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Abstract. We introduce immunofluorescence and automated image processing protocols for serial tumor sections
to objectively and efficiently quantify tumor microvasculature following antivascular therapy. To determine the
trade-off between tumor subsampling and throughput versus microvessel quantification accuracy, we provide a
mathematical model that accounts for tumor-specific vascular heterogeneity. This mathematical model can be
applied broadly to define tumor volume samplings needed to reach statistical significance, depending on the bio-
marker in question and the number of subjects. Here, we demonstrate these concepts for tumor microvessel density
and total microvascularity (TMV) quantification in whole pancreatic ductal adenocarcinoma tumors ex vivo. The
results suggest that TMV is a more sensitive biomarker for detecting reductions in tumor vasculature following
antivascular treatment. TMV imaging is a broadly accessible technique that offers robust assessment of antivascular
therapies, and it offers promise as a tool for developing high-throughput assays to quantify treatment-induced
microvascular alterations for therapeutic screening and development. © 2013 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.18.9.096015]

Keywords: microvessel density; cancer; antivascular therapy; antiangiogenic therapy; photodynamic therapy; image analysis; fluores-
cence imaging; immunohistochemistry.

Paper 130511R received Jul. 19, 2013; revised manuscript received Aug. 15, 2013; accepted for publication Aug. 16, 2013; published
online Sep. 25, 2013.

1 Introduction
Since the seminal works of Folkman et al.,1,2 antivascular
therapies—including vascular-targeted agents and inhibitors of
angiogenesis—have emerged for destroying, modulating, and
inhibiting the formation of blood vessels necessary for cancer
growth. For instance, bevacizumab, a potent antiangiogenic
drug, is approved for multiple cancers based on its clinical effi-
cacy.3 Antivascular therapies increase the efficacy of radiation
and chemotherapy, and these agents have become an important
component of the modern armamentarium of cancer treatments.4

Targeting tumor vasculature and angiogenesis for cancer therapy
has several potential advantages: (1) high tumor-selectivity
since, in adulthood, normal angiogenesis is limited to wound
healing and the menstrual cycle, (2) tumor vessel normalization
to improve drug delivery5 (although this impairs the delivery of
some agents4,6), and (3) endothelial cells do not acquire drug
resistance.7 In order to fully realize these benefits, there is a
critical need for developing quantitative metrics to evaluate
antivascular efficacy. This concept is especially pertinent for
therapeutic modalities and combination therapies that target
both endothelial and cancer cells, in which differentiating anti-
vascular activity versus direct cytotoxicity presents challenges.
Like all treatment modalities, the efficacy of antivascular agents

is limited by the persistence of numerous tumor escape path-
ways, and there is tremendous opportunity in the further devel-
opment and optimization of therapeutic regimens that utilize
these agents.4 However, the lack of biomarkers and screening
assays of antivascular response has impeded the development
of new antivascular treatments and their incorporation into com-
bination therapies.8

Impressive advances in vascular imaging promise to eluci-
date new biomarkers and mechanisms of antivascular therapies.
For instance, Vakoc et al. developed a rapid, noninvasive, and
three-dimensional (3-D) technique—optical frequency-domain
imaging—that enables label-free, longitudinal, and comprehen-
sive volumetric imaging of tumor microvasculature up to a few
millimeters deep.9 Other high-resolution imaging modalities
such as fluorescence microscopy10–14 and photoacoustic tomog-
raphy15 also enable resolution of individual vessels and dynamic
cellular, molecular, and microstructural alterations.16 These
microscopy techniques have been accompanied by development
of sophisticated image analysis algorithms for 3-D microvessel
tracing9,17,18 as well as morphometric and fractal analyses.9,19 In
contrast, ultrasound, positron emission tomography, computed
tomography, and magnetic resonance imaging (MRI) cannot
resolve individual microvessels20 but, importantly, facilitate
noninvasive imaging of vascular function in the clinic.16 For
example, vascular MRI21 and measurements of circulating
angiogenic factors have shown particular promise for monitor-
ing “vascular normalization5” in clinical trials for new cancer
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treatments.22 Due to trade-offs in imaging resolution and depth,
an ongoing dilemma is how best to visualize microvasculature
too small to be resolved by noninvasive imaging techniques and
extending to depths (greater than a few millimeters) inaccessible
by high resolution optical techniques.16

In contrast to longitudinal in vivo imaging techniques, ex vivo
microscopy sacrifices temporal dynamics to gain depth unlim-
ited, high-resolution imaging at fixed time points when inte-
grated with mechanical tissue sectioning23,24 or by methods that
transform intact tissue into an optically transparent state.25

These ex vivo techniques also provide opportunities for bio-
marker discovery, high-throughput screening assays and help
to interpret in vivo images. As an example, Inai et al. developed
high-resolution electron and immunofluorescence microscopy
assays to reveal that inhibitors of angiogenesis have profound
impacts on microvessels within 24 h, including both shutdown
and regression of existing vessels in addition to prevention of
vessel sprouting and angiogenesis.11 Furthermore, “normaliza-
tion5” of remaining perfused vessels was evident as a clear
reduction in vessel fenestrations, tighter pericyte coverage,
and reduced vessel leakiness.11

