruction algorithms per se are not able to con-
trol fragmented piston modes of the wavefront.49,69,104,105 This manifests itself via uncontrolled
pistons on disjoint pupil “islands” seen in the residual screens and the dramatically reduced
Strehl ratio.

There have been suggested hardware-based solutions to overcome the island effect. These
assume the usage of additional components in the mechanical/optical setup of the system. For
instance, one approach is to introduce an additional dedicated focal plane sensor that measures
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the fragmented low-order modes during the AO loop, as initially suggested for compensating the
LWE in Refs. 138–141.

In parallel, software-based solutions have been developed, aiming at coping with pupil frag-
mentation by means of an appropriate adaptation of wavefront reconstruction algorithms only.
They do not require any changes in the optical setup. It was found that the usage of sensor
data from subapertures shaded by the spiders is crucial for the reconstruction of pistons on
pupil fragments since the information about phase corruption by edges is in fact contained
in those shaded subapertures. A successful control of the island effect has been demonstrated
using a zonal matrix vector multiplication,49,116,142 with an adapted model-based reconstructor
in the split approach,49,116 and with edge actuator coupling for a modal matrix vector
multiplication.104,105,143

It has been acknowledged that the island effect becomes more severe at shorter wavelengths
and larger seeing values. Accurate reconstruction of fragmented pistons is much more difficult in
the visible compared to the NIR, despite the fact that in the calibration stage the pyramid WFS is
sensitive to those modes. This is explained by the pyramid sensor nonlinearity. In contrast to the
calibration phase, during the actual loop the sensor receives as input not the pure piston modes
but a combination of them with the high-frequency uncompensated residual component. Since at
shorter sensing wavelengths, the impact of the residuals is stronger than in the NIR, the piston
footprint gets weaker in the sensor response. Thus, it is the sensor nonlinearity that imposes
limitations on the ability of the sensor to provide quantitative information about the fragmented
piston modes and makes the reconstruction in the presence of spiders much more difficult in the
visible compared to the NIR.

While all the solutions mentioned above are working quite well (without or with a negligible
loss in quality compared to the spider-free case) for a wide range of atmospheric conditions when
sensing in the NIR, none of them is able so far to provide the same high-quality level correction
for bad seeing conditions when sensing in the visible. Therefore, this topic remains of high
interest and research is continued in this direction.

7.2 Low Wind Effect

Another phenomenon related to the pupil spiders and causing similar effects is the so-called
LWE. On the contrary to the island effect, which is due to a reconstructor-related error induced
by corrupted data, the LWE is a real dynamically evolving low-order distortion in the wavefront
caused by the heating of the air in the vicinity of spiders in very low wind conditions. The effect
has been observed for the first time on the very large telescope144 and is expected to be signifi-
cantly more pronounced on the ELTs due to the largely increased mirror position heights and the
related temperature gradient across the pupil.105

A typical approach toward the elimination of the LWE consists of its measurement and a
consequent correction with a corresponding offset being applied on the DM. It has been dem-
onstrated that focal plane techniques such as focal plane phase diversity138–141,145,146 or focal
plane sharpening146 can continuously provide information about the LWE in the loop.

If such focal plane techniques that involve additional optomechanical components are not
available, or not desired in the system design, it is important to analyze and compare the stability
and performance of available reconstruction algorithms in the presence of an uncompensated
LWE. Moreover, an important question is whether it is possible, similarly to pupil fragmentation,
to compensate for the LWE by means of appropriately extended wavefront reconstruction meth-
ods. Is it possible to develop a wavefront reconstruction algorithm that is able to provide an
accurate correction for the LWE despite the fact that only corrupted sensor data is available?
Moreover, the amplitudes of LWE-related phase distortions may be rather large, which means
that the wavefront sensor may not be in its linear regime and may not provide adequate mea-
surements for the low-order modes of interest. Can one take this into account in the reconstruc-
tion step making it an attractive solution being free from additional hardware? This is currently
one of the most important challenges in AO control—to find reliable solutions able to cope in a
stable way with high amplitude low-order distortions, which can suddenly enter the telescope
pupil during the observations.
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7.3 Sensor’s Nonlinearity

As already mentioned in Sec. 3, one approach to overcoming the sensor’s nonlinearity is the
development and application of nonlinear wavefront reconstruction methods as those described
in Secs. 5.6 and 5.7.

Currently, the nonlinearity of the pyramid sensor is tightly associated in the community with
the so-called modal optical gain of the sensor. This is an effect that is observed with modal
calibration-based reconstructors in the coupled paradigm and consists of a reduction of the sen-
sor response to certain wavefront modes in the presence of large uncompensated residuals. To
our opinion, this effect seems (at least to a large extend) to be caused by the usage of the
global modes for wavefront representation since other reconstructors (analytical or zonal
decoupled MVM) seem to not suffer from it and outperform the modal MVM in the same
conditions.147 A detailed analysis and explanation of this phenomenon are the topic of a manu-
script currently under preparation.