Microvessel density (MVD) quantification in “hot spots” or
foci of endothelial cell proliferation, an ex vivo histology tech-
nique, was introduced by Folkman et al. over 20 years ago as a
powerful prognostic indicator for many cancers,26,27 and it has
since been broadly adopted as a “gold standard” metric of anti-
vascular treatment efficacy in the clinic.28 However, Folkman
et al. elegantly demonstrated that MVD misrepresents antivas-
cular response.29 MVD can under-report antivascular efficacy
because standard MVD measurements do not account for treat-
ment-induced reductions in tumor mass.29 This decrease in
tumor mass can pack the remaining microvessels together to
obscure interpretation of MVD29 (Fig. 1). Therefore, MVD
may falsely reject promising therapies and confound the design
of antivascular treatment schemes. Moreover, characterizations
of the tumor microvasculature are most commonly drawn from
just a few “representative” high-magnification fields. A few
early efforts have been made to automate “hot spot” identifica-
tion and MVD quantification to make it more objective,30,31 but
these efforts were limited to examination of a single “represen-
tative” tissue section per subject due to technical challenges in
the achievement of quality staining, the lack of microscopy auto-
mation, and the availability of data storage. Therefore, the inter-
pretation of standard MVD measurements has been further
complicated by poor statistics. Due to a lack of practical alter-
natives, MVD continues to be the most frequently applied met-
ric for describing antivascular effects.

With the goal of creating a broadly applicable platform that
overcomes the limitations of MVD, here we introduce an effi-
cient measurement of total microvascularity (TMV) ex vivo by
integrating advances in high-throughput digital microscopy and
automated analysis. Uniquely, we designed custom immuno-
fluorescence stains and analyses to specifically identify intratu-
moral microvessels. We show that TMV is a superior biomarker
for quantifying treatment-induced reductions in microvascula-
ture. To address the need to reach statistical significance in
data-intensive, high-resolution, and large-volume applications,
we derived a mathematical model to compute the required
tumor volume sampling based on empirical measurement
of microvascular heterogeneity. Here, we demonstrate these
concepts for TMV quantification of orthotopic pancreatic
ductal adenocarcinoma (PDAC) tumors, as large as ∼1 cm in

dimension, excised from mice receiving established antivascular
treatments. In summary, this platform captures the vascularity
of a whole tumor using a mathematical model to set a threshold
that defines the lowest limit for how much of the tumor volume
needs to be sampled. This obviates the need for imaging thou-
sands of tumor sections and, on the other hand, the risk of draw-
ing false conclusions from an insufficient number of fields. By
introducing a method for defining optimal tumor subsampling,
this work offers promise for developing high-throughput assays
to quantify treatment-induced microvascular alterations for
therapeutic screening and development.

2 Methods

2.1 Orthotopic Murine Model of PDAC

This study was carried out in strict accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All animal experi-
ments were approved by the Massachusetts General Hospital
Institutional Animal Care and Use Committee (IACUC). We
used an orthotopic xenograft mouse model for PDAC estab-
lished in our laboratory.32 For tumor implantation, a small left
abdominal flank incision was made to exteriorize the pancreas
of athymic Swiss male Nu/Nu mice (20 to 25 g and 6 to 8 weeks
old; Cox Breeding Laboratories, Cambridge, Massachusetts).
Subsequently, a suspension of 106 AsPC1 human PDAC cells in
30 μL phosphate-buffered solution (PBS, without Ca2þ∕Mg2þ),

Fig. 1 Concept of tumor total microvascularity (TMV) imaging for quan-
tifying microvessel reduction following therapy. A theoretical schematic
(not actual data), inspired by original concepts and illustrations in an
elegant critical review by Hlatky et al. (Ref. 29), of tumor microvessel
density (MVD) and TMV temporal profiles is shown during antivascular
therapy. TMV decreases monotonically with decreasing microvessel
content while MVD fluctuates due to changes in tumor volume.
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containing 50% Matrigel™ Basement membrane matrix (BD
Biosciences, Franklin Lakes, New Jersey) to prevent leakage
of the tumor cells from the injection site was injected into
the body of the pancreas. Any growth factors present in the
Matrigel can potentially help “jump-start” tumor vasculariza-
tion. Because Matrigel was used in all implantations, any poten-
tial angiogenic effects were captured in the untreated controls
and uniformly influenced all tumors in the study. We allowed
the tumor to grow for 10 days prior to the start of therapy.
The terminal half-life for growth factors is typically just a
few days. Hence, these components are presumably cleared
and metabolized prior to day 10 when we commenced therapy.

2.2 Treatments of Orthotopic PDAC Mice

Ten days after the injection of AsPC1 cells, animals were ran-
domized into the following groups: (1) no treatment; (2) a single
dose of 0.05 mg∕kg body weight cabozantinib (XL184) for
antiangiogenic therapy; (3) a single dose of 0.25 mg∕kg
body weight liposomal benzoporphyrin derivative (BPD) for
antivascular near infrared (NIR) photodynamic therapy (PDT;
75 J · cm−2); and, (4) a single dose of 0.25 mg∕kg body weight
BPD and 0.05 mg∕kg body weight cabozantinib coencapsulated
in a liposome for combined antiangiogenic treatment and anti-
vascular NIR PDT. All injections were done intravenously in
200 μL sterile PBS. Mice were illuminated 90 min after BPD
injection. The 690-nm light was delivered at an irradiance of
150 mW · cm−2. Tumor excision and TMV imaging can be
applied at any time point, including within a day of antivascular
agent administration, and we chose established time points used
in the seminal publication demonstrating the clinical efficacy of
bevacizumab (∼2 weeks post-treatment)33 that reflects the most
common protocol for MVD quantification. Note that, here, we
did not attempt to distinguish primary effects of the treatments
on the microvasculature versus secondary effects resulting from
inhibition of cancer cell signaling pathways and the killing of
cancer cells. It is virtually impossible to do so unequivocally
due to the tight interdependence of cancer cells and microvas-
culature,29 however, it is known that direct effects on the micro-
vasculature are best captured at early time points.9,11

2.3 Staining Protocol for Serial Tumor Sections

An overview of the immunofluorescence staining protocol is
shown [Fig. 2(a)]. Orthotopic primary tumors were excised
2 weeks post-treatment, embedded in optimal cutting tempera-
ture compound and frozen at −80°C. A cryotome was used to
cut the entire tumor into 388, 20-μm-thick cryosections.
Approximately one-quarter of the sections, 105 sections (one
section/70 μm), were (1) fixed in a precooled mixture of 1∶1
acetone:methanol for 15 min at −20°C, (2) air dried for
30 min at room temperature, and (3) washed three times, for
5 min each, in PBS with gentle agitation. A Pap Pen was
used to encircle the tissue specimens for mounting small-
volume blocking and staining solutions. A blocking solution
(Dako Protein Block Reagent) was applied for 30 min at
room temperature, followed by application of the immunostains,
at ∼5 μg∕mL monoclonal antibody (MAb) each diluted in a
background reducing buffer (Dako Antibody Diluent, back-
ground reducing) for 2 h at room temperature in a humidifying
chamber. Finally, the slides were washed again three times, for
5 min each, in PBS with gentle agitation, mounted (Invitrogen
SlowFade Gold with 4′,6-diamidino-2-phenylindole, DAPI)
with a coverslip and sealed with nail polish.

2.4 Confocal Fluorescence Imaging Microscopy

Confocal fluorescence imaging was performed using a commer-
cial confocal microscope (Olympus FluoView 1000) with a 10×
0.4 numerical aperture (NA) or a 20× 0.75 NA objective.
Excitation of DAPI, anti-human cytokeratin 8 (clone LP3K,
R&D Systems, Minneapolis, Minnesota) MAb-Alexa Fluor
488 conjugates, and anti-mouse PECAM-1 (CD31; clone 390,
Millipore, ) MAb-Alexa Fluor 568 conjugates was carried out
using 405-, 488- and 559-nm lasers, respectively. Lasers were
scanned sequentially to reduce channel crosstalk. Mosaic
images of entire tumor cross-sections were collected and
stitched together using the Olympus FluoView software. This
method requires a manual procedure to define tumor boundaries
for the mosaic. We developed a human cytoskeletal protein
(cytokeratin 8) stain to demark the intracellular space of the

Fig. 2 Methods overview. (a) Work flow for tissue fixation and immunofluorescence staining. (b) Simplified image processing outline for identifying the
tumor boundary and intratumoral microvessels. The microvessel content is normalized by the cell count within the tumor (using cell nuclei staining)
and multiplied by the tumor volume to calculate the tumor microvessel volume (mm3) for an image mosaic of an entire tumor cross-section. The overall
TMV is calculated by interpolation and summation of microvessel volume over a periodic subsampling of the entire tumor.
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PDAC cells, which has dual selectivity for the epithelial cancer
cells because it does not react with mouse proteins and because
cytokeratins are highly expressed in many epithelial cancer
cells.34 CD31 (endothelial cell) and DAPI (cell nuclei) staining
may be applied to quantify MVD (microvessel area is normal-
ized by the number of cells per field).

2.5 Slide-Scanning Wide-Field Fluorescence Imaging
Microscopy

In order to efficiently image the 105 sections from an entire,
orthotopic PDAC tumor, we applied a commercial slide-scan-
ning fluorescence imaging system (Hamamatsu NanoZoomer
2.0-RS) with a 20× 0.75 NA objective. The tumor sections
were imaged in 40× mode (0.23 μm · pixel−1).