For the moment, we review in this section the existing methods toward a recovery of the
sensor’s modal optical gain followed by a corresponding tuning of the modal calibration-based
MVM reconstructors in the coupled paradigm. An early approach goes back to 2008. The pro-
cedure in Ref. 8 suggests an iterative estimation and update of sensitivity compensation coef-
ficients in combination with the standard interaction-matrix-based modal reconstruction
algorithm. The approach relies on an online (during the closed loop) estimation of the power
spectral density of the residuals using the DM commands and sensor data. The estimated stat-
istical information is then used as input for the off-line forward simulations providing a new
calibration of the pyramid sensor in the presence of uncompensated residuals. The sensitivity
compensation coefficients are then computed by comparing (mode per mode) the simulated IM
with the standard calibration performed around the zero residual.

Later, it was noticed that low frequencies are affected at most by the sensor’s optical gain.
Therefore, a correction is especially needed for low-order wavefront modes. One approach con-
sists of the continuous in-the-loop tracking of the optical gain, which is performed by introduc-
ing an additional low-frequency periodic input with a known shape, called dithering signal, to the
WFS.27,100 By comparing the known amplitude of the dithering signal with the measured one,
one draws a conclusion about the current optical gain of the sensor, obtaining a scalar coefficient
as its measure. Subsequently, the reconstructed low-order modes are scaled with the obtained
parameter to provide an improved correction.

A similar but slightly different approach for recovering the mode-dependent nonlinearity
factors was described in Ref. 99. The authors suggest injecting a dither signal in an additional
local loop with a dedicated low-order DM. This technique requires a corresponding filtering of
sensor data to eliminate the introduced low-frequency aberration.

Similarly to Ref. 8, the approach suggested in Ref. 102 is reconstructor-dependent and is
based on a comparison of the amplitudes of the reconstructor output to the amplitudes of the
known wavefront input. This method relies on running numerous off-line simulations for various
atmospheric conditions, sensor characteristics (modulation), and reconstructors (modal, zonal,
Fourier-domain-based) resulting in a collection of ready-to-use tables. Here, the optical gain is
again treated not as a scalar value but as a frequency- or mode-dependent function. Depending on
the information from atmospheric monitors, the user should choose the optimal frequency-de-
pendent gain function from a corresponding table. Similarly to the previous approach, it was
noticed that correction in the low frequency-domain brings most of the quality improvement.
Also, for on-sky operation an efficient reduction of the method has been suggested allowing
quick automated modal gain updates in the loop to be provided.101,103 In this case, similar to
dithering signal, the method relies on poking a few modes only, which provides a few scalar
values for the optical gain. The rest of the optical gain function is then restored using the look-up
tables.

Recently, another interesting noninvasive approach has been suggested, which is able to com-
pute the vector of modal gains relying on temporal correlations of the modal decomposition of
WFS measurements.75

Moreover, Ref. 148 suggests a completely different technique to overcome the pyramid sen-
sor nonlinearity. The concept is known as the very linear wavefront sensor and consists of
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introducing an additional internal low-order loop in the sensing path. This dedicated low-order
loop would precompensate large aberrations and guarantee that the pyramid sensor works in the
linear regime.

The compensation of the sensor’s optical gain by any of the mentioned methods has proven
to be effective and is very important on its own for pushing higher the limit of possible correction
quality. But it is even more important as a crucial constitute for accurate compensation of the
island effect, LWE, and NCPA.

7.4 Noncommon Path Aberrations

The quality of telescope imaging, especially the high-contrast one, suffers from various static and
quasistatic optical imperfections and misalignments appearing within the instrument. The most
serious impact is that of the so-called NCPA, quasistatic aberrations that happen in the instrument
after the beam splitter position that splits and diverts light into the science and the wavefront sensor
paths. Typically, these are low-order aberrations, which, however, may have large amplitudes.
Moreover, the NCPAs have a dynamic component—they experience changes on a timescale from
minutes to hours. Clearly, there is a need in techniques able to quantify the shape of the NCPAs,
which then can be corrected with a DM, resulting in an improved imaging quality.