2.6 Image Analyses

All analyses were performed using custom MATLAB (Mathworks,
Natick, Massachusetts) routines for batch processing [Fig. 2(b)].
For display and all analyses, the channels were autothresholded
to reject background signal using a 10% peak intensity threshold
for each channel. Wavelet transforms and image correlation
coefficients among the color channels were used to eliminate
bubbles and extraneous, reflective objects from the analyses.
Current microvessel segmentation methods were incapable of
extracting pertinent image features from image mosaics of entire
tumor sections, which contain gradient backgrounds and occa-
sional artifacts normally avoided when manually choosing indi-
vidual, “representative” fields. Therefore, we developed wavelet
multiresolution decomposition analyses35 for morphology-
based microvessel and cancer cell segmentation. Here, MVD
values (unitless) were calculated from whole slices, within via-
ble tumor tissue only, and averaged over slices from the entire
tumor rather than a more complex “hot spot” identification and
calculation, which is difficult to define objectively. TMV was
calculated by multiplying MVD with the viable tumor volume
[Fig. 2(b)] in each slice and then summing TMVover the whole
tumor by interpolation. Thus, TMV represents the total tumor
endothelial cell content in units of volume, an absolute metric,
rather than the fractional volume of microvessels.

2.7 Mathematical Model for Defining Tissue Volume
Subsampling to Maximize Throughput Achieving
Statistical Significance

The determination of a biomarker, such as tumor TMV, from
only partial sampling of an organ or tumor leads to uncertainty
in the true value. We estimated this uncertainty by using the spa-
tial autocorrelation function of the biomarker to characterize the
fluctuations between neighboring slices. These fluctuations are
then used to quantify the overall noise introduced from volume
subsampling. Assume an organ or tumor with N equally spaced
sections. fi is the biomarker level contained in slice i and is
assumed to be stationary and ergodic. We model the difference
between neighboring slices as

fiþ1 ¼ Afi þ ξþ ð1 − AÞμ; (1)

where ξ is a Gaussian random variable of zero mean, 0 ≤ A ≤ 1,
and μ is the mean of f in slice space. Physically, the first term
of Eq. (1) refers to the degree to which the biomarker levels

(e.g., microvessels) in slice i are also seen in slice iþ 1. The
second term reflects the biomarker levels found in slice iþ 1
that are not found in slice i. In other words, the second term
is a measure of biomarker spatial heterogeneity. Any noise
due to the imaging process will also be reflected in this second
term. The third term ensures the stationarity of f, i.e., the col-
lection of odd slices should have the same statistical behavior as
the collection of even slices. From the autocorrelation function
GðΔÞ,

GðΔÞ ¼
P

iðfi − hfiÞðfiþΔ − hfiÞP
j
ðfj − hfiÞ2 : (2)

It is found that A ¼ Gð1Þ. Using the stationarity conditions

P
N
i¼1 fi
N

¼ 2
PN∕2

i¼1 f2i
N

¼ 2
PN∕2

i¼1 f2i−1
N

¼ μ (3)

and P
N
i¼1 f

2
i

N
¼ 2

PN∕2
i¼1 f

2
2i

N
¼ 2

PN∕2
i¼1 f

2
2i−1

N
; (4)

the variance (var) of the fluctuation term ξ can be calculated.

varðξÞ ¼ ð1 − A2Þðσ2fÞ; (5)

where σf is the standard deviation of f. From this model, the
standard deviation of the difference between the true biomarker
level (e.g., TMV) and an experimentally measured biomarker
level estimated from imaged slices can be estimated (σM)

σM ¼ TG

TS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − G2ð0.5Þ�Lσ2f

q
; (6)

where L is the number of periodically imaged sections, TG is the
thickness of the unimaged gap portion and TS is the section
thickness. In this work, the tumor was well sampled to test
this model of uncertainty. In practice, fewer slices with relatively
large gaps between the slices can be used to fit the autocorre-
lation function with an exponential of unity prefactor (to force
the autocorrelation to equal unity at zero lag). This fit is then
used to calculate the autocorrelation for Eq. (6). Given a pilot
study of M organ or tumor specimens, the minimum detectable
difference in the biomarker (δbm) for future studies can be esti-
mated (P ¼ 0.05)

ðδbmÞ2 ≤ 3.84M−1
�
σ2H − σ2M þ LN

�
σf
TS

�
2

×
�
L
LN

ðTG þ TSÞ − TS

�
2
�
1 − G2

�
L

2LN

���
; (7)

where σH is the standard deviation of the biomarker measured
across all tumors and LN is the number of slices per tissue speci-
men that would be imaged in the future study.

2.8 Statistical Analysis

Treatment response data (tumor weight, MVD, and TMV)
among multiple treatment groups were analyzed using a
Kruskal–Wallis one-way analysis of variance (ANOVA). The
Mann–Whitney U test was used to report P-values for specific
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comparisons that are not statistically significant (P > 0.05)
according to the Kruskal–Wallis ANOVA.

3 Results and Discussion

3.1 Imaging MVD and Total Microvasculature in
Whole Tumors

We monitored tumor microvasculature utilizing custom
immunofluorescence stains and image analyses in tandem
with tissue sectioning and multiarea microscopy to quantita-
tively image microvessels systematically throughout entire
tumors [Fig. 3(a)]. The immunostains identify microvessels
(endothelial cells) and epithelial cancer cells in subcellular res-
olution image mosaics of full tumor cross-sections [Figs. 3(b)–
3(d)]. The cancer cell stain, using an anticytokeratin MAb,
excludes acellular regions of necrosis and defines the boundary
of viable tumor cells in serial sections to enable objective, auto-
mated segmentation of the intratumoral microvessels [Figs. 3(b),
3(e), and 4]. This identification of the tumor margin is critical as
tumors are often poorly vascularized in comparison to the sur-
rounding tissue29 [Fig. 3(e)]. In the absence of a clear visuali-
zation of the tumor margin, the dense peritumoral vasculature
can confound the quantification of intratumoral microvessels.
Furthermore, MVD measurements often rely on capturing
changes in foci of endothelial cell proliferation, or hot spots,
in a few high-magnification fields26 such that MVD statistics
can suffer from interobserver variability as well as tumor hetero-
geneity.30 In contrast, TMV imaging estimates the total vessel
volume from serial, multifield mosaics of entire tumor cross-
sections for automated and objective assessments. Note that

this critical identification of the tumor boundary also excludes
the possibility of simply pulverizing whole tumors for bio-
chemical assays (e.g., Western blots) because the peritumoral
microvasculature obscures the quantification of intratumoral
vasculature.

The anti-human cytokeratin MAb for human cancer cells
applied here is widely applicable to mouse xenograft models
of epithelial cancers. This immunostain is selective for
human cells and for cytokeratin proteins highly expressed in car-
cinomas, which provides a dual selectivity for clear demarcation
of the tumor boundary. Prior clinical reports have demonstrated
cytokeratin staining to image and classify epithelial cancers36

and micrometastases.37 Other MAbs-targeting biomarkers fre-
quently overexpressed by cancer cells (e.g., epidermal growth
factor receptors, folate receptors, and epithelial cell adhesion
molecule) are also being used successfully to image and quan-
tify tumor margins38 and ultra-rare circulating tumor cells in the
clinic.39 Note that some tumor types pose difficulties for specific
cancer cell staining and careful consideration will be required to
design stains for other applications.

3.2 Mathematical Model for Maximizing Vascular
Biomarker Quantification Throughput Achieving
Statistical Significance

For maximal statistical power, imaging the full organ or tumor
microvascular network is ideal but prohibitive. For ample, pro-
cessing an entire 1-cm-diameter tissue specimen requires 170 h
and 4 terabytes (TB) of data acquisition (using a Hamamatsu
NanoZoomer 2.0-RS fluorescence imaging slide-scanner).

Fig. 3 Three-dimensional (3-D) tumor MVD and TMV imaging. (a) A 3-D view of select slices from a dataset of 105 PDAC tumor sections. (b) A single
tumor cross-section imaged with 1.2 μm x-y sampling illustrates selective immunostaining of mouse endothelial cells (magenta) and human epithelial
cancer cells (green) to discriminate the tumor margin. Scale bar, 1 mm. (c and d) Enlarged views of the region marked in b, demonstrating visualization
of (c) 4′,6-Diamidino-2-phenylindole (DAPI) staining of cell nuclei and (d) immunostaining of individual microvessels and cancer cells at the tumor
margin. Scale bars, 250 μm. (e) The cancer cell immunostain defines the tumor boundary and identifies peritumoral (gray scale) versus intratumoral
microvessels (magenta). Scale bar, 1 mm.
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However, spatial correlations of the microvasculature can
greatly reduce the sampling burden. To guide efficient studies,
we developed a theoretical model (Methods) to calculate the
minimum number of tissue slices (tissue subsampling) needed
to achieve an accurate estimate for a single organ or tumor and
for an aggregate group of organs or tumors receiving a treatment
regimen. The model is tunable to biological model-specific vas-
cular heterogeneity. The appropriate subsampling can be deter-
mined from metrics of vasculature heterogeneity taken from
control tissue specimens in order to balance the tradeoff between
statistical confidence and experimental throughput. To validate
the model in our exemplary tumor TMV biomarker imaging
application, we analyzed an entire orthotopic PDAC tumor
(8 mm in size) in steps of ∼70 μm to calculate the “true”
tumor TMV. We next calculated tumor TMVaccuracy for vary-
ing subsamplings of the full tumor [e.g., decreasing numbers of
ordered serial sections; Figs. 5(a)–5(c)] and found good agree-
ment between empirical and theoretical confidence intervals
[R2 ¼ 0.63, n ¼ 58 tumor subsampling sizes, no fitting or
free parameters; Fig. 5(c)]. The mathematical model is also
applicable to models of nonmalignant disease, where the micro-
vascular biomarker heterogeneity of organ or tumor samples can
be determined and used to guide the choice of an optimal tissue
subsampling frequency.