Some ELT instruments plan to a dedicated wavefront sensor placed in the noncommon path
of the instrument for measuring the noncommon path phase maps. The NCPA correction can in
this case be performed with the main DM or with a dedicated low-order DM located in the
noncommon path as well. Other instruments will rely on dedicated focal-plane wavefront sens-
ing employed for an interferometric restoration of the noncommon path phase maps. Such
speckle-analyzing techniques, such as phase-sorting interferometry149 or phase diver-
sity,146,150,151 can provide continuously in the loop information about the NCPAs, which is used
to iteratively correct for them with the main DM. Another approach is to use focal plane sharp-
ening methods for a blind control of the DM.146,151,152

When the NCPA measurements are available, the usual way to correct for them in a closed
loop is to inject the measured phase shape offset onto the DM27,153 or to introduce an offset in the
WFS measurements, making the DM converge in closed loop to the shape, which cancels out the
NCPAs in the science path.142,154 Both of these schemes of compensation make the WFS see the
NCPA and involve a reconstruction algorithm assuming linearity of both the sensor and the
reconstructor. However, it is well known that the pyramid sensor is nonlinear. Depending on
the severity of NCPAs, the sensor may work far away from its linear regime (have reduced
optical gain) and may provide saturated measurements of the residual wavefront, which leads
to a wrong NCPA compensation or even bring instability of the closed loop.9,27

To overcome this difficulty, several solutions are available. First, tracking of the optical gain of
the sensor and a corresponding scaling of the NCPA compensation to be applied allows it to over-
come the nonlinearity of sensor and leads to an improved compensation of NCPAs.27 Second, an
approach was recently suggested for an additional countercorrection of NCPAs in the sensor path.
The idea is to use a low-order DM or an adaptive lens155 placed in the WFS path just before the
sensor, applying the deformation opposite to the NCPA shape sent to the DM. This approach
allows one to bring the PWFS back to its linear regime, i.e., restore its sensitivity.

Another approach could be to let the WFS be exposed to NCPAs and work in the nonlinear
regime and use nonlinear wavefront reconstruction algorithms (cf Sec. 5.6) able to provide accu-
rate reconstruction from saturated sensor data.

8 Conclusions

In this review paper, we have provided an extensive overview on the state-of-the-art of wavefront
reconstruction algorithms for the pyramid sensor. We have described plenty of algorithms di-
vided into interaction-matrix-based approaches, FD methods, iterative algorithms, methods
based on the inversion of the Hilbert transform, as well as several nonlinear approaches including
machine learning. The algorithms were compared to each other in terms of underlying forward
models, numerical complexity, and the achieved performance.
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From the modeling point of view, we distinguished between phase mask and transmission
mask pyramid sensor models, between full pyramid sensor or roof sensor models, as well as
nonlinear and linear approximations. Due to the closed-loop operation, when the pyramid is
essentially in its linear regime, the largely simplified forward models are sufficient as foundation
for reconstruction algorithms to provide high-quality correction. Several nonlinear algorithms
have been developed based on more accurate forward modeling. However, the question still
remains whether these methods outperform those using the approximations, at least in the
closed-loop setting and especially for the modulated sensor.

The detailed descriptions of algorithms and underlying forward models are rounded off with
comparisons of computational complexities of all the reviewed methods and numerical results
for selected algorithms. We have seen that model-based algorithms using the most simplified
forward models are not only able to provide very accurate correction but also require signifi-
cantly fewer computations compared to interaction-matrix-based methods. While the algorithm
speed seems not to be a crucial point for real-time computations systems on the majority of
instruments currently under development, it may still be an important issue for the future extreme
or tomographic AO systems, involving several tens of thousands of unknowns.

Finally, the developed algorithms are currently being analyzed and tested with respect to their
performance and stability under real-life circumstances. We provided an overview of important
ELT-specific features that the AO control will have to deal with. Among those are, e.g., the
support structures of secondary mirrors shading sensor subapertures completely. These destroy
the connectedness of sensor data and cause the island effect—a failure of reconstructors to con-
trol piston modes on the fragmented pupil parts. The similar in its manifestation, but different in
its origin is the recently discovered LWE, which is expected to be very pronounced on ELTs due
to their big sizes. Finally, any instrument equipped with an AO system suffers from NCPA. It is
therefore important to know how reconstruction algorithms behave with respect to their ampli-
tude and if they are able to cope with the introduced errors. Another important point is the pyra-
mid sensor sensitivity or the optical gain. We have briefly sketched the currently foreseen
solutions as well as shortcomings and challenges for all of the mentioned real-life features
expected on the instruments of the next generation.

Based on the outlined state-of-the-art and the expected challenges in the field of wavefront
reconstruction and control, an interesting direction for future research is further elaboration of
forward models aimed at the embedding/inclusion of the mentioned real-life features into the
forward models. This shall provide a possibility to develop reconstruction algorithms initially
tailored for and able to cope with such effects as telescope spiders, the sensor’s optical gain, or
the system’s NCPA.
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