We then applied the mathematical model to determine appro-
priate tissue subsamplings and sample sizes (number of inde-
pendent tissue specimens or tumors in this case) to resolve a
desired antivascular effect size. The autocorrelation analysis
characterizes vascular biomarker heterogeneity and defines
the subsampling distance containing nonredundant information
[Fig. 5(b)]. We define the nonredundant subsampling for a sin-
gle-tissue specimen as half the decay length, ð2eÞ−1, of the auto-
correlation function. Here, the decay length for tumor TMV in
the PDAC model is 450 μm [Fig. 5(b)], and tumor TMV accu-
racy reaches 85% confidence at a sampling period of 225 μm
[8% of the total tumor volume, Fig. 5(c)]. Because a typical
experiment includes multiple mice, it is not necessary to

image at the subsampling required for a single tissue specimen;
i.e., confidence improves with more specimens.

As a practical guide for subsampling, a statistical calculator
is provided (Appendix) that incorporates inter- and intratissue
specimen vascular heterogeneity, desired effect size resolution,
and sample size. The output of the calculation for the PDAC
model imaged here is provided for illustrative purposes
[Fig. 5(d)]. In this case, 2.6% of the PDAC tumor volume
(10 slices) must be imaged per tumor for a sample size of
five mice (∼50 sections total) to achieve 95% confidence
(P < 0.05), with a resolving power (minimum detectable differ-
ence) of a 20% change in tumor TMV. Thus investigators may
plan experiments according to the desired statistical power,
effect size resolution, and biomarker spatial heterogeneity. In
contrast to periodic tumor subsampling, full 3-D reconstructions
would require ∼38 times (100%∕2.6%) more labor and data
storage (∼1900 sections totally). The requirement to image
only a few percent of the tumor, in order to achieve sufficient
statistical power to report on the whole tumor, is good news as it
accelerates analysis while reducing cost. This offers promise for
developing high-throughput assays.

3.3 Efficient Quantification of Antivascular
Therapeutic Response

To demonstrate the strengths of full tumor subsampling, we per-
formed a comparative study of MVD versus TMV in an ortho-
topic mouse model of PDAC subjected to different modes of
treatment, (Fig. 6) resulting in either minimal or significant
tumor reduction [Fig. 7(a)]. Here, MVD (dimensionless) is
the mean value across the tumor depth, whereas TMV (mm3)
accumulates with depth [Fig. 2(b)]. In a first experiment, we
treated PDAC mice with cabozantinib (XL184), a small mol-
ecule, multireceptor tyrosine kinase (RTK) inhibitor with potent
activity against MET (the receptor for hepatocyte growth factor)
and vascular endothelial growth factor receptor 2 (VEGFR2), as
well as other RTKs important for tumor pathobiology.40

Cabozantinib inhibits tubule formation, with no evidence of

Fig. 4 Wavelet-based segmentation of microvessels. Wavelet spatial frequency bandpass filtering enables automated selection of intratumoral micro-
vessels based on morphology. This is advantageous for high-throughput extraction of immunostains from gradient backgrounds and with variable
contrast over many tissue sections, as was the case here. Here, intratumoral microvessels (magenta outline) identified by software are overlaid
on the raw fluorescence image of mouse endothelial cells (gray scale). (a) Selection of intratumoral microvessels using intensity thresholding fails
in high-throughput applications. (b) In contrast, wavelet bandpass filtering is more robust and identifies a greater number of intratumoral microvessels.
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direct cytotoxicity.40 Thus, cabozantinib is classified as an anti-
angiogenic agent and its effects on nonvascular cells do not
directly cause cell death.40 McDonald et al. have elegantly dem-
onstrated that cabozantinib is a potent antiangiogenic agent with
the added benefit of reducing a prominent escape mechanism—
cancer cell migration, metastasis and growth along remaining,
functional vessels as well as via lymphatic routes.4,41,42

Cabozantinib is currently in phase III clinical trials based
upon its induction of antiangiogenic (through VEGFR2 inhib-
ition) and anti-invasive (through MET inhibition) effects in
preclinical models41 and in pilot clinical trials.43

We then performed a classic antivascular treatment, PDT, on
a separate group of PDAC mice using BPD activated by NIR
light. PDT is a clinically utilized modality that can be utilized

Fig. 5 Mathematical model for achieving maximal throughput with statistical significance. (a) Schematic of an increasing number of ordered tumor
slices used to estimate tumor TMV. (b) Autocorrelation of the tumor microvasculature along the depth of an orthotopic PDAC tumor. The autocorre-
lation decay rate determines the optimal tumor subsampling. (c) Convergence of tumor TMV imaging accuracy as more of the tumor volume is imaged.
The points are tumor TMV, �95% confidence interval, generated by repeating the TMV calculation on permuted phase shifts of the ordered slices.
Empirical confidence intervals are shown for comparison to theoretical confidence intervals generated by the mathematical model. (d) Exemplary
relationship between the minimum detectable difference in tumor TMV, δbm, and imaging an increasing number of tumors, with individual
tumor samplings of 3 (0.8% of the tumor volume) or 10 (2.6% of the tumor volume) slices per tumor.

Fig. 6 Schematic of the treatment modalities. A simplified schematic of cell surface multireceptor tyrosine kinase (RTK) signaling triggering by growth
factor (labeled ‘g’) binding and downstream, intracellular signaling cascades involving adapter proteins and other mediators (labeled with asterisks).
Cabozantinib binding to RTKs leads to decreased angiogenic, proliferation, and survival signaling. Benzoporphyrin derivative (BPD)-photodynamic
therapy (PDT) primarily damages mitochondria (labeled ‘m’) and its toxicity is due, in part, to subsequent apoptotic signaling cascades.
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to directly damage vasculature. It is used routinely in the clinic
for the targeted closure of neovessels in age-related macular
degeneration,44,45 which is characterized by choroidal neomicro-
vascularization, while sparing sensitive neighboring tissues
in the eye. PDT is also approved for primary and adjuvant treat-
ment of certain cancers.45,46 Depending on the time of illumina-
tion following BPD administration, photodynamic action can
selectively destroy vasculature, cancer cells or both.47–49

Here, we purposefully induced both vascular and cancer cell
destruction in order to elicit a change in both overall tumor vol-
ume and microvasculature. This experimental arm tests the abil-
ity of MVD and TMV to capture antivascular response in cases
where the tumor shrinks. A third group of mice received com-
bined PDT and cabozantinib to probe for complementary
effects.

The single dose of cabozantinib did not affect the primary
tumor burden [Fig. 7(a)], however, a trend was observed in
reduced tumor MVD (P ¼ 0.19, n ¼ 7 mice, 14 entire tumor

cross-section image mosaics; Mann–Whitney U test) and
reduced tumor TMV (P ¼ 0.15, n ¼ 7mice, 14 image mosaics;
Mann–Whitney U test) compared to control, untreated PDAC
mice [n ¼ 8 mice, 16 image mosaics; Fig. 7(b)]. As expected,
both MVD and TMVare valid metrics of antivascular activity in
cases where the tumor volume is not significantly impacted.
However, upon a 36% reduction in tumor weight following
PDT [P < 0.001, n ¼ 8 mice; Kruskal–Wallis analysis of vari-
ance, ANOVA; Fig. 7(a)], tumor MVD remains unchanged
while tumor TMV indicates a 39% reduction in the tumor
microvasculature (P ¼ 0.13, n ¼ 18 mice, 36 image mosaics;
Mann–WhitneyU test). The final group of mice received a com-
bination of PDT and cabozantinib, which reduced the primary
tumor burden by 52% [P < 0.001, n ¼ 10mice; Kruskal–Wallis
ANOVA; Fig. 7(a)], an enhanced tumor reduction of 17% over
PDT alone (P < 0.01; Kruskal–Wallis ANOVA). Both tumor
MVD and TMV imaging indicated an antivascular effect
[Fig. 7(b)] with a reduction in MVD (P ¼ 0.2, n ¼ 10 mice,

Fig. 7 TMV is more sensitive than MVD imaging for reporting antivascular response. TMV imaging reports reductions in microvasculature following
cabozantinib treatment, PDT, and their combination in orthotopic PDAC tumors while, in contrast, MVD imaging under-reports vascular reduction.
(a) Changes in orthotopic PDAC tumor weight 2 weeks post-treatment with the monotherapies and combined PDT and cabozantinib from the data
shown in (c–f) below. (b) Corresponding percent changes 2 weeks post-treatment in tumor MVD and TMV relative to no-treatment control mice. (c) The
peritumoral MVD is larger than the intratumoral MVD, and the peritumoral MVD is unaffected by treatment, illustrating the importance of identifying
intratumoral microvessels. (d) Intratumoral MVD shows no statistically significant changes post-treatment compared to untreated, control mice.
(e) Tumor TMV is reduced for all cases and resolves statistically significant antivascular affects. (f) Significant tumor weight reduction is apparent
for the treatment groups involving PDT. The results are mean� s:e:m:, n ≥ 16mice (a and f) or n ≥ 7mice (b–e) per treatment group. Asterisks denote
statistically significant differences compared to control, untreated PDAC mice, or among the indicated treatment groups, *P < 0.05 **P < 0.01
***P < 0.001 [Kruskal–Wallis one-way analysis of variance (ANOVA) test]. In (b) and (e), note that the reason for the lower P-value for the cabozantinib
alone group [n ¼ 7 mice; versus the “combo” group]—compared to the PDT alone group (n ¼ 18 mice; versus the “combo” group)—is that the
cabozantinib group has fewer mice.
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20 image mosaics; Mann–Whitney U test] and in TMV
[P < 0.001, n ¼ 10 mice, 20 image mosaics; Kruskal–Wallis
ANOVA]. However, only tumor TMV imaging was able to
resolve an antivascular effect of statistical significance and
also revealed a statistically significant increase in antivascular
activity over PDT alone (P < 0.05; Kruskal–Wallis ANOVA).
The data used to calculate percent changes in MVD, TMV, and
tumor weight are presented in Figs. 7(c)–7(f). Collectively,
TMV reported antivascular activity in all cases while MVD
failed to detect reductions in the tumor vasculature when the
tumor shrank in size, which tends to compact the residual micro-
vessel content. Furthermore, TMV measurements resulted in
greater statistical power than MVD measurements. These data
demonstrate that TMV imaging is more suitable than MVD
measurement for quantifying antivascular efficacy.

4 Conclusions
Abnormal angiogenesis and microvasculature contribute to
numerous malignant, ischemic, and inflammatory disorders.50

Neovascularization is paramount to cancer growth.50,51 In
addition, microvascular dysfunction and damage contribute
to the etiology of rheumatoid arthritis,50 diabetes50,52,53 and
Alzheimer’s disease.50,54 Furthermore, the synthesis of 3-D
microvascular networks in vitro and in situ is an emerging
focus of tissue bioengineering and regenerative medicine.55,56

There is a pressing need for high-throughput and high-content
characterization of microvascular structural and functional prop-
erties to identify biological targets for modulating microvascular
function in disease progression, therapeutic response, and tissue
bioengineering. As new vascular imaging methodologies are
developed to address these questions, there is a need to bridge

Fig. 8 Biomarker statistical calculator.
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the resolution gap between clinical and microscopic methods
and to provide benchmarks for interpreting clinical images.16

Of equal importance, a further challenge is defining and achiev-
ing sufficient sampling to draw significant conclusions while
maximizing throughput. A thoughtful editorial in Nature
Methods calls for replacing subjective “representative” images
with methods that enable reporting of quantitative, “statistically
representative” image results for a true representation of the col-
lective data.57 Until recently, the quest for quantitative micros-
copy has been hindered by a lack of automated microscopy
systems and sufficient data storage. Bioimage informatics plat-
forms are now emerging to facilitate extraction of objective,
quantitative, and reproducible results from data-intensive, volu-
metric image sets.58–60

As a step towards these goals, and to realize a laboratory
tool for basic biological studies and for therapeutic screening,
we have integrated digital microscopy with newly developed
labeling and image computation techniques to build a platform
for estimating the tumor TMV. This methodology uniquely
enables visualization of microvascular networks in entire
organs and tumors and can be applied to benchmark noninva-
sive, in vivo imaging modalities. In contrast to MVD, TMV
imaging is robust to changes in tumor size for evaluating anti-
vascular treatment efficacy by quantifying changes in tumor
microvasculature-associated endothelial cell volume. There-
fore, TMV is superior to MVD as a metric of antivascular
therapeutic efficacy and TMV imaging can be applied to screen
antivascular agents and to rationally design antivascular treat-
ment regimens. The mathematical model enables quantitative
and reproducible results at the maximal throughput allowed
by constraints on statistical significance informed by biomarker
heterogeneity. In other words, this approach defines a statistical
“speed limit” for microvascular imaging throughput based on
the minimum amount of tissue volume sampling necessary to
achieve statistically significant results, and the mathematical
foundations are generalizable for application to a myriad of
potential vascular biomarkers. These techniques remove the
variability of prior subjective analyses that rely on sampling
hot spots or a few random fields. TMV imaging is broadly
applicable to studies of vascular disease and regenerative medi-
cine. For instance, it can be applied to explicitly quantify per-
fused microvessels in tissue grafts for regenerative medicine
by introducing the endothelial cell-targeted labeling probe
via the circulation, in vivo, prior to the excision, preparation,
and analysis of the tissue specimens.56 Here, we demonstrated
the potential of TMV imaging for a critical application in
cancer biology and therapy.

In future studies, the platform developed here can be
applied to a number of microvascular disease and basic biology
studies. Metrics of vessel function (e.g., vessel permeability)
and other microvascular biomarkers (such as pro- and anti-
angiogenic factors) can be incorporated and the underlying
concepts can be adapted for in vivo microvessel imag-
ing.9,10,12,15 Clinical biopsies, via fine-needle aspiration, can
also be analyzed by extending the mathematical model to 3-D
and by designing the optimal spatial pattern for multicore sam-
pling. For vascular biomarkers that require higher tissue
samplings and 3-D tracing for morphological analyses, TMV
imaging can be fully automated utilizing serial two-photon
tomography, which integrates automated tissue sectioning
and microscopy.24

Appendix: Statistical Calculator Software

Figure 8 contains a calculator that defines the minimum amount
of tissue to be imaged for accurate biomarker quantification
based upon biomarker spatial heterogeneity and user input
regarding statistical goals and imaging parameter preferences.
The script can be copied, pasted into and run within the
MATLAB Editor. The pilot study parameters are defined in the
heading and can be adjusted interactively.
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